Overview of the Development in Computer Vision with CMUcam

-Brief study of systems dealing with Computer Vision(CV)

- -Algorithms involved in implementing CV
- -Components required for implementing a CV machine
- -Available systems in the current market and academia
 - -Study of a special class of CV platform

Presented By: Onkar Raut

Components required for a CV machine

Digital Camera

- Type
- Shutter Speed
- Sampling Speed
- Fill Factor
- Chip Size
- Analog Gain
- Sensing Noise
- ADC Resolution
- Storage space
 - Amount
 - Refresh rate
- Processing Unit
 - Complexity of calculations required

Available Systems for implementing machine vision

-SRI Simple Vision System

http://www.ai.sri.com/~konolige/svs/

-The MIT Cheap Vision Machine

http://www.ai.mit.edu/people/ceb/cvm.html

-The Cognachrome Color Vision System

http://www.newtonlabs.com/cognachrome/

-CMUcam

http://www.cs.cmu.edu/~cmucam/

- -Stanford MeshEye
- -UCLA Cyclops
- -Bluetechnix Blackfin

Constraints on Embedded Vision

- Computation
- Cost
- Power
- Space

It's all about compromises!!

Goals of the CMUcam project (Year -2002):

- Perform Color Blob tracking at a Frame Rate of 16.7 fps
- Provide high level information to other processors
- Implement simple algorithms used in robot activities
- Keep the design simple and make the project low cost and effective compared to other vision systems

Hardware Selected:

- Omnivision OV6620 CMOS camera
 - A few details
- SX28 microcontroller
 - Configurable Communications Controllers
- Level shifter for the RS232 serial data

Interface of the CMUcam to CPU interface

An example of communication with the CMUcam:

- :cr 18 44 17 2 19 32
- ACK
- :sw 30 60 50 80
- ACK
- :pm 1
- ACK
- :gm
- ACK
- S 150 20 30 5 2 6
- :pm 0
- ACK
- :sw 0 0 80 143
- ACK
- :tc 145 18 24 155 22 36
- ACK
- M 50 80 38 82 53 128 35 98
- M 52 81 38 82 53 128 35 98
- M 51 80 38 84 53 128 35 98

Designing an efficient system is all about efficient compromises

What compromises were made during the development of the CMUcam?

- No frame buffer
- Nonstandard frame rate
- Processing data as it is streamed
- Dropped G component acquisition
- Horizontal RGB resolution is 80 RGB pixels
- Slow microcontroller

Image Processing Algorithms Implemented on the CMUcam

Color Blob Tracking

Enter minimum and maximum values for each RBG or YCrCb

Color Statistics

- Keeps a running sum of the individual color channel components
- Building block for motion detection

Noise Filtering

 makes the color tracking algorithm more robust by requiring a valid detection to consist of two horizontally adjacent pixels in the specified color range

Additional Demo mode

 The camera acquires the color of the first object it sees upon power up and tracks it using a simple feedback loop to point a servo toward it.

Performance

- Maximum rate 16.7 fps
- Resolution 80x143
- Center of mass tracking: jittering by 0.005 pixels and 0.011 pixels and standard deviation of 0.005 pixels and 0.011 pixels on x and y axis for blue objects and 0.1460 and 0.2900 with standard deviations of 0.146 and 0.216 for green objects
- Robot tracking

CMUCam2

Differences:

- Hardware
 - SX52 communications microcontroller
 - Fourth chip, a frame buffer
- Additional Algorithms implemented
 - Frame Differencing
 - Edge detection
 - Color histogram
- Performance Specs
 - Tracking speed 50 fps
 - Power saving
 - Interfacing to low end microcontrollers
- Cost: \$199

CMUcam3

- Hardware differences:
 - ARM7 processor
 - Additional SD MMC card slot
 - 4 servo ports
- Architectural Differences
 - SPI communication with flash card
- Additional Algorithms implemented
 - JPEG compression
 - frame differencing
 - color tracking
 - Convolutions
 - Face recognition
 - Polly at 4 fps
 - Spoonbot: follow Colored objects
- Cost: \$239

A brief explanation of stereovision

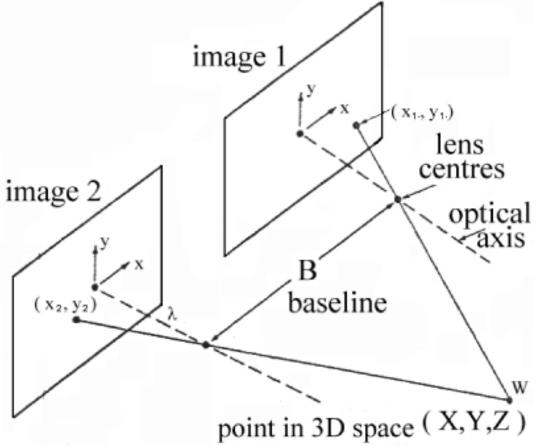


Figure 2. Stereo image geometric model.