
An Implementation of a Color Following System using the CMUcam3

J.D. Bikman
UNC Charlotte

jbikman@uncc.edu

T.W. Meiswinkel
UNC Charlotte

twmeiswi@uncc.edu

J.M. Conrad
UNC Charlotte

jmconrad@uncc.edu

Abstract

By creating a center of mass for a specific color, color
tracking, and controlling servos relative to the distance
from the center of mass, the CMUcam3 and Gears SMP
robotics platform can be used to build a color tracking
system to autonomously track a certain color within the
Y’CrCb color range. Using pulse-width modulation arrays
to control the servomechanic DC motors, a control system
based on mean image data can be implemented to steer and
direct an autonomous CMUcam3 driven platform.

1. Introduction

Graduate and undergraduate students in the UNC
Charlotte Electrical and Computer Engineering department
have developed a color tracking system for an autonomous
vehicle. The goal of this project was to test the capabilities
of the CMUcam3 (CC3) system (Figure 1) for possible
future use as a sensor in a munitions clearance project. This
was not the end result of the CC3 project; enough work was
done with the CC3 however to develop a configurable color
following system with uses in future applications involving
servo motor control.

Figure 1: CMUcam3 hardware

Color is an important indicator for environmental

differentiation between objects. This use of color does not
require the use of computationally heavy edge detection
algorithms. Using machine vision for object detection
allows for object profiling and targeting, which is not

possible using more crude means of object detection such
as SONAR. Differentiation between objects on the basis of
color has been done in the past using Newton Lab’s
Cognachrome system [1]; however, this system costs
between 2500 and 5500 dollars per unit, depending on the
buyer. The CMUcam3 system used for this project costs
around 250 dollars per unit, yielding much less overhead.

2. Color Tracking Theory

A Complementary Metal Oxide Semi-conductor
(CMOS) camera sensor such as that used in the CC3's
OV6620 camera produces a discrete voltage value for each
pixel. This contrasts the operation of a Charged Coupled
Device, which operates as an analog shift register,
translating directly one photon of light to one pixel of data.
CMOS camera sensors consume much less power than
CCD sensors, which is beneficial for an embedded systems
application, but the CMOS image is more susceptible to
noise [2].

A black-level calibration algorithm from [3] is applied
to the CMOS sensor in the OV6620 and provides a
normalized digital image for later processing. An analog
video port is provided by the CMUcam3 which outputs in
the YUV color space. The yellow channels are identical in
both Y’CrCb and in YUV; the UV channels in the YUV
format as well as the CrCb channels in the Y’CrCb format
are used for saturation and hue chromaticity, and provide
red and blue channel differencing [4]. The conversions
from RGB to Y’CrCb color space are:

“Y = 0.59G + 0.31R + 0.11B”,
“Cr = 0.713 x (R - Y)”, and
“Cb = 0.564 x (B - Y).”

The formulas for converting RGB into the YUV color
space on the OV6620 are [3]:

“Y = 0.59G + 0.31R + 0.11B”,
“U = R-Y”, and
“V = B-Y”

3. Platform Chosen

The CMUcam3 system (Figure 1) consists of a CMOS

camera with a MAX232 serial transfer port for flashing
programs, SD card port for data storage, a Pulse-Width
Modulated (PWM) servo motor controller, an analog PAL
output in the Y’CrCb color space, as well as a robust, fully
open-source API for programming the device. A portable
Lilliput 233GL-25NP 2.5 inch liquid crystal screen [5] was

connected as an external display for calibration and
debugging purposes. The Gears SMP platform (Figure 2)
was connected to the PWM ports on the CMUcam3, which
allowed direct control of the pair of skid-steered DC
motors. The unified control system of the PWM ports
through the API allowed the design to be focused on the
color tracking algorithm [6].

Figure 2: Vehicle platform with CMUcam3 without

screen

Writing programs for the CC3 on the Ubuntu 8.04 Linux

operating system involved setting up an environment to
allow cross-compilation for the ARM Embedded
Application Binary Interface (EABI) and configuring this
cross-compiler for use with the GNU gcc compiler by
adding path variables for both the ARM EABI compiler
and the lpc21isp_unix installer to the .bashrc file. An
undocumented, though necessary, step for allowing use of
the ARM EABI compiler on Ubuntu 8.04 was the simple
command “apt-get install build-essential”, which gathered
necessary backbone compiler tools from the apt-get server.

Connecting to the CC3 by means of a terminal required
use of the serial interfacing program Minicom, with default
baud rate set to 115200 8N1. Installing programs to the
CC3 required using the lpc21isp_unix installer.

A sample command used to install a program to the CC3
using the lpc21isp_unix installer is:

./lpc21isp cmucam2_lpc2106-cmucam3.hex
 /dev/ttyUSB0 115200 14746

While connected to the CC3 via Minicom, information

could be output as desired to the program by use of the
“printf()” function in C. More information regarding the
interface of the CMUcam3 is located at [7].

4. System Algorithm

4.1 Color Tracking

Capturing an image on the CC3 and outputting the video

feed in real-time required setting the camera to view within
the Y’CrCb color space at high resolution. This is done by
calling function “simple_get_mean()” to get the mean color
of the image as illustrated in Equation 1 below:

��
= =×

=
cols

i

rows

j

jipix
ji

colormean
1 1

),(
1

_ (1)

This value of mean_color is then added to a variable

denoted s_pkt; the information from this initial image is
used to set maximum and minimum values for each color
channel. This equation is similar to the approach by
Lazebnik, et.al. [8], except this equation is simpler since it
tracks only one color.

A threshold range is determined in which every pixel in
the image is compared iteratively by scanning through the
image and finding all the pixels that fall within a given
threshold range. A target’s centroid values represent the
coordinates of its center within the image frame.
Cumulative centroids for the x and y dimensions are
created from the average number of “good pixels”. This
accumulation takes place in the API function called
“simple_color_scanline.” Values for pixel density are then
created by dividing the number of “good pixels” by the
total number of pixels. This is done by gathering
cumulative data and sorting this data in the function called
“cc3_track_color_scanline_finish.” The total number of
pixels in this case was 101,376 due to the resolution,
352x288.

Also in this function, the true centroid values for x and y
are derived from their respective cumulative x and y
centroid values computed from the previous function. The
true centroid values are found by dividing each respective
cumulative centroid value by the number of pixels in the
image.

4.2 Motor Driving

Comparing the obtained centroid values with values of

x_mid and y_mid (which respectively represent half the
image's width and height, respectively), the statistical offset
of the centroid from the center of the image may be
calculated and used inside of conditional statements for
controlling the servos. In the following code segment, the
condition for a centroid is illustrated 20 pixels to the right
of the center of the image frame.

while(t_pkt.centroid_x >= (x_mid + 20))

The following commands are sent via the gpio pins to
control the motors and turn the platform to the right:

cc3_gpio_set_servo_position
 (0, SERVO_REV_SPD[2]);
cc3_gpio_set_servo_position
 (2, SERVO_FWD_SPD[2]);

The line cc3_gpio_set_servo_position (0,

SERVO_REV_SPD[2]) tells the left skid servos to move
backwards at the speed assigned to the third assigned value
in the SERVO_REV_SPD array. The servos used in the
project were endlessly rotating DC motor servos, operating
with PWM. If the PWM signal sent to the servo was a
significant number less than 127, the servo would drive in
reverse. If the signal sent to the servo was a significant
number greater than 127, the servo would go forward. If the
signal sent to the servo was between approximately 115 and
135, the servo would not move in either direction.

Because of the while loop continuously sending out
PWM signals to turn left, conditions must be included
inside of the while loop after the “turn left” command to
compensate for this over-steering.

if((t_pkt.centroid_x >= (x_mid - 10)) &&
(t_pkt.centroid_x <= (x_mid + 10)))
{
 cc3_gpio_set_servo_position
 (0, SERVO_FWD_SPD[2]);
 cc3_gpio_set_servo_position
 (2, SERVO_FWD_SPD[2]);
}

This code snippet shows a condition for when the
centroid falls in-between the middle 20 pixels of the image,
with respect to the x-axis. When this takes place, the robot
drives forward until the next condition is met:

if((((t_pkt.x1 - t_pkt.x0) * (t_pkt.y1 -
t_pkt.y0)) - t_pkt.num_pixels) > 80000)
{
 cc3_gpio_set_servo_position
 (0, SERVO_REV_SPD[2]);
 cc3_gpio_set_servo_position
 (2, SERVO_FWD_SPD[2]);
}

This condition shows the centroid bounding box being
used as a condition to prevent the platform from driving
forward when the difference between the centroid and the
total number of pixels exceeds 80000. This prevents the
unit from driving into the target when it is too close. It is
important to remember to call the function
simple_track_color(&t_pkt); at the beginning of each loop
to keep the data fresh and updated.

5. Implementation Results

The CC3 camera system and driver was tested in the lab

by observing motor control signals in response to moving a
green-colored target in front of a camera.

The CC3 camera system was then connected to the
Gears EDS Platform and its motor drivers. The green-
colored target was mounted onto the back of another Gears
EDS Platform. This second vehicle’s motor drivers were
controlled with a model aircraft controller, as shown in
Figure 3. The objective was to have the CC3-based vehicle
follow the remote-controlled vehicle. We were successful
for several seconds at a time.

While testing the CC3 system, it was noticed that the
reflexes of the camera were rather jerky. The camera would
oscillate while the target remained at rest, which may be the
result of the speed of the PWM signals sent to the motors.
In other autonomous robotics applications, the DC motor
controller functionality is often delegated to a peripheral
dedicated circuit such as an H-bridge. This is done to
dampen the signal sent to the servos and allows for
smoother operation. In future implementations of the CC3
system, use of an H-bridge or something similar would be
advised. Testing found an optimal distance between the
CC3 and the color target of about 1-3 meters.

Figure 3: Example of autonomous vehicle with

CMUcam3 following a remotely controlled vehicle with
a colored card.

6. Conclusion and Future Implementations

The CC3 system developed over the course of this
project can be improved by using better algorithms by
using training data to provide a statistical model for images.
Color tracking has many applications resultant from its
quick object detection; general applications including
swarming, object recognition, and object detection.
Because of the low cost and open sourced architecture of

the CMUcam3, the same capabilities of the Cognachrome
system may be developed at a much lower cost.

Immediate future work will be the effort to ensure the
CC3 vehicle system reliably follows the color target. The
tracking performance improves as more is learned about the
capabilities of the camera. An articulating pan and tilt turret
camera base for example could used to improve the sensor
input range of the CC3.

Currently in development for the CC3 color tracking
system is the autonomous following and tracking of a line
of Gears EDS platform vehicles, with one remotely-
controlled vehicle at the front. This will be the proof of
concept for a swarming robotics system.

An improved version of the CC3 color tracking system
could include multiple centroid bounding regions for
multiple targeting. Also, an improvement to the CC3
control system could base actions on looking up histogram
based lighting/color data. An autonomous vacuuming robot
such as the Roomba could have the owner take pictures of
the bathroom floor and the carpet, put these pictures onto
an SD card and put the SD card into the CC3’s SD card
reader. Using the color and lighting data from these
pictures, different behaviors for different environments
could take place [9]. In the bathroom for example, the CC3
would know that the floor has white tiles and would
likewise use a household cleaner rather than just the
vacuum cleaner. On carpet, the CC3 would know just to
deploy a vacuum and not spray a household cleaner.

7. References

[1] Newton Research Labs, “The Cognachrome Vision System,”

http://www.newtonlabs.com/cognachrome/

[2] Dave Litwiller, “CMOS vs. CCD: Maturing Technologies,
Maturing Markets,” Photonics Spectra, pp. 54-59, August
2005.

[3] Omnivision Technologies, Inc., “OV6620 Single-Chip

CMOS CIF Color Digital Camera Datasheet,” Version 1.4,
13 May 2000.

[4] A. Ford and A. Roberts, “Color Space Conversions,” August

11, 1998, available at URL:
 http://www.poynton.com/PDFs/coloureq.pdf

[5] Lilliput, Inc., “Model Number: 233GL-25NP Technical

Specifications,” available at URL:
 http://www.lilliputweb.net/np233.html

[6] A. Rowe, A.G. Goode, D. Goel, and I. Nourbakhsh,

CMUcam3: An Open Programmable Embedded Vision
Sensor, tech. report CMU-RI-TR-07-13, Robotics Institute,
Carnegie Mellon University, May, 2007.

[7] Carnegie Mellon University, CMUcam3 Data Sheet,”

Version 1.02, September 22, 2007, available at URL:
 http://www.cmucam.org/wiki/Documentation

[8] H. Schneiderman, "Feature-Centric Evaluation for Efficient

Cascaded Object Detection," Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1-8, June 2004.

[9] Lazebnik, S.; Schmid, C.; Ponce, J., "Beyond Bags of

Features: Spatial Pyramid Matching for Recognizing Natural
Scene Categories,", Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, vol.2, null., pp. 2169-2178, June 2006.

