Sound Source Localization for Robot Auditory Systems

Zehaie Hailu

INTRODUCTION

 "You cannot hear blindfold! Can you?"

Blindfold head (top view diagram)

Blindfold

Source: http://teamworkscom.com/wpcontent/uploads/2009/11/Blindfold_woman.png

BACKGROUND SOUND SOURCE LOCALIZATION SRP-PHAT + TDOA TDOA + SRP-PHAT W/ SSC EXPERIMENTAL SETTING RESULTS CONCLUSION

- Communication: human-to-human
 - Language: verbal or textual conversation
 - Signaling: body language, sign language, or posting sign
- Communication: machine-to-machine
 - Electromagnetism
 - Protocols
- Communication: machine-to-human
 - Sound: beeps, buzzes, and recorded prompts
 - Visual: text, color, LED's, and signs

BACKGROUND

- Human to machine: Passing instructions
 - Switches
 - Buttons
 - Graphic User Interface
- Domestic robots
 - Easy to use and communicate
 - Natural interaction by interpreting visual cue and deciphering certain sounds
- Hearing in robots
 - How loud (power): message or noise
 - Where it comes from (localization)
- Sound source localization
 - Robotic dog illustration

Signal Based:

- Time difference of arrival (TDOA)
 - Cross correlation
- Spectral analysis
 - Spatial spectra
 - Doppler Effect

Power Based:

- Steered response power
- Steered response power with the phase transform (SRP-PHAT)
 - Grid search

SRP-PHAT + TDOA

- Hybrid: signal based + power based
 - SRP-PHAT + TDOA
- SRP-PHAT + TDOA
 - TDOA: Candidate locations
 - SRP: Beamforming
- Computational difficulties make SRP-PHAT hard to implement in real-time.

Search Space Clustering (SSC) Algorithm

Given the initial block b representing the entire search space:

B←{*b*}

 $C \leftarrow \varphi$

while B is not empty

Calculate the TDOAs of each microphone pair at every vertex of *b*.

if the TDOAs at all vertices of b are the same

 $B \leftarrow B - \{b\}$ $C \leftarrow C \cup \{b\}$

else

The block b is divided into a set of smaller size blocks,

1 2 8 *b* ,*b* ,...,*b*.

end

Any two blocks with the same TDOAs in C are merged.

The centroids of the blocks in C are stored in a look-up table.

Search Space Clustering

The room

Measurements

- Direction of arrival (DOA): azimuthal
- Elevation

LOCALIZATION ACCURACY, NUMBER OF SEARCH POINTS AND REALTIME FACTOR

	Grid Search				
	20cm	15cm	10cm	1cm	SSC
Azimuth (%)	89.5	89.9	93.6	93.9	93.9
Elevation (%)	85.4	88.8	89.2	92.8	92.8
Search Points	7500	19000	60000	6x10 ⁷	5203

- Sound: important medium for human-machine interaction
- Microphone: hearing device
- Localization techniques use more than one ear array of microphones

