ail";; MO HARIOTE

Floating Point Math,
Fixed-Point Math
and
Other Optimizations

Embedded Systems

8-1

Floating Point (a brief look)

We need a way to represent
— numbers with fractions, e.g., 3.141592653589793238462642
— very small numbers, e.g., .000000001
— very large numbers, e.g., 3.15576 x 10°

Numbers with fractions:

23 22 21 202-12-22-3

|

{\i"}; MO HARICATE

Big and small nhumbers

Solution for decimal - scientific notation
— 2.5x 10 = 2,500,000,000,000,000

Can do the same for binary:
— 2MB = 2x22° or 10, x 10,0100
— This is called a floating-point number

— In general, composed of sign, exponent, significand:
(—1)si9n x significand x 2exponent

— more bits for significand gives more accuracy
— more bits for exponent increases range

IEEE 754 floating point standard:
— single precision: 8 bit exponent, 23 bit significand
— double precision: 11 bit exponent, 52 bit significand

{\i"}; MO HARICATE

IEEE 754 floating-point standard

Leading “1” bit of significand is implicit
Exponent is “biased” to make sorting easier
— Biasing is a way of representing negative numbers
— All Os is smallest exponent all 1s is largest
— bias of 127 for single precision and 1023 for double precision
— summary: (—1)s9" x (1+significand) x 2&xponent - bias
Example:
— decimal: -.75 = -3/4 = -3/22
— binary: -.11 =-1.1 x 21
— floating point: exponent=126=01111110

— |EEE single precision:
10111111010000000000000000000000

{\i"}; MO HARICATE

ExamEIes of Floating Point Numbers

Show the IEEE 754 binary representation for the number
20.0 in single and double precision:

20 =10100 x 29 or 1.0100 x 24

Single Precision:
The exponent is 127+4 = 131 =128 + 3 = 10000011
The entire number is
0 1000 0011 0100 0000 0000 0000 0000 000

Double Precision:
The exponent is 1023+4 =1027=1024 + 3
=10000000011
The entire number is:
0O 1000 0000 011 0100 0000 OO00 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

{\i"}; MO HARICATE

ExamEIes of Floating Point Numbers

Show the IEEE 754 binary representation for the
number 20.5,, in single and double precision:

20.0 =10100 x 29, 0.5 = 0.1 x 2° together
1.01001 x 24

Single Precision:
The exponent is 127+4 = 131 =128 + 3 = 10000011
The entire number is
0 10000011 0100 1000 0000 0000 0000 000

Double Precision:
The exponent is 1023+4 =1027=1024 + 3
=10000000011
The entire number is:
0O 1000 0000 011 0100 1000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

{\i"}; MO HARICATE

ExamEIes of Floating Point Numbers

Show the IEEE 754 binary representation for the
number -0.1,, in single and double precision:

0.1 =0.00011 x2%0r 1.10011 x 24
(the 0011 pattern is repeated)

Single Precision:
The exponent is 127-4 =123 =0111 1011
The entire number is
101111011 1001 1001 1001 1001 1001 100

Double Precision:
The exponent is 1023-4 =1019=01111111011
The entire number is:
1 0111 1111 011 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001

{\i"}; MO HARICATE

Floating Point Complexities

Operations are somewhat more complicated (see text)

In addition to overflow we can have “underflow”

— Result of two adding two very small values becomes zero

Accuracy can be a big problem
— 1/(1/3) should = 3
— |EEE 754 keeps two extra bits, guard and round
— four rounding modes
— positive divided by zero yields “infinity”
— zero divide by zero yields “not a number” (NaN)

Implementing the standard can be tricky
Not using the standard can be even worse

{\i"}; MO HARICATE

Starting Points for Efficient Code

Write correct code first, optimize second.
Use a top-down approach.

Know your microprocessors’ architecture, compiler (features
and also object model used), and programming language.

Leave assembly language for unported designs, interrupt
service routines, and frequently used functions.

{\irl'; 1O HARICATE Embedded Systems 8-9

Floating Point Data Ter SEecifications

Use the smallest adequate data type, or else...
— Conversions without an FPU are very slow
— Extra space is used
— C standard allows compiler or preprocessor to convert
automatically, slowing down code more
Single-precision (SP) vs. double-precision (DP)
— ANSI/IEEE 754-1985, Standard for Binary Floating Point
Arithmetic
 Single precision: 32 bits
— 1 sign bit, 8 exponent bits, 23 fraction bits

» Double precision
— 1 sign bit, 11 exponent bits, 52 fraction bits

— Single-precision is likely all that is needed
— Use single-precision floating point specifier “f”

{\irl'; 1O HARICATE Embedded Systems 8-10

FIoating-Point SEecifier ExamEIe

No “f” “”
float res = val / 10.0; float res = val / 10.0 f;
Assembler: Assembler:
move.l -4(a6),-(sp) move.l -4(a6),-(sp)
jsr _ ftod //SP to DP move.l #1076101120,-
clr.l -(sp) (sp)

jsr __fdiv

move.l #1076101120,-
move.l (s)+,-8(ab)

(sp)
jsr __ddiv //DP divide

jsr __dtof //DP to SP
move.l (s)+,-8(ab)

{\irl'; 1O HARICATE Embedded Systems 8-11

Automatic Promotions

Standard math routines usually accept double-precision
Inputs and return double-precision outputs.

Again it is likely only single-precision is needed.

— Cast to single-precision if accuracy and overflow conditions are
satisfied

{\irl'; 1O HARICATE Embedded Systems 8-12

Automatic Promotions ExamEIe

Automatic
float res =
(17.0f*sqgrt(val)) / 10.0f;
// load val
// convert to DP
// _sqrt() on DP returns DP
// load DP of 17.0
// DP multiply
// load DP of 10.0
// DP divide
// convert DP to SP
// save result

two DP loads, DP multiply, DP divide,
DP to SP conversion

Casting to avoid promotion

float res =
(17.0f*(float)(sqgrt(val)))/10.0f;

// load val

// convert to DP

// _sqrt() on DP returns DP

// convert result to SP

// load SP of 17.0

// SP multiply

// load SP of 10.0

// SP divide

// save result

two SP loads, SP multiply, SP divide

;\iﬂ; MO HARIOITE Embedded Systems

8-13

Rewriting and Rearranging ExEressions

Divides take much longer to execute than multiplies.
Branches taken are usually faster than those not taken.

Repeated evaluation of same expression is a waste of time.

{\irl'; 1O HARICATE Embedded Systems 8-14

ExamEIes

float res = (17.0f*(float)(sqgrt(val)))/10.0f;
IS better written as:

float res = 1.7f*(float)(sqrt(val));
D=A/B/C;, as: D=A/(B*C);
D=A/(B*QO); as: bc=B*C;

E = 1/(1+(B*C)): D= A/ bc;
E = 1/(1+bc):

;\iﬂ; MO HARIOITE Embedded Systems

8-15

Algebraic Simplifications and the Laws of Exponents

Original Expression Optimized Expression
a?—3a +2 (@a—1)*(a-2)
2. 1-, 1+ 1*, 2-
(a-1)(a+1) a2-1
1%, 1-, 1+ 1*,1-
1/(1+a/b) b/(b+a)
2/, 1+ 1/, 1+
am * a” am+n
2717 17 1+
(am)” am*n
2 N\ 1/\, 1*
{\irf; 1O HARICATE Embedded Systems 8-16

Literal Definitions

#defines are prone to error
float c, r;
r=c/TWO_PI;
#define TWO_PI 2 * 3.14
— r=¢/2"3.14 is wrong! Evaluates to r = (¢/2) * 3.14

#define TWO_PI (2*3.14)
— Avoids a divide error

— However, 2*3.14 is loaded as DP leading to extra operations
« convert c to DP
« DP divide
« convert quotient to SP
#define TWO_PI (float)(2.0*%3.14)
— Avoids extra operations

;\iﬂ; MO HARIOITE Embedded Systems

8-17

The Standard Math Library Revisited

Double precision is likely expected by the standard math
library.

Look for workarounds:

— abs()
float output=fabs(input);
could be written as:
if(input<0)
output=-input;
else
output=input;

{\irl'; MO HARIOTTE Embedded Systems 8-18

Functions: Parameters and Variables

Consider a function which uses a global variable and calls
other functions

— Compiler needs to save the variable before the call, in case it is
used by the called function, reducing performance

— By loading the global into a local variable, it may be promoted into
a reqister by the register allocator, resulting in better performance

« Can only do this if the called functions don’t use the global

Taking the address of a local variable makes it more difficult
or impossible to promote it into a register

{\irl'; 1O HARICATE Embedded Systems 8-19

More about Functions

Prototype your functions, or else the compiler may promote
all arguments to ints or doubles!

Group function calls together, since they force global
variables to be written back to memory

Make local functions static, keep in same module (source
file)
— Allows more aggressive function inlining
— Only functions in same module can be inlined

{\irl'; 1O HARICATE Embedded Systems 8-20

Fixed Point Math — th and How

Floating point is too slow and integers truncate the data
— Floating point subroutines: slower than native, overhead of passing arguments, calling

subroutines... simple fixed point routines can be in-lined

Basic ldea: put the radix
point where covers the
range of numbers you
need to represent

|.F Terminology

— | = number of integer bits
— F= number of fraction bits

3.34375 in a fixed point binary representation

Bit Pattern [Integer
0000 0000 0/1 =0

0001 1100 28/1 =28 28/4 =7

0110 0011

™M

Bit | 1 | 1 0 1 0 1 1
Weight | 2! | 20 | 2t | 22 | 28 | 24 | 2%
Weight | 2 | 1 | % | % | 18 | 116 | 1/32
Radix Point
6.2 1.10
0/4=0 0/1024 =0

Embedded Systems

28/1024 = 0.0273...
99/1 =99 99/4 =24.75 99/1024 = 0.0966...

8-21

Rules for Fixed Point Math

Addition, Subtraction
— Radix point stays where it started +
— ...S0 we can treat fixed point numbers like integers

Multiplication

— Radix point moves left by F digits

— ... SO we need to normalize result afterwards,
shifting the result right by F digits

6.2 Format
- B 10 001010.00
L Il + 1.25 000001 .01

1 125 00000000 1100.1000

{\irl'; 1O HARICATE Embedded Systems 8-22

Division

3.1 Format 3.2 Format

B Dpividend 7 111.0 111.00
: B Divisor +2 + 010.0 =+ 010.00
Quotient 3 0011 00011
I Remainder 1 001.0 001.00
Division
— Quotient is integer, may want to convert back to fixed point by
shifting

— Radix point doesn’t move in remainder

{\irl'; 1O HARICATE Embedded Systems 8-23

Division, Part Il

. 3.1 Format 3.2 Format

B Dividend 7 ..1110.0 (511100.00

[M Divisor 2 : p10.0 + 010.00
Quotient 3 0011.1 00011.10

Division
— To make quotient have same format as dividend and divisor,
multiply dividend by 2F (shift left by F bits)
— Quotient is in fixed point format now

{\irl'; 1O HARICATE Embedded Systems 8-24

ExamEIe Code for 12.4 Fixed Point Math

Representation
- typedef unsigned int FX_12_4;

Converting to and from fixed point representation
- #define FL_TO_FX(a) (unsigned int) (a*16.0)
- #define INT_TO_FX(a) (a<<4)
- #define FX_TO_FL(a) (float)(a/16.0)
— #define FX_TO_INT(a) (unsigned int) (a>>4)

Math

- #define FX_ADD(a,b) (a+b)

- #define FX_SUB(a,b) (a-b)

- #define FX_MUL(a,b) ((a*b)>>4)
— #define FX_DIV(a,b) ((a/b)<<4)
— #define FX_REM(a,b) ((a%b))

{\irl'; 1O HARICATE Embedded Systems 8-25

More Fixed Point Math ExamEIes

8.4 Format
B 10 0000 1010.0000
B ey +£0000 0001.1000

] 11.5 00000000 1100.1000

4.4 Format
- B 90625 1001.0001
- B < 65 £0110.1000

I 558.90625 0011 1010.1110 1000

ail";; MO HARICATE

Embedded Systems 8-26

Static Revisited

Static variable

— A local variable which retains its value between function
invocations

— Visible only within its module, so compiler/linker can allocate space
more wisely (recall limited pointer offsets)

Static function

— Visible only within its module, so compiler knows who is calling the
functions,

— Compiler/linker can locate function to optimize calls (short call)

— Compiler can also inline the function to reduce run-time and often
code size

{\irl'; MO HARIOTTE Embedded Systems 8-27

Volatile and Const

Volatile variable
— Value can be changed outside normal program flow
« ISR, variable is actually a hardware register
— Compiler reloads the variable from memory each time it is used

Const variable
— const does not mean constant, but rather read-only

— consts are implemented as real variables (taking space in RAM) or in
ROM, requiring loading operations (often requiring pointer manipulation)

A #define value can be converted into an immediate operand, which is
much faster

« So avoid them
Const function parameters

— Allow compiler to optimize, as it knows a variable passed as a parameter
hasn’t been changed by the function

{\irl'; 1O HARICATE Embedded Systems 8-28

More

Const Volatile Variables
— Yes, it's possible
« Volatile: A memory location that can change unexpectedly
« Const: it is only read by the program
— Example: hardware status register

{\irl'; 1O HARICATE Embedded Systems 8-29

