
Field–Programmable Analog Arrays Enable
Mixed–Signal Prototyping of Embedded Systems

(Invited Paper)

Tyson Hall
School of Computing

Southern Adventist University
Collegedale, Tennessee 37315–0370

Email: tyson@southern.edu

Christopher Twigg
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250
Email: ctwigg@ece.gatech.edu

Abstract— The field of embedded systems is an increasingly
popular area of focus for industry and academia alike. In
typical embedded systems, analog circuitry is often limited to the
input and output sensors with analog–to–digital (A/D) converters
and digital–to–analog (D/A) converters placed as close to the
sensors as possible leaving the majority of the system completely
digital. Although this is understandable given the reprogram-
mable nature of digital technologies and ease of design, it is
unfortunate since many embedded systems are battery powered
and could benefit from low–power analog circuitry. To increase
the influence of analog circuitry into mainstream embedded
system design, reprogrammable analog devices, dubbed field–
programmable analog arrays (FPAAs), need to be integrated with
reprogrammable digital hardware to form a mixed–signal rapid
prototyping platform. Such a system will enable embedded system
designers to develop and evaluate mixed–signal systems with
greater ease and encourage the use of more analog computational
hardware when it is deemed best for the overall system.

I. FPAAS IN EMBEDDED SYSTEMS DESIGN

Field–programmable analog arrays (FPAAs) have been of
interest for some time, but historically, these devices have
had very few programmable elements and limited intercon-
nect capabilities, making them limited in their usefulness
and versatility. Currently available commercial and academic
FPAAs are typically based on op–amp circuits with only
relatively few op–amps per chip [1]–[7]—see [8] for a more
exhaustive discussion of previous FPAA designs. However, to
be of interest to embedded system designers, FPAAs need to
be larger, more flexible, and easier to use; they need to be
more analogous to today’s high–density field–programmable
gate arrays (FPGAs). A large–scale FPAA and modern FPGA
can be combined to form a very useful rapid prototyping
system. Commercial FPGAs are clearly capable of meeting
the demands of prototyping embedded systems. Therefore, the
focus of this paper will be on the FPAA side of a mixed–signal
prototyping platform for embedded systems.

Work on a class of new, large–scale FPAAs based on analog
floating–gate technologies has made good progress towards
a modern analog prototyping platform [9]–[11]. The most
recent experimental data from these FPAAs illustrates their
usability and flexibility [12]. With a working architecture
documented, a discussion of these FPAAs can now focus
on their potential functionality in various design spaces and

Custom GUI

Programming
Prog.

Control/

C
om

m
un

ic
at

io
n

FPGA

Control/

Data

Data

FPAA

D
/A

A
/D

Analog

Analog

D/A

Digital
System
Partition

Control

Pr
og

ra
m

m
in

g
 /

Ethernet

Computer

MATLAB

Inputs

System
Partition

Software
Environments

Fig. 1. This is a block diagram of the overall mixed–signal development
system. During programming mode, the FPGA receives the high–level com-
mands from the PC and implements the specific programming protocols to
configure the FPAA. In run mode, the FPGA is configured with the digital
partition of the embedded system and interfaces with the FPAA via the A/D
and D/A converters to implement the entire mixed–signal system.

the architectural customizations necesssary for targeting these
FPAAs to different design modalities such as audio, RF, bio-
engineering, neuromorphic VLSI, embedded systems, etc. For
this paper, the area of embedded systems has been selected.
In the following sections, a mixed–signal rapid prototyping
platform for embedded systems will be introduced, an FPAA
archetecture targeted at embedded systems applications will be
discussed, and a variety of example systems will be explored
in terms of their prototyping potential on such a system.

II. RAPID PROTOTYPING OF EMBEDDED SYSTEMS

Embedded system designs typically involve software, dig-
ital hardware, and analog hardware. The analog hardware
is typically limited to analog sensors on the input and/or
output. Embedded systems most often use a microprocessor—
either fixed–core or in FPGA logic—as their primary digital
platform. Senor inputs and outputs are interfaced to the main
controller with A/D and D/A converters. The current trend in
sensor development is to integrate a converter into the sensor
module itself and provide a digital signal at the output of
the sensor. While this integration is popular among digital
designers, it eliminates the possible advantages of performing
analog computations before digitizing the signal. For example,

830-7803-9197-7/05/$20.00 © 2005 IEEE.

experimental data from analog signal processing systems has
shown that power requirements can be decreased up to five
orders of magnitude over typical DSP microprocessor imple-
mentations [10], [13], [14]. With many embedded systems
operating on battery power, any amount of power savings
(even far less than five orders of magnitude) is significant.

To provide a prototyping environment for embedded sys-
tems, reconfigurable analog and digital hardware must be
incorporated into a single platform as shown in Fig. 1. Modern
FPGAs are a natural fit for synthesizing the digital logic
and even soft–core microprocessors. The large–scale FPAAs
proposed in this paper will complete the platform by providing
reconfigurable analog prototyping capabilities.

III. ADAPTING THE FPAA ARCHITECTURE

Fundamentally, FPAAs include two functions: routing and
computation. The routing elements are typically networks of
switches connected together by signal lines with the network
architecture and switch types varying dramatically across
different FPAAs. The switch networks connect to the com-
putational elements, which are grouped together to form a
computational analog block (CAB) that is analagous to the
computational logic blocks found in FPGAs. For the FPAAs
discussed here, the switches are floating–gate transistors that
can be programmed to an “on” state, “off” state, and variable
resistance state [9]. The CABs in these FPAAs are comprised
of a collection of analog computational elements that range
from fine–grained components (transistors, fixed–value capac-
itors, etc.) to medium–grained components (operational am-
plifiers) and coarse–grain components (bandpass filter blocks,
vector–matrix multipliers, peak detectors, etc.).

FPAAs targeted at prototyping the analog computational
components of embedded systems will have several important
characteristics including special–purpose analog I/O blocks,
digital interfaces, and specialized computational elements. A
top–level block diagram of the proposed embedded systems
FPAA is shown in Fig. 2 with all of these functions illustrated.

a) Analog Interfaces: In many embedded system appli-
cations, the FPAA will implement the front–end and back–end
of the mixed–signal system. In this role, the FPAA needs to
have a range of I/O modules to ease the attachment of common
devices. In particular, standard line–in and line–out audio
interfaces will allow audio sources and amplified speakers to
be attached directly to the FPAA. Output driver buffers will
improve routing of analog signals between multiple FPAAs
(for larger systems) and to measurement instrumentation. On
the input side, input buffers with programmable gains will
allow a wider range of input signals to be supported by the
FPAA.

b) Digital Interfaces: Since FPAAs will be used as a
part of a larger mixed–signal system, they need to easily
integrate with digital systems such as microprocessors or
FPGAs. This integration requires on–chip A/D and D/A
converters. To support a wide range of application, multiple
converter flavors will need to be available. A high–speed,
moderate resolution (16 bits) converter is needed in many

Digital

Inputs
Analog

CAB

CAB

CAB

CAB

CAB

CAB

CAB

Spec.
CAB

CAB

CAB

Spec.

CAB

CABCAB

CAB

CAB

CAB CAB

CAB

CAB

CAB
CAB

Spec.
CAB

CAB

CAB

CAB

CAB

CAB
CAB

Spec.

Block
I/O

D/A

Inputs

Block
I/O

I/O
Audio

B
an

k
of

 L
ow

−
Sp

ee
d

A
/D

 C
on

ve
rt

er
s

Digital Bus
Interface

(Programmable Filter Bank, Frequency Decomposition, etc.)
Specialized Functional Blocks

Analog Multiplexer

High−Speed A/D Converter Output

Fig. 2. This is a top–level block diagram of an FPAA architecture
targeted at prototyping embedded systems applications. This proposed FPAA
is characterized by special I/O blocks for accommodating various analog
signal interfaces, data converters for easing integration with digital systems,
and specialized CABs for optimizing common functions.

high–bandwidth applications. Alternatively, a large number of
compact, low–speed converters are needed for passing large
amounts of parallel data from the FPAA to a digital system
(high–throughput applications). Providing a bank of compact,
integrating A/D converters with approximately eight bits of
resolution and operating in the hundreds of kilohertz range
should be sufficient for many embedded systems applications.

With the class of FPAAs introduced here, one can imagine
implementing programmable filters, frequency decomposition,
smoothing (and other signal conditioning), thesholding, peak
detection, and more in the FPAA. With the addition of on–chip
ADCs, the FPAA can be thought of as a “smart A/D.” This
term implies the FPAA’s extensive computational capability in
addition to traditional data conversion functionality. There is
another subtlety at play in a smart A/D converter. By adding
computational effort in the analog domain, the amount of
data that needs to be converted may be drastically reduced,
thus requiring a simpler, smaller, slower, lower power A/D
converter in the system.

c) Specialized CABs: In addition to the general com-
putational fabric of FPAA CABs [12], specialized CABs
with coarse–grained blocks are needed to optimize common
tasks such as frequency decomposition, programmable fil-
ter banks, and arbitrary waveform generators. By providing
coarse–grained elements such as these, common tasks can be
performed with improved performance that is more predictable
(an important characteristic for the development of CAD tools
such as synthesis, place and route, and simulation software).
The development of specialized CABs that are distributed
across the chip within the the general computational fabric
closely parallels the design path that FPGAs have followed.

84

G

H

+
-

input outputplant

sensor

(a)

plant

sensor

DAC

ADC

input output
D

ig
it

al
C

o
n

tr
o

lle
r

(b)

plant

sensor

input output

FPAA

(c)

plant

sensor

input

output

FPAA

D
ig

it
al

C
o

n
tr

o
lle

r DAC

ADC

(d)

Fig. 3. (a) A typical control system generally involves an error signal driving
some system plant through a transfer function, G. The output of the plant is
observed by some sensor and processed with another transfer function, H. The
error signal is then constructed by subtracting the feedback signal generated
by the sensor from the control input. (b) Modern control systems are generally
built using digital controllers due to their flexibility and ease of use. Since real
world signals are analog, data converters are required. (c) FPAAs provide a
more flexible and easier to use analog controller that may appeal to engineers
desiring low–power or continuous–time controls. (d) A mixed–signal approach
provides an even greater level of flexibility in control systems by enabling
low–power, continous–time transfer functions with digital supervisors capable
of reconfiguring the analog device as the condition necessitates.

Modern FPGAs have special computational blocks for imple-
menting common functions such as memory, multiplication,
and even full processors.

IV. IMPLEMENTING MIXED–SIGNAL EMBEDDED SYSTEMS

One potential application for mixed-signal programmable
and reconfigurable devices is control systems. Simple control
problems are generally characterized by transfer functions that
transform signals going into and coming out of a system plant,
Fig. 3a. In these feedback systems, an error signal is fed
through one transfer function to drive the plant. A feedback
signal is generated by passing sensor signals through another
transfer function, and the error signal is constructed by simply
subtracting this feedback signal from a control input. Most
of the processing involved in these systems is now done in
digital controllers, Fig. 3b, such as DSP processors, FPGAs,
microcontrollers, etc. Since real–world signals are analog,
most of these digital controllers require data converters, which
can consume a significant amount of power. However, control
systems were not always designed using digital systems.

The earliest control systems were analog, but they were
eventually replaced by digital circuits that were more flexible

and significantly easier to use. These digital circuits provided
a means for rapidly prototyping the control algorithms in hard-
ware in mere minutes. Traditional analog could not compete,
since discrete analog parts required physical changes to the
setup and integrated analog circuits take months to fabricate.
However, FPAAs provide a means for rapidly prototyping
analog hardware in a fashion similar to that of FPGAs. If the
control input and the feedback mechanism are both analog,
then an FPAA can provide continous–time low–power signal
processing [12], such as the subtraction and transfer functions
required to implement these control systems, Fig. 3c. Without
data converters and the power associated with switching el-
ements in digital systems, this analog solution becomes very
attractive for battery powered applications including embedded
controls.

A truly flexible solution can be achieved by combining
both programmable digital and analog technologies, Fig. 3d.
With such a device, any control system of this type can be
synthesized. A single device can interface with any number
of sensors, system plants, or control inputs either digital or
analog. With this flexibility, a controls designer can move
the analog/digital boundary arbitrarily between an all–digital
and all–analog solution. For example, a design can start as a
completely digital circuit and be incrementally replaced by
analog components as the design matures to lower power
consumption. Since the FPAA can handle much of the signal
processing, the data converters can potentially be smaller
than in the all–digital case, thus further reducing the power
requirements. However, a mixed–signal solution trades power
consumption for greater flexibility. During times of inactivity
or when using an all–analog implementation on this device, the
digital circuitry and data converters could be powered down
to conserve power.

For this class of mixed–signal controller to be truly useful,
it must have some clear applications. One such application
is robotics. These flexible mixed–signal controls chips can
be integrated onto a robot platform to generate intelligent
behaviors through connections between the robot’s sensors
and motors [15]. Fig. 4 illustrates an example of such a
robot. The photodetectors provide an analog signal of light
intensity and are angled slightly towards the sides of the robot.
Each motor takes an analog input voltage that determines the
direction and velocity of the wheel attached to it based upon
polarity and magnitude, respectively. By creating positive or
negative links between the motors and the photodetectors in
the FPAA/FPGA, the robot can be configured to be attracted
to or repelled by light sources. For example, if the left
photodetector is positively connected to the right wheel, and
the right photodetector is negatively connected to the left
wheel, the robot will avoid light sources to the right of it
and head towards light sources on its left. Under the right
conditions, the robot may even orbit a light source while
driving counter–clockwise due to the attraction of the left
photodetector and the repulsion by the right photodetector.

Another example system using a mixed–signal prototyping
platform is feature extraction for speech recognition systems.

85

photodetectors

wheels (motors)

FPAA

FPGA

Fig. 4. A typical “Braitenberg machine” is a simple robot with positive
and negative connections made between the robot’s sensor inputs and its
motors. Using a mixed–signal reconfigurable device allows for great flexibility
in making these interconnections.

Although digital algorithms exist, they tend to be computation-
ally intensive. For mobile devices that use voice commands,
this can mean a significant reduction in battery life. A mixed–
signal version of a feature extraction algorithm is shown in
Fig. 5. Much of the signal processing is moved into the
analog domain where the power consumption is significantly
lower and the operations can occur in parallel [16]. The
remainder of the algorithm is computed digitally. By shifting
the analog/digital boundary, longer battery life and faster
speech recognition times can be realized.

A number of embedded system examples can be imple-
mented using the mixed–signal prototyping plaform proposed
here. In addition to the feature extraction and controls systems
mentioned in detail above, one can imagine mixed–signal
implementations of noise suppression, speech enhancement
and recognition, digitally controlled adaptive analog filters,
communication protocol implementations, and more.

V. CONCLUSION

Large–scale FPAAs based on floating–gate technology pro-
vide a viable platform for designing a rapid prototyping envi-
ronment for embedded systems. This paper has proposed an
FPAA architecture based on previously demonstrated designs
that is optimized for typcial embedded system applications.
Additionally, a number of example systems have been ex-
plored that can be implemented on a mixed–signal prototyping
platform comprised of the proposed FPAA and a commercial
FPGA.

REFERENCES

[1] M. A. Sivilotti, “Wiring considerations in analog VLSI systems, with
application to field-programmable networks (VLSI),” Ph.D. dissertation,
California Institute of Technology, Pasadena, CA, 1991.

[2] K. Lee and P. Gulak, “A transconductor-based field-programmable
analog array,” in IEEE International Solid–State Conference Digest of
Technical Papers, Feb. 1995, pp. 198–199.

[3] D. Anderson, C. Marcjan, D. Bersch, H. Anderson, P. Hu, O. Palusinski,
D. Gettman, I. Macbeth, and A. Bratt, “A field programmable analog
array and its application,” in Proc. IEEE Custom Integrated Circuits
Conference, May 1997.

B
an

d
p

as
s

fil
te

r b
an

k

D
ec

o
rr

el
at

io
n

sp
ee

ch
si

g
n

al

p
ea

k
d

et
ec

ti
o

n

lo
g

co
m

p
re

ss
io

n

ex
tr

ac
te

d
fe

at
u

re
s

f
0

p
ea

k
d

et
ec

ti
o

n

lo
g

co
m

p
re

ss
io

n

f
1

p
ea

k
d

et
ec

ti
o

n

lo
g

co
m

p
re

ss
io

n

f
n

Fig. 5. The analog algorithm depicted here is based on a model for the
human cochlea. It begins with a set of bandpass filters (filter bank) acting in
parallel to separate the incoming audio signal into its composite frequencies,
f0 - fn. By passing each of these decomposed frequencies through a peak
detector, a power spectrum of the audio signal is generated similar in nature
to the output calculated by an FFT. These signals are then log compressed
and decorrelated using a DCT / KLT. The features generated by this block
can be further processed by the digital system for speech recognition.

[4] ispPAC Overview, Lattice Semiconductor Corporation, Hillsboro, OR,
Sept. 1999.

[5] X. Quan, S. Embabi, and E. Sanchez-Sinencio, “A current-mode based
field programmable analog array architecture for signal processing
applications,” in IEEE 1998 Custom Integrated Circuits Conference,
Santa Clara, CA, May 1998, pp. 277–280.

[6] Totally re-configurable analog circuit–TRAC, Fast Analog Solutions,
Ltd., Oldham, UK, Mar. 1999, issue 2.

[7] C. A. Looby and C. Lyden, “A CMOS continuous–time field program-
mable analog array,” in Proc. 5th International ACM Symposium on
Field–Programmable Gate Arrays. ACM Press, 1997, pp. 137–141.

[8] T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Developing
large–scale field–programmable analog arrays for rapid prototyping,”
International Journal of Embedded Systems, 2004.

[9] T. S. Hall, P. Hasler, and D. V. Anderson, “Field–programmable analog
arrays: A floating–gate approach,” in Proc. 12th International Con-
ference on Field Programmable Logic and Applications, Montpellier,
France, Sept. 2002, pp. 424–433.

[10] T. S. Hall, C. M. Twigg, P. Hasler, and D. V. Anderson, “Application
performance of elements in a floating–gate FPAA,” in Proceedings of
the 2004 IEEE International Symposium on Circuits and Systems, May
2004, pp. II.589–II.592.

[11] ——, “Developing large–scale field–programmable analog arrays,” in
Proc. 18th International Parallel and Distributed Processing Sympo-
sium, Santa Fe, New Mexico, April 2004.

[12] T. S. Hall, C. M. Twigg, J. D. Gray, P. Hasler, and D. V. Ander-
son, “Large–scale field–programmable analog arrays for analog signal
processing,” IEEE Transactions on Circuits and Systems, 2005, accepted,
to be published.

[13] R. Ellis, H. Yoo, D. Graham, P. Hasler, and D. Anderson, “A continuous–
time speech enhancement front–end for microphone inputs,” in Pro-
ceedings of the IEEE International Symposium on Circuits and Systems,
vol. 2, Phoenix, AZ, May 2002, pp. II.728–II.731.

[14] P. D. Smith, M. Kucic, R. Ellis, P. Hasler, and D. V. Anderson,
“Mel–frequency cepstrum encoding in analog floating–gate circuitry,” in
Proceedings of the International Symposium on Circuits and Systems,
vol. 4, 2002, pp. IV–671 – IV–674.

[15] V. Braitenberg, Ed., Vehicles: Experiments in Synthetic Psychology. The
MIT Press, 1986.

[16] S. Ravindran, D. Anderson, and M. Slaney, “Low-power audio classifica-
tion for ubiquitous sensor networks,” in IEEE International Conference
on Accoustics, Speech, and Signal Processing, Montreal, Canada, May
2004.

86

