

Synthesizable VHDL Models for FSMs, A how-to

By Alan L. Hege, University of North Carolina at Charlotte

VHDL is a hardware description language (VHSIC Hardware Description Language (VHSIC – Very High Speed

Integrated Circuit)). That’s right an acronym within an acronym. It was originally intended to simulate complex

logic systems at a high level. A subset of the instructions can be used to actually describe a logic circuit that can

be physically built from the instructions. The process of converting the code to a circuit implementation is called

‘Synthesis’. If the VHDL code synthesized, it is said to be a ‘synthesizable model’. Generally speaking there are

two forms of modeling within VHDL; (1) the structural model and (2) the behavioral model. The structural

model is basically the built up from primitive gate definitions and a net-list (i.e., text description of the

components and the way in which they are wired.) Structural modeling is very conducive in describing

hierarchal systems. Behavioral descriptions are where the power of VHDL is realized. As the name implies, we

are describing the behavior of the circuit using VHDL code.

The intention of this document is to allow the student to easily model Finite State Machines (FSM) using VHDL.

It is not intended to teach VHDL. We will be using VHDL models of FSMs to create circuits much easier than by

hand as already demonstrated in class. The ‘by hand’ method (or manual method) of FSM design consists of (1)

creating a State Diagram, (2) determine the State Encoding scheme, (3) filling in the State Transition Table and

(4) synthesizing the circuit. With VHDL behavioral modeling we will go directly from a State Diagram to the

behavioral model, then use software to do the synthesis and we’re done.

Concurrence:

Although VHDL looks like a programming language for a microprocessor, it is not. It has a major

difference … all statements are executing at the same time. This property is called ‘concurrence’.

Microprocessor code executes sequentially (one instruction after another).

Synthesizable VHDL Models for FSMs

 Page 2 of 15

Templates:

Many different CAD packages give

templates as a starting point for

designing a VHDL module/model. The

figure to the rightError! Reference

source not found. is a VHDL template

that is created with Xilinx ISE Project

Navigator … some of the comment

lines are removed for conciseness.

Format:

For the purposes of this class do not modify the ‘library’ and ‘use’ statements shown.

The green colored text are comments; they are preceded with two dashes. The blue colored text are

reserve words and have a specific meaning within VHDL. The magenta colored text are VHDL defined

signal types. The black colored text are the variable and names the user has given.

Under the ‘entity’ line is the ‘Port’ section. The port section defines the port mapping for the

module/model, e.g., it defines the I/O for the module. For this module, the inputs are ‘clk’, ‘I’ & ‘reset’

and the output is ‘Z’.

Synthesizable VHDL Models for FSMs

 Page 3 of 15

Example FSM:

The design methodology will be given via an

example. In this example we will be designing the

VHDL behavioral model for a dual edge detector

circuit (gives a pulse one clock cycle wide on both

edges of the input signal ‘I’). The figure to the right

gives the state diagram for the system.

For this design, we will let the Synthesizer

determine the state encoding or we could force the

state encoding type via CAD software; a tutorial

exists for doing this for the Xilinx ISE Project

Navigator 7.1i software. For ease of coding and

simulation, we will enumerate the states as follows:

Type stateType is (s0, s1, s2, s3);

Where ‘stateType’ is a new signal type for our

design. Next, we will define the signals for next-

state (ns) and current-state (cs).

signal ns: stateType;

signal cs: stateType;

or

signal cs, ns: stateType;

These are considered internal signals to the

module and have a specific location within the

module. Internal signals are defined on the

lines between ‘Architecture …’ and ‘begin’ … see

the figure to the right.

S0
Z=0

S1
Z=1

S2
Z=0

S3
Z=1

1

1

1
0

0

0

0

1

Synthesizable VHDL Models for FSMs

 Page 4 of 15

Now that the setup is complete we will start coding the blocks in the FSM. Remember that FSMs can be

thought of in terms of the following block diagram.

Each block in the state diagram will be coded separately, starting with the Next State Logic block. The

logic coding resides between the ‘begin’ and the ‘end Behavioral;’ statements.

In VHDL, conditional statements like ‘if-then-else’ and ‘case’ statements must be within a ‘process’

statement. Process statements have the

following format:

Process()

begin

 {other VHDL statements}

End process;

The author usually delineates his blocks

with a comment statement ‘—Next-state

Logic Block’. In parenthesis next to the

process line is the ‘sensitivity list’. The

sensitivity list contains signal names that

will trigger the process when the signal level

changes.

To the right is the next-state logic block for

our design. A lot has changed … start by

looking at the key elements of the Process

statement. The main element within the

process statement is the ‘case’ statement.

In the case statement each state is

addressed and the next-state vector (ns) is

assigned new values based on the inputs (I).

The user can assign new values to signals,

multiple times, within a process statement.

Next-State
Logic

System
Memory
(register)

Output
Logic

(Mealy only)

I ns
cs

Z

Synthesizable VHDL Models for FSMs

 Page 5 of 15

However, there can be only one signal source. The process statement counts as one signal source for a

signal. For example, the following would not be allowed by the Synthesizer:

Process(a) -- process to make a 4-input Mux

begin

 if a=”00” then

 y <= i0; -- assign value on i0 to the signal y

 elsif a=”01” then

 y <= i1;

 elsif a=”10” then

 y <= i2;

 else

 y <= i3;

 end if;

end process;

Y<= ‘0’ when reset=’1’ else y<=yint; -- conditional assignment statement

This code snippet would be incorrect because the signal y has more than one source. Another example

of too many sources would be as follows:

Process(a)

begin

 if a=”00” then y <= i0;

 elsif a=”01” then y <= i1;

 elsif a=”10” then y <= i2;

 else y <= i3;

 end if;

end process;

Process(b)

begin

 if b=”00” then y <= i0;

 elsif b=”01” then y <= i1;

 elsif b=”10” then y <= i2;

 else y <= i3;

 end if;

end process;

This snippet would be invalid because each process statement is sourcing y. Multiple sources is not

allowed.

Now let’s discuss the syntax of the different VHDL statements. First, binary values can be denoted in

multiple ways. For simplicity the author will only discuss std_logic formats. Std_logic is a VHDL signal

Synthesizable VHDL Models for FSMs

 Page 6 of 15

type. Std_logic is a discrete signal type and the values must be written as a one or a zero with single

quotes around the value for example a zero would be ‘0’ and a one would be ‘1’. Strictly speaking the

std_logic type has nine possible values: ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’ & ‘-‘. For the scope of this

document will only discuss using ‘0’s and ‘1’s. This is mentioned here because the student must know

that just because something is not a ‘0’ does not mean it is automatically a ‘1’. Another type of signal

we will be using is called the std_logic_vector. The std_logic vector is a bus or ‘bit vector’. Bit vector

values must be expressed in terms of one’s and

zero’s enclosed in double quotes. For example,

the value 3Ah in a 7-bit bus would be expressed

as “0111010” in VHDL. The VHDL code snippet, to

the right, would be a VHDL module for assigning

the value 3Ah to a 7-bit vector z.

Notice the double quotes around the binary

value. Also, notice the port-map for the module

Std_logic_vector(6 downto 0)

This defines the signal z as being an array of

signals having indexes from 6 to 0; 6 in this case is

the msb and 0 is the lsb. Treating bus members

as individual signals would be performed as

follows: z(6)=0, z(5)=1, z(4)=1, z(3)=1, z(2)=0,

z(1)=1, & z(0)=0. For a better understanding of

how bit vectors (busses) work in VHDL, consider shifting z in the above example left one bit and the

shift- in value would be a one:

z1 <= z(6 downto 1) & ‘1’;

The ampersand (&) is the operator for concatenating two vectors. The new value z1 would now contain

the value “1110101”. Of course, more would need to be done to the module above in order for this

value to have any meaning (not produce an error). For instance, the user would need to define the

signal. If it were an internal signal then the signal definition, placed between the ‘architecture …’ line

and the ‘begin’ statement would need to be:

signal z1: std_logic_vector(6 downto 0);

Back to the example FSM, within the case statement were If-then-else statements. See Appendix A for

the various syntax forms. If-the-else statements can only appear within process statements. If-then-

else and case statements can be nested for complex logical behavior.

Synthesizable VHDL Models for FSMs

 Page 7 of 15

State Memory Block:

The state memory block is nothing but a register. This can be defined with a process statement that has

clk as the sensitivity list as follows:

process(clk)

begin

 If clk’event and clk=’1’ then

 Q <= D;

 end if;

end process;

In this process clk is examined and on the rising edge the value on D is assigned to Q. D and Q could be a

bus in which case this would be a register or D and Q could be discrete signals in which case this would

be a D-type flip-flop. For a negative edge, the conditional part of the if-then-else statement would be:

 If clk’event and clk=’0’ then

 Q <= D;

 end if;

This could be read as “when the clock changes and the new value is zero then assign D to Q” … e.g., on

the negative edge. Other variations would be when a reset is present. For an asynchronous reset:

process(reset, clk)

begin

 if reset=’1’ then

 cs <= s0;

 elsif clk’event and clk=’1’ then

 cs <= ns;

 end if;

end process;

Synthesizable VHDL Models for FSMs

 Page 8 of 15

Reset is active-high and the register is called cs (current state). Notice reset is independent of the clk …

definition of asynchronous. The following snippet would be used if a synchronous reset (clear) is

required:

process(reset, clk)

begin

 if clk’event and clk=’1’ then

 if reset=’1’ then

 cs <= s0;

 else

 cs <= ns;

 end if;

end process;

For this example, an asynchronous reset is required. See the figure below for the state memory block

design solution.

Synthesizable VHDL Models for FSMs

 Page 9 of 15

Output Logic Block:

As a reminder of the state diagram it is shown again here to analyze the

output logic. Here we see that the output z is true when in states s1 &

s3. The following concurrent statements could be used:

Z <= ‘1’ when cs=s1 or cs=s3 else ‘0’;

or

with cs select

 Z <= ‘1’ when s1 | s3,

 ‘0’ when others;

If the outputs are more complicated, then a process statement could be used. Note in the last statement the

reserve word ‘others’ is used. It means to assign zero to Z when anything other than s1 and s3 are the values of

cs.

This project synthesized without any errors. Within Xilinx Project Navigator you can examine the console

window, after the module was synthesized, and discover that grey code state encoding was used. This was

determined by the software … notice in the design that we did not assign values to the states (s0, s1, s2 & s3).

There are ways to force the synthesizer to use a specific state encoding scheme and they are covered in a

tutorial (located at http://www.coe.uncc.edu/~alhege/Xilinx Tutorials/Misc Tutorials/Xilinx FSM notes.pdf).

S0
Z=0

S1
Z=1

S2
Z=0

S3
Z=1

1

1

1
0

0

0

0

1

http://www.coe.uncc.edu/~alhege/Xilinx%20Tutorials/Misc%20Tutorials/Xilinx%20FSM%20notes.pdf

Synthesizable VHDL Models for FSMs

 Page 10 of 15

Appendix A: VHDL Syntax (abridged)

Defining signals:

 I/O ports on for the modules are created by Xilinx ISE Project Navigator Wizard for VHDL

module creation.

 Internal signals (between ‘Architecture …’ line and ‘begin’ line):

o Constant declaration and value assignment:

Constant MAXCOUNT: std_logic_vector(7 downto 0) := “10101010”

o Discrete signal:

signal reset: std_logic;

o Bus:

signal kount: std_logic_vector(31 dowto 0);

o Enumeration:

type sType is (init, firstState, secState, s3, wait);

o Use of enumerate type above:

signal d: sType;

Relational Operators (conditional operators):

 ‘=’ – equals ‘/=’ – not equals

 ‘>’ – greater than

 ‘>=’ – greater than or equal

 ‘<’ – less than

 ‘<=’ – less than or equal

Synthesizable VHDL Models for FSMs

 Page 11 of 15

Assignment Statements:

 Signal-name <= expression;

 Conditional Assignment:

signal-name <= expression when boolean-expression else

expression when boolean-expression else

…

expression when boolean-expression else

expression;

 Selected signal-assignment:

with expression select

 signal-name <= signal-value when choices,

 signal-value when choices,

 …

 Signal-value when choices;

Example:

with N select

 F <= ‘1’ when “0001”,

 ‘1’ when “0010”,

 ‘1’ when “0011” | “0101” | “0111”,

 ‘1’ when “1011” | “1101”,

 ‘0 when others;

Synthesizable VHDL Models for FSMs

 Page 12 of 15

Conditional Statements:

 If-then-else:

o if boolean-expression then sequential-statements

end if;

o if boolean-expression then sequential-statements

else sequential-statements

end if;

o if boolean-expression then sequential-statements

elsif boolean-expression then sequential-statements

…

elsif boolean-expression then sequential-statements

end if;

o if boolean-expression then sequential-statements

elsif boolean-expression then sequential-statements

…

elsif boolean-expression then sequential-statements

else sequential-statements

end if;

 case:

o case expression is

 when choices => sequential-statements

 …

 when choices => sequential-statements

end case;

Synthesizable VHDL Models for FSMs

 Page 13 of 15

Appendix B: Synthesizable VHDL Behavioral Model Skeleton

Declaration - States:

Architecture Behavioral of FSM_name is

 type sType is (init, s1, s2);

 signal cs, ns: sType;

begin

 {{{model body}}}

End Behavioral;

Model Body – Next-state Logic Block:

process(cs, {inputs})

begin

 case cs is

 when init =>

 {{{next-state options}}}

 when s1 =>

 {{{next-state options for s1}}}

 when s2 =>

 {{{ next-state options for s2}}}

 when others =>

 {{{next-state options for everything else}}}

 end case;

end process;

Synthesizable VHDL Models for FSMs

 Page 14 of 15

Model Body – State Memory block:

Basic register ns is D and cs is Q (rising-edge triggered):

process(clk)

begin

 if clk’event and clk = ‘1’ then

 cs <= ns;

 end if;

end process;

Basic register (trailing-edge triggered):

process(clk)

begin

 if clk’event and clk = ‘0’ then

 cs <= ns;

 end if;

end process;

Register w/ Asynchronous reset:

process(clk, reset)

begin

 if reset =’1’ then

 cs <= init;

 elsif clk’event and clk = ‘1’ then

 cs <= ns;

 end if;

end process;

Synthesizable VHDL Models for FSMs

 Page 15 of 15

Register w/ async reset and clock enable(CE):

process(clk, reset, CE)

begin

 if reset = ‘1’ then

 cs <= init;

 elsif clk’event and clk = ‘1’ and CE = ‘1’ then

 cs <= ns;

 end if;

end process;

Register w/ synchronous reset and clock enable(CE):

process(clk, reset, CE)

begin

 if clk’event and clk = ‘1’ then

 if reset = ‘1’ then

 cs <= init;

 elsif CE = ‘1’ then

 cs <= ns;

 end if;

 end if;

end process;

Model Body – Output Logic Block:

 Use Simple Assignment, Conditional Assignment, Selected Signal Assignment or any combination of

these statements or combo with the following.

 Use a process statement where outputs may be dependent on the inputs (case, or if-then-else).

