Really Fun Peripherals

Overview

Interfacing Methods

Liquid Crystal Display (LCD)

Touchscreen

Sensors

Mass Storage

Use google and wikipedia to get more information

Interfacing Methods

Analog – use ADC or comparator Digital

- Pulse width modulation
 - Measure width of pulse with timer or interrupts
- RS232
 - Use UART
 - Bit-bang with GPIO if not available
- synchronous (clocked) serial
 - Use UART in clocked serial mode
 - Bit-bang with GPIO if not available
- parallel
 - Use GPIO port

Clocked (Synchronous) Serial Interfacing

Basic ideas

- Send data serially between chips to reduce pin count and PCB complexity
- Provide a clock with the serial data to make interfacing easy

Example protocols

- SPI serial peripheral interconnect.
- I²CTM − inter-integrated circuit bus.

SPI – Serial Peripheral Interface

Based on shift registers

Example: AD7877

Signals to get bytes in and out

- DCLK Data clock
- DIN Data into peripheral device
 - Is read at rising edge of DCLK (Must be ready 12 ns before)

Figure 2. Detailed Timing Diagram

- Also called MOSI: master out, slave in
- DOUT Data out of peripheral device.
 - Is valid 16 ns after falling edge of DCLK
 - Also called MISO: master in, slave out
- Need to provide individual chip-selects if multiple SPI devices share DCLK/DIN/DOUT

What do those bytes mean?

RATIOMETRIC (DIFFERENTIAL)
CONVERSION

							16-BIT DA	TA-WORD							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
WRITING TO A REGISTER															
WADD3	WADD2	WADD1	WADD0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
4-BIT R	EGISTER	WRITE AD	DRESS	12 BITS DATA											
ı	1									ı					
EXTENDED WRITE OPERATION TO GPIO REGISTERS															
1	1	1	1	EADD3	EADD2	EADD1	EADD0	D7	D6	D5	D4	D3	D2	D1	D0
EXTENDED WRITE ADDRESS				4-BIT EXTENDED ADDRESS				8 BITS GPIO DATA							
i i l															
WRITING TO CONTROL REGISTER 1 TO SET ADC CHANNEL, MODE, AND READ REGISTER ADDRESS															
0	0	0	0	SER/DFR	CHADD3	CHADD2	CHADD1	CHADD0	RADD4	RADD3	RADD2	RADD1	RADD0	MODE 1	MODE 0
CONTR	CONTROL REGISTER 1 ADDRESS					ADC CHANNEL ADDRESS			5-BIT READ REGISTER ADDRESS					OPERATING	
ı	I I MODE									DE					
NORMAL (SINGLE-ENDED)/															

Figure 46. Designation of Data-Word Bits in AD7877 Write Operations

What do those registers mean?

Table 13. Write Register Map

Register Address											
Binary											
WADD3	WADD2	WADD1	WADD0	HEX	Register Name	Description					
0	0	0	0	0	None	Unused; writing to this address has no effect					
0	0	0	1	1	Control Register 1	Contains ADC channel address, register read address, and ADC mode					
0	0	1	0	2	Control Register 2	Contains ADC averaging, acquisition time, power management, first conversion delay, STOPACQ polarity, and reference and timer settings					
0	0	1	1	3	Alert status/enable register	Contains status of high/low limit comparisons for TEMP1, BAT1, BAT2, and AUX1, and enable bits to allow these channels to become interrupt sources					
0	1	0	0	4	AUX1 high limit	User-programmable AUX1 upper limit					
0	1	0	1	5	AUX1 low limit	User-programmable AUX1 lower limit					
0	1	1	0	6	BAT1 high limit	User-programmable BAT1 upper limit					
0	1	1	1	7	BAT1 low limit	User-programmable BAT1 lower limit					
1	0	0	0	8	BAT2 high limit	User-programmable BAT2 upper limit					
1	0	0	1	9	BAT2 low limit	User-programmable BAT2 lower limit					
1	0	1	0	Α	TEMP1 low limit	User-programmable TEMP1 lower limit					
1	0	1	1	В	TEMP1 high limit	User-programmable TEMP1 upper limit					
1	1	0	0	С	Sequencer Register 0	Contains channel selection data for slave mode (software) sequencing					
1	1	0	1	D	Sequencer Register 1	Contains channel selection data for master mode (hardware) sequencing					
1	1	1	0	E	DAC register	Contains DAC data and setup information					
1	1	1	1	F	Extended write	Not a physical register; enables writing to extended writing map					
			•		•						

Other Comments

Other SPI-based devices will have different protocol details

- Command length
- Register address length
- Register addresses

I²CTM – inter-integrated circuit bus.

Full-fledged protocol created by Philips (now NXP Semiconductor, see document UM10204 for details)

TWI – two wire interface – generic name for I²CTM

Signals 100-400 kbps

- SCK serial clock
- SDA serial data bidirectional

Fig 9. A complete data transfer

LCD

Basics

- Sandwich of polarizer, glass, electrode, liquid crystal, electrode, glass, polarizer (90 deg. from first)
- Liquid crystal is twisted to change polarization of light passing through, so it makes it through both polarizers (light/clear)
- Apply voltage to electrodes to reduce twist, reducing polarization and hence darkening the display element (dark/opaque)

Backlighting

- LED low voltage (e.g. 1.5 4 V)
- CCFL (cold-cathode flourescent) high voltage (e.g. 100V)

Arranging the Dots

Segmented (e.g. 7-segment, 16-segment)

Dot matrix

- Text only
- Text and graphics

Passive vs. Active

- Becomes an issue when you have a multiplexed display (don't have a wire per pixel or segment)
- Passive Rely on LC to stay in same state of twistiness before it is refreshed next. Slow response time, limited contrast
- Active Build transistors onto the display right next to the electrode to retain the state between refreshes

Driving the LCD

Direct

- Dedicated wire per segment. Just apply a voltage.
- Lots of wires and pins

Multiplexing options

- Need to turn on and off pixels frequently enough to keep them from fading
- Multiplexed segments (e.g. QSK's display)
 - Connections
 - Segment 1-40 (5x8 segments per character location)
 - Common 1-16 (8x2 = 16 character locations
 - Select the character with the Common line, then turn on the appropriate segments
 - Use a controller chip (e.g. HD44780, KS0066)
 - Could also use MCU to do it in software or with DMA (see Renesas DirectDrive)

More Multiplexing

Rectangular matrix of rows and columns

- Select the row, then turn on the appropriate pixels (columns)
- Shift registers are used to simplify interface, so timing evolved from raster scanning of CRTs
 - For each frame, VSync signal resets vertical counter
 - For each row, HSync signal resets horizontal shift register and advances vertical counter
 - » For each pixel, Clock signal shifts some data into horizontal (column driver) shift register. E.g. 1 pixel's worth (18 or 24 bits)
- Use a controller chip (e.g. T6963, SED1335)

Could also use MCU to do it in software or with DMA (see Renesas DirectDrive)

Example of Text LCD Module

ACM0802C module

Used on QSK62P

See ACM0802C datasheet

Uses KS0066 controller, compatible with HD44780

Example of Graphic LCD Panel without Controller

Sony Playstation Portable display Sharp LQ043T3DX02

- TFT (active matrix)
- 480 x 272 pixels
- 4.3" diagonal
- LED backlight

See data sheet

- Signals p.7
 - Data 8 bits per pixel (24 bit data interface)
 - Data clock
 - HSync
 - VSync
 - Display on/off
- Signal timing p.14

Talking to a Text LCD Controller

See HD44780 data sheet

- Overview p.3
- Signals p.8
 - RS register select
 - R/~W read/~write
 - E enable read or write
 - DB0-7 four or eight data bus bits
- Command Timing p.22
- Command Set pp.23-31
- Character set p.18

User can define eight custom characters

- See Myke Predko's page
- See enhanced QSK_LCD.C/H files for functions which provide fake bit-mapped graphics for half of the display

Talking to a Graphic LCD Controller

See SED1330/1335/1336 data sheet

- Overview p.13
- Signals pp.21-22
- Command Timing pp.55-56
- Commands pp.27-47
- Display control pp.79-93

Resistive Touchscreen

Other technologies available too (capacitive, acoustic, optical) Sandwich

- Conductive flexible membrane (has an electrode if 5-wire)
- Spacers
- Substrate (has 4 electrodes (X+, X-, Y+, Y-) along edges)
- Display

Using it

- Determine X position
 - Apply V+ to X+, V- to X-
 - Measure analog voltage at electrode (5-wire) or at Y+ and Y-
- Determine Y position
 - Apply V+ to Y+, V- to Y-
 - Measure analog voltage at electrode (5-wire) or at X+ and X-
- Linearize X and Y based on calibration

More Information

http://www.edn.com/archives/1995/110995/23dfcov.htm

Example Driver IC for Touchscreen

Analog Devices AD7877
Includes 12-bit ADC, 8-bit DAC

Automatically sequences through sampling steps

Averages samples for noise reduction

Measures touch pressure Includes battery monitors Clocked serial interface

Sensors, and Applications

Temperature

- Thermometer (do you have a fever?)
- Thermostat for building, fridge, freezer
- Car engine controller
- Chemical reaction monitor
- Safety (e.g. microprocessor processor thermal management)

• Light (or infrared or ultraviolet) intensity

- Digital camera
- IR remote control receiver
- Tanning bed
- UV monitor
- Rotary position
 - Wind gauge
 - Knobs
 - Compass
- Humidity
- Proximity

Pressure

- Blood pressure monitor
- Altimeter
- Car engine controller
- Scuba dive computer
- Tsunami detector

Acceleration

- Air bag controller
- Vehicle stability
- Video game remote
- Mechanical strain
- Pressure
- Capacitive (touch)
- Other
 - Touch screen controller
 - EKG, EEG
 - Breathalyzer

Example Sensors

Compass

- RS232 interface
- 1 degree accuracy
- Tilt-compensated
- Model rocket, robot, etc.

Accelerometer

- Analog or PWM output
- 2-10 G ranges available
- Model rocket, tilt, etc.

Ultrasonic rangefinder

- RS232, PWM and analog outputs
- 0-255 inch range, 1 inch resolution
- 20Hz update rate

Inertia Measurement System

- Acceleration in X,Y,Z directions
- Rotation around X,Y,Z axes (gyros)
- Temperature
- Federal funds discount rate ;-)
- Logic-level RS232 serial interface

Images courtesy SparkFun Electronics

Fixed Mass Storage of Non-Volatile Data

Use MCU's flash program memory. 384KB!

- See REU04B0058-2_Simple_Flash_API.pdf application note
- C:\Renesas\QSK62P\Sample_Code\FlashAPI
- Programming interface
 - Write these bytes starting at this addr
 - Read from address in MCU memory

Add external flash memory chips to circuit board

- Atmel DataFlash chips
- SPI-based interface
- Programming interface
 - Read page N from flash into an SRAM buffer
 - Transfer SRAM buffer contents to the MCU
 - Load the SRAM buffer (or part) with these bytes
 - Write SRAM buffer to Flash page N

A Brief Digression – File Systems

What's there

Lots of bytes, each individually addressable

What we want

- Individual files of different lengths
 - Ability to create, delete, append, overwrite these files
- Perhaps even a hierarchical collection of folders/directories

File system

- Provides abstractions to give us the above
- Index (directory table) in each directory tells about each item (file or directory)
 - Name, starting address, length, access date, etc.

Examples

– FAT12, FAT32, NTFS

Removable Mass Storage 1

Secure Digital card

- Based on MMC (multimedia card) Toshiba added encryption hardware to make it Secure
- SD cards support MMC's SPI interface mode
 - How to use MMC/SDC: http://elm-chan.org/docs/mmc/mmc e.html
 - Also Maxim application note AN3969.pdf
- Interface is low-level
 - Read, write block (e.g. 512 bytes)
 - Doesn't directly support a file system
 - User must provide this (e.g. ChaN, FatFs, TinyFatFs)
 - Or else use your own scheme for tracking used/free blocks
- Interesting...
 - Spark Fun BOB-00204 breakout board for SD-MMC cards
 - Article "SD Card Display Controller" by Sylvain Davaine in December 2007 Circuit Cellar

Removable Mass Storage 2

USB Mass storage device (flash drive)

- Use an interface module to avoid having to hack USB support
- Vinculum VDIP1 and VDIP2 modules
 - http://www.vinculum.com/prd_vdip1.html
 - USB peripheral device (e.g. mass storage
 - MCU interface: UART, SPI or FIFO (paral
- Interface includes high-level features:
 - Has built in-support for FAT file systems
 - Open, close, delete files,
 - List files in directory, get sizes
 - Append data, read data, seek offset
 - Lots of other features

