High Performance Space Computing John W. Rooks, Dr Richard Linderman

Shanyuan Gao

University of North Carolina at Charlotte April 16, 2008

Outline

Introduction

Challenges Solutions

FPASP7.0 Processor

Processor Block Diagram FPASP7.0 features Evaluation board and board test

Moving Target Indication (MTI) Example

Conclusion

TTE

∃ \$\\$<</p>

Challenges

As more complex and expensive machines are sent to the space, there are challenges:

- Computers are not fast enough
- More power are consumed as the complexity increases
- Raw data is too large to transmit between computers and ground base system
- Hardware reliability
- Fixed hardware architecture

Solutions

- Multi-core, multiprocessor, parallel computing
- On-chip data processing
- Multi-core voting system
- Programmable hardware

∃ • ク へ (~

Block Diagram

Figure 1: FPASP7.0 Block Diagram

Processor Core

- Floating Point Application Specific Processor (FPASP)
- 3 pipeline stages for floating point operations
- 2 floating point multiplies, add/sub per clock cycle on one core
- 100% synthesizable VHDL

Embedded Dynamic Random Access Memory (EDRAM)

- Reduced leakage current relative to SRAM
- 592 bits wide (512 data bits, 64 error correction bits)
- Bits error will cause maskable interrupt to processor

Inputs and Outputs

- Each processor has 8 Kbyte input and 8 Kbyte output FIFO
- Ethernet I/O, 10 Gbit/second
- Spacewire: low voltage differential signaling pairs, up to 625 Mbits per second

To UNC HARLOTTE

Evaluation board

Figure 2: Evaluation board with 10/100 Ethernet, 10 Gbit Ethernet, Spacewire, USB, RS-232 and header pins

Board Test

Regression tests

- Tests for Operating System, Real-Time Executive for Multi-Processor Systems
- Power consumption: 1 watt for 6 processor cores, caches, and EDRAMS
- Radix-4 4096 point FFT: 63% utilization rate
- 8 complex coefficients 4096 point FIR filter: 96% utilization rate

Multi-Processor MTI Example (Conceptual)

- Real-time radar signal
- Input data: 16 channels, real time flow of 866 Mbytes/sec
- Approach: PRI-staggered post doppler approach to space-time adaptive processing (STAP)
 - Pulse compress in range, 314 MFLOPs
 - Doppler process, 180 MFLOPs
 - Calculate beamforming weights with PRI-staggered STAP, 156 MFLOPs
 - Form multiple adaptive receive beams and make detections, 232 MFLOPs

Conclusion

- A power efficient, scalable high performance computing architecture
- Embedded DRAM with triple voting processors
- Suitable for high data rata floating point intensive processing

