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Abstract 
 

By creating a center of mass for a specific color, color 
tracking, and controlling servos relative to the distance 
from the center of mass, the CMUcam3 and Gears SMP 
robotics platform can be used to build a color tracking 
system to autonomously track a certain color within the 
Y’CrCb color range. Using pulse-width modulation arrays 
to control the servomechanic DC motors, a control system 
based on mean image data can be implemented to steer and 
direct an autonomous CMUcam3 driven platform. 
 
1. Introduction 
 

Graduate and undergraduate students in the UNC 
Charlotte Electrical and Computer Engineering department 
have developed a color tracking system for an autonomous 
vehicle. The goal of this project was to test the capabilities 
of the CMUcam3 (CC3) system (Figure 1) for possible 
future use as a sensor in a munitions clearance project. This 
was not the end result of the CC3 project; enough work was 
done with the CC3 however to develop a configurable color 
following system with uses in future applications involving 
servo motor control.  

 

 
Figure 1: CMUcam3 hardware 

 
Color is an important indicator for environmental 

differentiation between objects.  This use of color does not 
require the use of computationally heavy edge detection 
algorithms. Using machine vision for object detection 
allows for object profiling and targeting, which is not 

possible using more crude means of object detection such 
as SONAR. Differentiation between objects on the basis of 
color has been done in the past using Newton Lab’s 
Cognachrome system [1]; however, this system costs 
between 2500 and 5500 dollars per unit, depending on the 
buyer. The CMUcam3 system used for this project costs 
around 250 dollars per unit, yielding much less overhead.  
 
2. Color Tracking Theory  
 

A Complementary Metal Oxide Semi-conductor 
(CMOS) camera sensor such as that used in the CC3's 
OV6620 camera produces a discrete voltage value for each 
pixel. This contrasts the operation of a Charged Coupled 
Device, which operates as an analog shift register, 
translating directly one photon of light to one pixel of data. 
CMOS camera sensors consume much less power than 
CCD sensors, which is beneficial for an embedded systems 
application, but the CMOS image is more susceptible to 
noise [2]. 

A black-level calibration algorithm from [3] is applied 
to the CMOS sensor in the OV6620 and provides a 
normalized digital image for later processing. An analog 
video port is provided by the CMUcam3 which outputs in 
the YUV color space. The yellow channels are identical in 
both Y’CrCb and in YUV; the UV channels in the YUV 
format as well as the CrCb channels in the Y’CrCb format 
are used for saturation and hue chromaticity, and provide 
red and blue channel differencing [4]. The conversions 
from RGB to Y’CrCb color space are: 

“Y = 0.59G + 0.31R + 0.11B”,  
“Cr = 0.713 x (R - Y)”, and 
“Cb = 0.564 x (B - Y).”  

The formulas for converting RGB into the YUV color 
space on the OV6620 are [3]: 

“Y = 0.59G + 0.31R + 0.11B”, 
“U = R-Y”, and 
“V = B-Y”  

 
3. Platform Chosen 

 
The CMUcam3 system (Figure 1) consists of a CMOS 

camera with a MAX232 serial transfer port for flashing 
programs, SD card port for data storage, a Pulse-Width 
Modulated (PWM) servo motor controller, an analog PAL 
output in the Y’CrCb color space, as well as a robust, fully 
open-source API for programming the device. A portable 
Lilliput 233GL-25NP 2.5 inch liquid crystal screen [5] was 



connected as an external display for calibration and 
debugging purposes. The Gears SMP platform (Figure 2) 
was connected to the PWM ports on the CMUcam3, which 
allowed direct control of the pair of skid-steered DC 
motors. The unified control system of the PWM ports 
through the API allowed the design to be focused on the 
color tracking algorithm [6]. 

 

 
Figure 2:  Vehicle platform with CMUcam3 without 

screen 
 
Writing programs for the CC3 on the Ubuntu 8.04 Linux 

operating system involved setting up an environment to 
allow cross-compilation for the ARM Embedded 
Application Binary Interface (EABI) and configuring this 
cross-compiler for use with the GNU gcc compiler by 
adding path variables for both the ARM EABI compiler 
and the lpc21isp_unix installer to the .bashrc file. An 
undocumented, though necessary, step for allowing use of 
the ARM EABI compiler on Ubuntu 8.04 was the simple 
command “apt-get install build-essential”, which gathered 
necessary backbone compiler tools from the apt-get server. 

Connecting to the CC3 by means of a terminal required 
use of the serial interfacing program Minicom, with default 
baud rate set to 115200 8N1. Installing programs to the 
CC3 required using the lpc21isp_unix installer. 

A sample command used to install a program to the CC3 
using the lpc21isp_unix installer is: 

 
./lpc21isp cmucam2_lpc2106-cmucam3.hex 
        /dev/ttyUSB0 115200 14746  

 
While connected to the CC3 via Minicom, information 

could be output as desired to the program by use of the 
“printf()” function in C.  More information regarding the 
interface of the CMUcam3 is located at [7]. 

 

4. System Algorithm 
 

4.1 Color Tracking 
 
Capturing an image on the CC3 and outputting the video 

feed in real-time required setting the camera to view within 
the Y’CrCb color space at high resolution. This is done by 
calling function “simple_get_mean()” to get the mean color 
of the image as illustrated in Equation 1 below: 
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This value of mean_color is then added to a variable 

denoted s_pkt; the information from this initial image is 
used to set maximum and minimum values for each color 
channel. This equation is similar to the approach by 
Lazebnik, et.al. [8], except this equation is simpler since it 
tracks only one color. 

A threshold range is determined in which every pixel in 
the image is compared iteratively by scanning through the 
image and finding all the pixels that fall within a given 
threshold range. A target’s centroid values represent the 
coordinates of its center within the image frame. 
Cumulative centroids for the x and y dimensions are 
created from the average number of “good pixels”. This 
accumulation takes place in the API function called 
“simple_color_scanline.” Values for pixel density are then 
created by dividing the number of “good pixels” by the 
total number of pixels. This is done by gathering 
cumulative data and sorting this data in the function called 
“cc3_track_color_scanline_finish.” The total number of 
pixels in this case was 101,376 due to the resolution, 
352x288.  

Also in this function, the true centroid values for x and y 
are derived from their respective cumulative x and y 
centroid values computed from the previous function. The 
true centroid values are found by dividing each respective 
cumulative centroid value by the number of pixels in the 
image. 

 
4.2 Motor Driving 

 
Comparing the obtained centroid values with values of 

x_mid and y_mid (which respectively represent half the 
image's width and height, respectively), the statistical offset 
of the centroid from the center of the image may be 
calculated and used inside of conditional statements for 
controlling the servos. In the following code segment, the 
condition for a centroid is illustrated 20 pixels to the right 
of the center of the image frame.  
 
while(t_pkt.centroid_x >= (x_mid + 20))  
 



The following commands are sent via the gpio pins to 
control the motors and turn the platform to the right: 
 
cc3_gpio_set_servo_position  
   (0, SERVO_REV_SPD[2]); 
cc3_gpio_set_servo_position  
   (2, SERVO_FWD_SPD[2]); 
 

The line cc3_gpio_set_servo_position (0, 

SERVO_REV_SPD[2]) tells the left skid servos to move 
backwards at the speed assigned to the third assigned value 
in the SERVO_REV_SPD array. The servos used in the 
project were endlessly rotating DC motor servos, operating 
with PWM. If the PWM signal sent to the servo was a 
significant number less than 127, the servo would drive in 
reverse. If the signal sent to the servo was a significant 
number greater than 127, the servo would go forward. If the 
signal sent to the servo was between approximately 115 and 
135, the servo would not move in either direction.  

Because of the while loop continuously sending out 
PWM signals to turn left, conditions must be included 
inside of the while loop after the “turn left” command to 
compensate for this over-steering. 
 
if((t_pkt.centroid_x >= (x_mid - 10)) && 
(t_pkt.centroid_x <= (x_mid + 10)))  
{ 
   cc3_gpio_set_servo_position  
      (0, SERVO_FWD_SPD[2]); 
   cc3_gpio_set_servo_position  
      (2, SERVO_FWD_SPD[2]); 
} 
 

This code snippet shows a condition for when the 
centroid falls in-between the middle 20 pixels of the image, 
with respect to the x-axis. When this takes place, the robot 
drives forward until the next condition is met: 
 
if((((t_pkt.x1 - t_pkt.x0) * (t_pkt.y1 - 
t_pkt.y0)) - t_pkt.num_pixels) > 80000) 
{ 
   cc3_gpio_set_servo_position  
      (0, SERVO_REV_SPD[2]); 
   cc3_gpio_set_servo_position  
      (2, SERVO_FWD_SPD[2]); 
} 
 

This condition shows the centroid bounding box being 
used as a condition to prevent the platform from driving 
forward when the difference between the centroid and the 
total number of pixels exceeds 80000. This prevents the 
unit from driving into the target when it is too close. It is 
important to remember to call the function 
simple_track_color(&t_pkt); at the beginning of each loop 
to keep the data fresh and updated. 

 

5. Implementation Results 
 
The CC3 camera system and driver was tested in the lab 

by observing motor control signals in response to moving a 
green-colored target in front of a camera. 

The CC3 camera system was then connected to the 
Gears EDS Platform and its motor drivers.  The green-
colored target was mounted onto the back of another Gears 
EDS Platform.  This second vehicle’s motor drivers were 
controlled with a model aircraft controller, as shown in 
Figure 3.  The objective was to have the CC3-based vehicle 
follow the remote-controlled vehicle.  We were successful 
for several seconds at a time. 

While testing the CC3 system, it was noticed that the 
reflexes of the camera were rather jerky. The camera would 
oscillate while the target remained at rest, which may be the 
result of the speed of the PWM signals sent to the motors. 
In other autonomous robotics applications, the DC motor 
controller functionality is often delegated to a peripheral 
dedicated circuit such as an H-bridge. This is done to 
dampen the signal sent to the servos and allows for 
smoother operation. In future implementations of the CC3 
system, use of an H-bridge or something similar would be 
advised. Testing found an optimal distance between the 
CC3 and the color target of about 1-3 meters.  

 

 
Figure 3: Example of autonomous vehicle with 

CMUcam3 following a remotely controlled vehicle with 
a colored card. 

 
6. Conclusion and Future Implementations 
 

The CC3 system developed over the course of this 
project can be improved by using better algorithms by 
using training data to provide a statistical model for images. 
Color tracking has many applications resultant from its 
quick object detection; general applications including 
swarming, object recognition, and object detection. 
Because of the low cost and open sourced architecture of 



the CMUcam3, the same capabilities of the Cognachrome 
system may be developed at a much lower cost.  

Immediate future work will be the effort to ensure the 
CC3 vehicle system reliably follows the color target.  The 
tracking performance improves as more is learned about the 
capabilities of the camera. An articulating pan and tilt turret 
camera base for example could used to improve the sensor 
input range of the CC3.  

Currently in development for the CC3 color tracking 
system is the autonomous following and tracking of a line 
of Gears EDS platform vehicles, with one remotely-
controlled vehicle at the front.  This will be the proof of 
concept for a swarming robotics system. 

An improved version of the CC3 color tracking system 
could include multiple centroid bounding regions for 
multiple targeting. Also, an improvement to the CC3 
control system could base actions on looking up histogram 
based lighting/color data. An autonomous vacuuming robot 
such as the Roomba could have the owner take pictures of 
the bathroom floor and the carpet, put these pictures onto 
an SD card and put the SD card into the CC3’s SD card 
reader. Using the color and lighting data from these 
pictures, different behaviors for different environments 
could take place [9]. In the bathroom for example, the CC3 
would know that the floor has white tiles and would 
likewise use a household cleaner rather than just the 
vacuum cleaner. On carpet, the CC3 would know just to 
deploy a vacuum and not spray a household cleaner.  
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