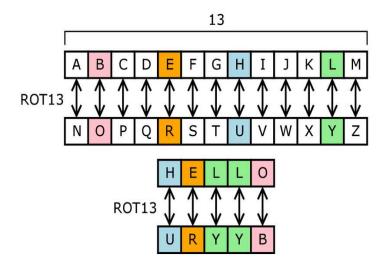


The Application of Elliptic Curves Cryptography in Embedded Systems

Wang Qingxian
School of Computer Science and Engineering
University of Electronic Science and Technology
China


Introduction to Cryptography

Components of a Cryptosystem:

- a. Plain text
- b. Cipher
- c. Code
- d. Key

Popular Schemes used:

- a. Public-key cryptography
 - Message is encrypted using a public key.
 - It is decrypted using a private key.
 - Private key is related to public key.
- b. Three pass protocol
 - Message is encrypted by sender.
 - Message is super encrypted by receiver.
 - Sender decrypts message using private key.
 - Key exchange is not required.

Source:

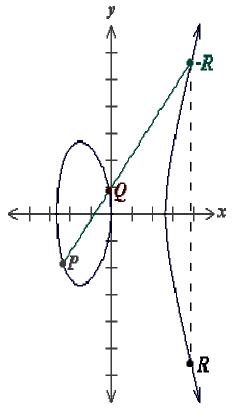
http://upload.wikimedia.org/wikipedia/commons/2/2 a/ROT13.png

Strategies for Public key Infrastructure

- RSA (Ron Rivest, Adi Shamir and Len Adleman)
 - Product of two large prime numbers is used to create a public key and private key.
 - With suitably large prime numbers, the problem of factorization increases.
 - Key sizes increase as the need of security level increase.
- DSA (Digital Signal Algorithm)
 - Based on the problem of discrete log over finite field.
 - For a problem a^b = c, 'a' and 'c' are known, b is required.
 - Can be solved easily using logarithms.
 - For larger number the complexity increases and desired level of security is achieved.
- DSA and RSA are computationally intensive in terms of memory requirement and time.

Elliptical Curves

Basic Properties:


Equation of an elliptic curve:

$$y^2 = x^3 + ax + b$$

- The equation is defined for no repeated factors.
- Elliptic curve groups are additive groups.
- The addition of any two points on curve is defined geometrically.
- Law of addition:

$$P+Q=R$$
.

 The point –R on the curve is reflected on x-axis to point R.

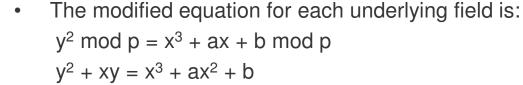
$$P(-2.35, -1.86)$$

$$Q(-0.1, 0.836)$$

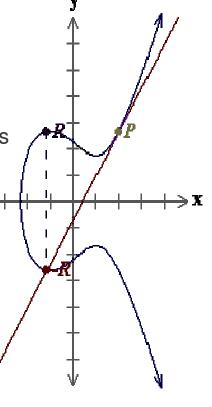
$$-R$$
 (3.89, 5.62)

$$P+Q=R=(3.89, -5.62).$$

$$y^2 = x^3 - 7x$$


Source:

http://www.certicom.com/index.php?action=ecc_tutorial,ecc_tut_2_1


Elliptical Curves for Cryptography

- Law for doubling a point on elliptic curve
 P+P = 2P = R.
- An essential property for cryptography is that a group has a finite number of points.

• Elliptic Curve cryptography is based upon the complexity of discrete log problem.

2P = R = (-1.11,

$$y^2 = x^3 - 3x + 5$$

Data security and Embedded systems

- Need of data security in Embedded Systems
 - Increase in number of wireless applications
 - Realization of these application on embedded systems platform.
- Current Security Algorithms and Embedded System
 - Time consuming signature generation and authentication.
 - Large key sizes
 - RSA and DSA provide a high level of security, but are expensive in terms of memory.
 - By reducing key size for RSA and DSA, security level is compromised.
- Elliptical Curve DSA (ECDSA)
 - Smaller key sizes without compromising level of security.
 - Quick signature generation and authentication.

ECDSA Implementation

- The elliptic curve discrete log problem:
 Given points P and Q in the group, find a number n such that Pn = Q.
- The private key used is Q.
- Signature generation:

```
r = x \mod K = kG \mod p (For any random number k, with G) s = k^{n}(-1) (m + nr)
```

- Signature verification:
 - For a user knowing private key Q and verifying signature for message 'm':

$$K' = (s^{(-1)} m) G + (s^{(-1)} r) Q.$$

 $r' = x_coord(K')$

Accept if r == r'

- Why we obtain smaller key sizes using ECDSA?
 - RSA and DSA complexity increases as the numbers involved increases.
 - The use of finite field and modification in the equation of the curve.

Elliptic-Curve Digital Signature Algorithm (ECDSA)

NIST Guidelines for Public Key Sizes for AES			
ECC key size (bits)	RSA key size (bits)	Key size ratio	AES key size (bits)
163	1,024	1:6	
256	3,072	1:12	128
384	7,680	1:20	192
512	1 <i>5,</i> 360	1:30	256

Table 1

Source: Embedded.com

Advantages of using ECDSA on Embedded systems

- Signature can be calculated before hand.
- Smaller key size.
- Less intensive modular operations.
- Quick generation of signatures
- Implementation of ECDSA on TI MSP430x33x
 - Acceptable performance at lower cost.
 - Modified underlying field for faster arithmetic operations.
 - Signature generation time is 3.4 sec
- ECDSA on Palm PDAs
 - Signature generation time 0.9 sec
 - Signature verification time 2.4 sec
 - 163 bit ECDSA key provides same level of security as 1024 RSA key.

Conclusion

Performance advantages of ECDSA

- Computationally less intensive than RSA and DSA.
- High security levels in constrained environments.
- Reduction in key size without compromising the data integrity.
- By having smaller key sizes and efficient signature generation ECDSA is extremely suitable for embedded applications.

