
Eric J. Griffith∗
Srinivas Akella
Department of Computer Science
Rensselaer Polytechnic Institute
Troy, New York 12180, USA
griffe@cs.rpi.edu
sakella@cs.rpi.edu (corresponding author)

Coordinating Multiple
Droplets in Planar
Array Digital
Microfluidic Systems

Abstract

In this paper we present an approach to coordinate the motions of
droplets in digital microfluidic systems, a new class of lab-on-a-chip
systems for biochemical analysis. A digital microfluidic system typ-
ically consists of a planar array of cells with electrodes that control
the droplets. The primary challenge in using droplet-based systems is
that they require the simultaneous coordination of a potentially large
number of droplets on the array as the droplets move, mix, and split.
In this paper we describe a general-purpose system that uses simple
algorithms and yet is versatile. First, we present a semi-automated
approach to generate the array layout in terms of components. Next,
we discuss simple algorithms to select destination components for
the droplets and a decentralized scheme for components to route the
droplets on the array. These are then combined into a reconfigurable
system that has been simulated in software to perform analyses such
as the DNA polymerase chain reaction. The algorithms have been
able to successfully coordinate hundreds of droplets simultaneously
and perform one or more chemical analyses in parallel. Because it
is challenging to analytically characterize the behavior of such sys-
tems, simulation methods to detect potential system instability are
proposed.

KEY WORDS—digital microfluidic system, lab-on-a-chip,
droplet coordination, layout design, routing

1. Introduction

The field of biochemical analysis systems has been revolu-
tionized recently by the creation of miniature biochemical
analysis systems using microfabrication technology. These
systems are often termed “micro total analysis systems” or

∗Eric Griffith is currently in the Computer Graphics Group at the Delft Uni-
versity of Technology, the Netherlands.

The International Journal of Robotics Research
Vol. 24, No. 11, November 2005, pp. 933-949,
DOI: 10.1177/0278364905059067
©2005 SAGE Publications
Figures 2–6 and 10 appear in color online: http://ijr.sagepub.com

“lab-on-a-chip” systems. These systems offer a number of
advantages, including size reduction, power reduction, and
increased reliability. However, current systems are typically
tailored to a specific task. Therefore, an important goal is to
create reconfigurable and reprogrammable systems capable
of handling a variety of analysis tasks.

Digital microfluidic systems (DMFS) that use techniques
such as electrowetting and dielectrophoresis are promising
candidates for reconfigurable systems (Pollack, Fair, and
Shenderov 2000; Jones et al. 2001; Cho, Moon, and Kim
2003; Paik, Pamula, and Fair 2003). We focus on microfluidic
systems that manipulate discrete droplets by electrowetting,
where the interfacial tension of the droplets is modulated with
a voltage (Paik, Pamula, and Fair 2003). Droplets are micro-
liters in volume, and have been moved at 12–25 cm s−1 on
planar arrays of 0.15 cm wide electrodes (see Cho, Moon,
and Kim 2003 and Fair et al. 2003 for details). The ability to
control individual droplets on a planar array enables complex
analysis operations to be performed in biochemical “lab-on-
a-chip” systems (Figure 1). For example, they can be used to
perform polymerase chain reactions for DNA sequence anal-
ysis. For simple biochemical analysis operations, no special
purpose devices are required aside from the array itself. The
array may additionally contain cells that can perform spe-
cialized operations, such as heating or optical sensing. These
systems have the potential to process hundreds of samples
quickly. While there are important engineering challenges in
fabricating and demonstrating the feasibility of these systems,
the primary computational challenge with using droplet-based
systems is developing algorithms for the simultaneous coor-
dination of a potentially large number of droplets. Planning
optimal paths through the array for each droplet would be
computationally intractable for a large number of droplets.

In this paper we describe an approach to creating a general-
purpose DMFS. First, we explain a semi-automated approach
to design the array layout in terms of modular components,
along with the motivating design choices. Next, we discuss
simple algorithms to select destination components for the

933

934 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November 2005

Droplet Droplet

Control Electrodes

Top ViewSide View
Hydrophobic Insulation

Top Plate

Bottom Plate

Ground Electrode

Filler Fluid

Fig. 1. Droplets on an electrowetting array (side and top views). The droplets are in a medium (usually oil or air) between two
glass plates. The gray and white droplets represent the same droplet in two different positions. The gray droplet represents
the droplet’s initial position. Over a period of three clock cycles, the droplet is moved into the position represented by the
white droplet. A droplet moves to a neighboring electrode when that electrode is activated; the electrode is turned off when
the droplet has completed its motion. Based on Paik, Pamula, and Fair (2003).

droplets and a decentralized scheme for components to route
the droplets. These are then combined into a reconfigurable
system that has been simulated in software to perform DNA
polymerase chain reaction and other analyses. The algorithms
have been able to successfully coordinate hundreds of droplets
simultaneously and perform one or more chemical analyses in
parallel. Because it is challenging to analytically characterize
the behavior of such systems, methods to detect potential in-
stabilities due to congestion are proposed. An earlier version
of this work was presented in Griffith and Akella (2005).

2. Related Work

Digital Microfluidic Systems. Pollack, Fair, and Shen-
derov (2000) demonstrated rapid manipulation of dis-
crete microdroplets by electrowetting-based actuation. Ding,
Chakrabarty, and Fair (2001) described an architectural design
and optimization methodology for scheduling biochemical re-
actions using electrowetting arrays. They identified a basic set
of droplet operations and used an integer linear programming
formulation to minimize completion time. Droplet paths and
areas on the array for storage, mixing and splitting operations
are predefined by a human. Fair et al. (2003) describe exper-
iments on injection, dispensing, dilution, and mixing of sam-
ples in an electrowetting DMFS. Cho, Moon, and Kim (2003)
demonstrated creating, merging, splitting, and move opera-
tions using electrodes covered with dielectrics, and identified
conditions under which these operations can be performed in
an air environment. Fan, Hashi, and Kim (2003) developed a
cross-reference grid of single layer electrodes to manipulate
droplets with limited row-column addressing. Paik, Pamula,
and Fair (2003) studied the effects of droplet aspect ratios
and mixing strategies on the rate of droplet mixing. Jones
et al. (2001) demonstrated dielectrophoresis-based liquid ac-
tuation and nanodroplet formation. Zhang, Chakrabarty, and
Fair (2002) described hierarchical techniques for the mod-
eling, design, performance evaluation, and optimization of
microfluidic systems. In particular, they performed a compar-

ative performance analysis of a continuous flow system and a
droplet-based system and showed that the droplet-based sys-
tem has a less complex design that provides higher throughput
and processing capacity. Our approach of imposing a layout on
a digital microfluidics array to suit a given chemical reaction is
similar to programming a reconfigurable field programmable
gate array (FPGA; Maxfield 2004).

Our work is motivated by the above body of work, as well
as the work of Böhringer and Donald (1998), who developed
an algorithmic approach to the design and control of arrays of
microelectromechanical systems (MEMS) actuators for coor-
dinated micromanipulation tasks. Each droplet in a DMFS can
be viewed as a simple robot that moves on a four-connected ar-
ray (Böhringer 2003, 2004). Böhringer outlines an approach
for moving droplets from start to goal locations, subject to
droplet separation constraints, obstacles, and control circuitry
limitations. He uses an A* search algorithm to generate opti-
mal plans for droplets. To overcome the exponential complex-
ity of this approach, he plans the droplet motions in prioritized
order (Erdmann and Lozano-Perez 1987). However, note that
in a DMFS the droplets must additionally sometimes combine
for different durations to mix, and then be split.

Multiple Robot Coordination. The coordination of droplets
in a DMFS is closely related to multiple robot motion coordi-
nation. However, very few motion planning algorithms can,
with any guarantee, coordinate more than 10 or 20 robots.
Hopcroft, Schwartz, and Sharir (1984) showed that even a
simplified two-dimensional case of motion planning for mul-
tiple robots is PSPACE-hard. Reif and Sharir (1985) and Kant
and Zucker (1986) developed techniques to plan motions of
a single robot among moving obstacles. This can be gener-
alized to obtain a heuristic solution for planning the motions
of multiple robots. Erdmann and Lozano-Perez (1987) or-
der robots by assigned priority and sequentially search for
collision-free paths. Recent efforts have focused on proba-
bilistic approaches. Švestka and Overmars (1998) developed a
PRM planner for path coordination of multiple car-like robots.

Griffith and Akella / Coordinating Multiple Droplets 935

Sanchez and Latombe (2002) use lazy PRM variants for co-
ordinated path planning of multiple robot arms.

When the paths of the robots are specified, a path coor-
dination problem, first studied by O’Donnell and Lozano-
Perez (1989) for two robots, arises. LaValle and Hutchinson
(1998) addressed a similar problem, where each robot was
constrained to a C-space roadmap during its motion. Abrams
and Ghrist (2002) have studied the topology of configura-
tion spaces of robots restricted to motions on graphs. Simeon,
Leroy, and Laumond (2002) coordinate over 100 car-like
robots, where robots with intersecting paths are partitioned
into smaller sets. Akella and Hutchinson (2002) developed
a mixed integer linear programming (MILP) formulation for
the trajectory coordination of 10–20 robots by changing robot
start times. Peng and Akella (2005) developed an MILP for-
mulation to coordinate many robots with simple double in-
tegrator dynamics along specified paths. Conflict resolution
among multiple aircraft in a shared airspace (Tomlin, Pap-
pas, and Sastry 1998; Bicchi and Pallottino 2000; Schouwe-
naars et al. 2001) is also closely related to multiple robot
coordination.

Flexible Manufacturing Systems. Flexible manufactur-
ing systems for product assembly have been modeled
and analyzed using several techniques including Petri nets
(Desrochers 1990). Of particular interest to flexible manufac-
turing systems is the issue of deadlock avoidance, which has
been analyzed for certain classes of systems (Reveliotis, Law-
ley, and Ferreira 1997; Lawley 1999). Rizzi, Gowdy, and Hol-
lis (2001) developed a reconfigurable, automated precision as-
sembly system that uses cooperating, modular, robotic agents.
Gowdy and Rizzi (1999) describe a model for programming
such assembly systems. Inspired by this work, Klavins (2000)
developed a method to automatically compile a representation
of a distributed, hybrid factory from specifications of a prod-
uct assembly.

Networking. We view the DMFS as a network. While this
system differs from typical networking systems in non-trivial
ways, techniques for network flow and rate control (Bertsekas
and Gallagher 1992; Tanenbaum 1996) may be modified for a
DMFS. Methods from queueing theory and networking (Max-
emchuk 1987; Brassil and Cruz 1991; Bertsekas and Gal-
lagher 1992; Gross and Harris 1998) can help analyze and
improve the stability and performance of these systems. Re-
lated research in networking includes work on hot-potato or
deflection routing (Choudhury and Li 1993; Busch, Herlihy,
and Wattenhofer 2000) for different classes of networks, and
work on rate control to ensure stability (Kelly, Maulloo, and
Tan 1998).

3. Components for Array Layout

Many common operations for biochemical analyses can be
performed on an array without additional special purpose

hardware. These operations include dispensing droplets onto
the array, collecting droplets from the array, transporting
droplets around the array, mixing droplets together, and split-
ting droplets apart. The array layout design presented here
uses a system of “virtual” components. Each component type
is responsible for performing one or more types of opera-
tion. Multiple instances of the same type of component can
be present, and each component instance is allotted an area of
the array to perform its operations in. By linking components
that can perform all the operations in an analysis, a DMFS
can be created to perform that analysis.

In our system, we have defined six component types. The
“street”, “connector”, and “intersection” components trans-
port droplets around the array. The “source” component adds
droplets to the array, and the “sink” component removes
droplets from the array. The “work area” component man-
ages mixing and splitting of droplets. New component types
can be defined and integrated into the system for operations
that do not require special purpose hardware.

3.1. The Components

In this section we provide an overview of the functionality
of each component type. Each component is responsible for
managing all of the droplets that are in its portion of the array.
At each clock cycle, components attempt to move all droplets
in their section of the array. Each component maintains con-
nections with its neighboring components, which are used
to pass control of droplets when they move between compo-
nents. The connections are entrance/exit pairs where the exit
from one component is adjacent to the entrance in another.
Components may have to wait to move their droplets until the
components they are connected to have moved theirs. Fig-
ure 2 shows an example system with each of the component
types present. The details of the layout itself are presented in
Section 5. Figure 3 depicts the individual components.

Street Component. The street component is the general-
purpose droplet transportation component. It moves droplets
in one direction through at least two array cells. Streets are
one-way to prevent two droplets from moving in opposite di-
rections through the component. A street attempts to advance
all droplets within it in synchrony at each clock cycle. If mov-
ing any droplet would cause it to be adjacent to another, it is
not allowed to move. In Figure 3(a), the middle row of cells
are the cells that droplets move through. The extra rows above
and below this row provide part of the required buffer of empty
cells around droplets.

Connector Component. The connector component is simi-
lar to a street component, except that a droplet only moves
through a single cell in it (Figure 3b). The distinction is made
because droplets in the connector are adjacent to two compo-
nents simultaneously. Thus, when a droplet attempts to enter
a connector, the connector must ensure that there is no other
droplet adjacent to the connector.

936 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November 2005

a
b

e

c

d

Fig. 2. Array layout for the DNA polymerase chain reaction (PCR) described in Section 7. Each cell of the layout is depicted
as a square. On the left side of the array are (a) eight sources, which supply the input sample droplets to the system. There are
(b) four work areas on the array, in which droplets are (c) mixed together and (d) split apart. In the lower-right corner of the
array is (e) a sink, which collects the droplets of the final products and moves them off the array.

(a) (b) (c) (d) (e) (f)

Fig. 3. The components. (a) A street component. Droplets move through the middle row of dark squares. (b) A connector
component. (c) An intersection component with two entrances and two exits. The arrowheads indicate the exits. (d) A source
component connected to an intersection component. (e) An intersection component connected to a sink component. (f) An
active work area, showing several work units with droplets. Each work unit can function as a mixer and as a splitter.

Intersection Component. The intersection component is vi-
tal to the droplet routing system. Droplets enter an intersection
and then move into its middle cell. Once there, the intersection
routes the droplet to the appropriate exit based on the algo-
rithm described in Section 4.3. In Figure 3(c), the exits from
the intersection are denoted by white arrows, which are, in this
case, up and right. The entrances to the intersection are from
the left and from the bottom. The four corner cells provide
part of the required buffer of empty cells around droplets.

Work Area Component. The work area component is where
mixing and splitting take place. Each work area has a transit
area and multiple “work units”. Each work unit may function
as a “mixer” and/or as a “splitter”. Mixers merge two droplets
into a new droplet. The mixer moves the droplet around to
speed up mixing, as in Paik, Pamula, and Fair (2003). Splitters
split the mixed droplet into two droplets. A work unit may be
used as a mixer until a mixing operation is completed, and
then part of that same unit may be used as a splitter. A work

Griffith and Akella / Coordinating Multiple Droplets 937

area can mix and split multiple droplets at the same time.
When a droplet gets to a work area, the work area sends it
to a specific work unit. The work units manage the droplets
assigned to them. Once a mix and split operation is complete,
the resulting droplets are sent out of the work area.

In Figure 3(f), the middle row of cells are the cells that
droplets move through when entering and exiting the work
area. Droplets move along this row of cells until they reach
the work units, which are both above and below this row. There
are six mixer work units and one splitter work unit visible in
the figure.

Source Component. The source component represents
droplet entry points into the array. Each source introduces
specified droplet types at specified intervals. Droplets enter-
ing the array are assigned a goal operation. In Figure 3(d), the
source is depicted to the left of the intersection.

Sink Component. The sink component represents droplet exit
points from the array. Each sink removes specified droplet
types from the array. In Figure 3(e), the sink is depicted to the
right of the intersection.

4. Droplet Destination Selection and Routing
Algorithms

To be practical, a DMFS should be able to handle a large
number of droplets simultaneously. Ideally, it should do this
in a way that optimizes some quantity, such as throughput or
completion time. We significantly reduce the computational
cost of planning the droplet motions at the expense of op-
timality. By dividing the array into components, restrictions
are placed on where operations can take place on the array.
The interconnection of the components can be viewed as a
network with the intersections as the routing devices and the
streets and connectors as the “wires”. This reduces the motion
planning problem to a network routing problem on a directed
graph.

Selecting destinations for droplets is a twofold process.
First, the droplet must be assigned an operation to perform.
Once the droplet has an assigned operation, a component for
that operation may be selected. The methods for these pro-
cesses, as well as the droplet routing, are discussed in this
section.

4.1. Assumptions

We assume the following when modeling the operations of
the DMFS.

1. Individual cells of the array are addressable, permitting
direct control of individual droplets.

2. No two droplets can occupy adjacent cells unless they
are to be mixed.

3. Droplets moving simultaneously in the same direction
along a line must have at least two empty cells between
each other, and droplets moving simultaneously around
a corner must have at least three empty cells between
each other.

4. Droplets in the array have identical volumes, except
during mixing.

5. Every mix operation is followed by a split operation.
A split operation is performed by simultaneously acti-
vating the two electrodes on either side of the current
cell.

4.2. Droplet Destination Selection

The system is supplied with parameters, described in Sec-
tion 5, which it uses to maintain a list of components available
for certain operations. Work areas can perform a mixing op-
eration with any droplet type, and sinks remove specific types
of droplets. Each work area and sink adds itself to an ordered
list of components accepting droplets for operations. There is
also an ordered list of higher priority containing requests from
components for specific droplet types required to complete an
operation. Currently, only work areas needing the remaining
droplet type for a mixing operation place requests in this list.

When a new droplet enters the system, or is created through
a mixing operation, the corresponding source or work area
assigns it an operation. This operation is dependent on the
system parameters. For example, if a droplet of type A is
introduced and the analysis graph specifies that droplets of
type A should be mixed with droplets of type B, then that
droplet’s goal operation will be to mix with a droplet of type
B. If the droplet is an end product of the chemical analysis, it
will be assigned the goal operation of leaving the array via a
sink.

When the droplet enters an intersection, the intersection
tries to find a component to send the droplet to, as described
in Algorithm 1. First, it checks the higher priority list for
existing requests for the droplet’s type and assigned operation.
If any exist, then the droplet is assigned to the first requesting
component and that request is removed from the list. Using
the above example, a droplet of type A would be assigned to
a work area that already has a droplet of type B assigned to
it, but does not yet have an assigned droplet of type A for it
to mix with.

Should no component be actively requesting that droplet
type for its operation, it is assigned to the first component on
the lower priority list that can accept droplets of its type, and
that component is sent to the end of the list (if it is a sink or
is a work area with work units available). If no components
are available, then the next intersection the droplet enters at-
tempts to assign it a destination. In the worst-case scenario,
this operation takes O(w + s) time for one droplet at one in-
tersection, where w is the number of work areas and s is the
number of sinks in the system.

938 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November 2005

Algorithm 1. Select_Destination_Component.

Input: A droplet d for which a destination is to be selected.
Output: A destination component for d .
H ← {h1, h2, . . . , hn} // Higher priority ordered list of

// components actively requesting droplet types.
L← {l1, l2, . . . , lm} // Lower priority ordered list of

// components accepting droplet types.
for i = 1 to n do

if hi .requested_type= d.type and hi .operation=
d.requested_operation then

Remove hi from H

return hi // Destination component found in H

end if
end for
for i = 1 to m do

if d.type ∈ li .accepted_type and li .operation=
d.requested_operation then

Remove li from L

if d.requested_operation requires droplet type t then
li .requested_type← t

Add li to the end of H

end if

if li can still accept droplets for li .operation then
Add li to the end of L

end if
return li // Destination component found in L

end if
end for
return ∅ // No destination component found

4.3. Droplet Routing

After a droplet is assigned a destination component, the
droplet must be routed to the component. The routing method
we use can be viewed as a deflection routing variant of the
Open Shortest Path First (OSPF) network protocol (Brassil
and Cruz 1991; Tanenbaum 1996). The routing method re-
lies on each intersection maintaining shortest path informa-
tion to the other components, computed from the “component
graph”. The component graph is a directed graph where each
node is a component and each edge is a connection between
adjacent components. The directed edge points from the com-
ponent with the exit to the component with the entrance. The
distance along an edge is, generically, taken to be the length
of the component containing the exit for the edge.

When the system is initialized, each intersection computes
and stores its routing table, which maps the shortest path to
each component to a corresponding exit to take from the in-
tersection. The specified exit is the first leg of the shortest
path to the component in question. Each intersection con-
structs its routing table by running Dijkstra’s algorithm on
the component graph to compute shortest paths from the in-
tersection. The one restriction is that a shortest path should

not travel through work areas, sources, or sinks, unless those
components are the destination. Dijkstra’s algorithm on a
sparse graph using a standard implementation has a runtime
of O(n log n) where n is the number of nodes in the graph.
Because Dijkstra’s algorithm must be run from each of the
intersections, the routing system has an initial overhead of
O(i · n log n) where i is the number of intersections in the
array.

At each clock cycle, the intersections are processed (along
with the other components) in a fixed order to select their
droplet routing moves, as described in Section 5.1. The order
could vary a little at each cycle based on droplet movement
dependences. Subsequently, synchronous motion of droplets
is executed. The droplet routing, described in Algorithm 2, is
straightforward once the routing table has been constructed.
If a droplet entering the intersection has no destination, then
the intersection attempts to assign it one. If that fails, then
the droplet is sent to a random, valid exit. Otherwise, the in-
tersection finds the destination component in its routing table
and selects the exit that is the best choice for the droplet. If
the droplet is able to move toward that exit, it does so. Oth-
erwise, the intersection randomly chooses a valid exit for the
droplet. If no viable exit is available, then the droplet waits.
The amount of time required for selecting an exit for a droplet
is O(1) because the intersection must check at most three
possible exits and the routing table has constant access time.

Algorithm 2. Route_Droplet

Input: A droplet d which is to be routed by an intersection
component ci .
Output:An exit of the intersection component, if available,
or indication of failure to find an available exit for d.
E← {e1, . . . , en} // The list of (up to 3) exits from the

// intersection.
Ri ← {(c1, ec1), (c2, ec2), . . . , (cm, ecm

)} // The routing
// table for intersection i where component cj has id j .
// ecj

is the exit of component ci that leads to the
// shortest path to component cj .

if d.destination_component= ∅ then
d.destination_component = Select_Destination_Comp-

onent(d)
end if
if d.destination_component �= ∅ then

cd ← d.destination_component
if Is_Free(ecd

) then
return ecd

end if
end if
ef ree ← Choose_Random_Free_Exit()
if ef ree �= ∅ then

return ef ree

end if
return ∅ // No exit available, droplet d will wait at

// intersection i this clock cycle.

Griffith and Akella / Coordinating Multiple Droplets 939

5. A General-Purpose Digital Microfluidic
System

A general-purpose DMFS can be created by combining the
component-based layout design approach (Section 3) with
the accompanying algorithms (Section 4). A general-purpose
layout must be capable of handling arbitrary analyses that re-
quire the movement, mixing, and splitting of different types of
droplets. Further, the layout should contain a sufficient num-
ber of work units and be able to efficiently transport droplets
around the array.

Efficient droplet transportation is crucial because the usage
of the system is not known in advance. Therefore, all parts of
the array should be accessible. We group street components in
pairs to simulate two-way streets, allowing droplets to closely
follow the same path between two locations in both directions.
We chose this particular two-way configuration, instead of
enabling individual street components to operate in both di-
rections, because of its larger capacity for droplet traffic and
avoidance of collisions between droplets moving in opposite
directions. To allow for intersections between these two-way
streets, we group four intersections together in a rotary-like
arrangement (see Figure 4).

We group these two-way streets and rotaries with a work
area to form a pattern of components. This pattern, shown in
Figure 5, is designed to provide a balance between number
of work areas and ease of access. The array layout itself is a
periodic tiling of this pattern, completed with an alternating
sequence of rotaries and streets along its upper and right edges.
The extra intersection components in the two-way streets are
for connecting sources and sinks around the perimeter of the
layout. The intersections in the vertical streets are connected
to provide shorter paths to and from work areas.

To generate the layout, the user must specify a set of param-
eters dependent on the hardware. These are the physical size
of the array and the locations of sources and sinks. To fully
define the system, the user specifies parameters based on the
chemical analyses to be performed, including the chemical
analysis graph, the types of droplets introduced at sources,
when and how often they are produced, the types of droplets
to send to the sinks, information about the various intermedi-
ate operations to perform with the droplets on the array, and
the number of work units to include in each work area.

(a) (b)
Fig. 4. Simulating two-way transportation: (a) two-way street;
(b) rotary.

Fig. 5. The layout pattern tile that is a modular building block
for the array.

The size of the array is limited to be of width 9+ (7+w)i

and height 9 + 16j , where the layout is i tiles wide, j tiles
tall, and w is the width of the work area. For the default case
of eight work units per work area, w is 15 and the pattern tile
is 22 cells wide and 16 cells tall. The sequence of two-way
streets and rotaries to complete the layout adds an additional
seven units. The sources and sinks must be placed around
the perimeter of the array such that they can be connected
to an intersection. Setting aside one cell around all sides of
the perimeter of the pattern for sources and sinks gives the
remaining two units. A complete example layout with eight
sources and one sink can be seen in Figure 2.

5.1. Digital Microfluidic System Control

The approach to a DMFS described here yields a collection
of communicating components organized into a network. The
components cannot operate wholly independently because
they must respect the property that no two droplets can be
in adjacent array cells unless they are about to be mixed. Ad-
ditionally, droplets moving simultaneously must keep at least
two or three empty cells between each other if they are mov-
ing in a line or around a corner, respectively. Components
only have knowledge of droplets within their own portion of
the layout. Thus, before moving droplets into a neighboring
component or into cells bordering a neighboring component,
the component must consult the neighbor to ensure it would
not result in two droplets being too close together.

For maximum efficiency, a DMFS should be able to move
an arbitrary number of droplets, in parallel, at each clock cy-
cle. Consider a component attempting to move one of its
droplets, droplet A, into an array cell adjacent to one of its
neighbors. The simplest case is when there is no droplet in
the neighbor that prevents droplet A from being moved. The
more complicated case occurs when there is a droplet B in

940 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November 2005

�
A

B
B

A

�

A

B

A
B

�

Fig. 6. A situation where two droplets A and B, each in a
different component, require knowledge of the next state
of the other droplet before knowing if they can move
simultaneously. If both droplets move, then they will be
diagonally adjacent to each other, which is unacceptable.
Therefore, only one of the two droplets may move.

the neighbor component, which in its current position does
not prevent the desired movement of droplet A, but droplet B
may move into a cell that would prevent droplet A’s move-
ment. In this case, droplet A can be moved only if droplet B
is not moved into the blocking position. See the example in
Figure 6. A similar case arises when two different droplets
wish to enter the same component, such as an intersection. In
these situations, the component needs knowledge of the next
state of the droplets in its neighbor in order to decide if it can
move its droplets.

The solution to this problem we have chosen is to first
process the components serially at each clock cycle and then
perform motion in parallel. An ordered master list of compo-
nents is maintained, and, at each clock cycle, each component
in the list is instructed to attempt to move its droplets (Algo-
rithm 3). The order is generally sources and work areas first
and then the remaining components; the order could vary a
little at each cycle based on droplet movement dependences.
When a particular component wishes to move a droplet into
an array cell adjacent to a neighbor component or into the
neighbor component, it first asks that neighbor component if
the move will result in two droplets being adjacent. If it will,
then the component asks the neighbor to attempt to move its
droplets so that the droplet is free to move in the next cy-
cle. If the move will still result in adjacent droplets, then it
waits to move those droplets that would cause violations (see
Algorithm 4).A separate master list is kept containing the cur-
rent position of all droplets and their desired position in the
next clock cycle. When components move the droplets within
themselves, the master list of droplets is updated to reflect the
new current and desired positions of the droplets. The set of
consistent droplet movements can then be collected so motion
can be performed in parallel.

Algorithm 3. Move_All_Droplets

Input: C, the ordered list {c1, c2, . . . , cn} of all
components.
for i = 1 to n do

ci .moved← FALSE
end for
for i = 1 to n do

ci .Move_Droplets()
end for

Algorithm 4. Move_Droplets

Input: The component c moving the droplets.
N ← {n1, n2, . . . , nm} // Neighboring components of c.
D← {d1, d2, . . . , dp} // The droplets in component c.
if c.moved then

return
end if
c.moved← TRUE
for i = 1 to p do

if di wants to move next to neighbor component nj then
if nj .Can_Move_Adjacent(di) then

Move(di)
else

nj .Move_Droplets()
end if

else if di wants to move into neighbor nj then
if nj .Can_Accept_Droplet(di) then

Move(di)
else

nj .Move_Droplets()
end if

else
Attempt_To_Move(di) // component attempts to plan

// motions for droplet
end if

end for

5.2. Cell Addressing

In general, we assume that individual cells can be directly
addressed by the hardware controlling mechanism for the
DMFS. However, row–column addressing schemes, where
only entire rows and columns can be addressed and only cells
at the intersection of activated rows and columns are acti-
vated, are also feasible (Fan, Hashi, and Kim 2003; Böhringer
2004). This approach simplifies the hardware, but provides
less flexibility in moving several droplets in synchrony, es-
pecially when the row–column activations interfere to cause
undesired droplet movement, merging, or splitting. We expect
that our algorithms can be modified to handle row–column
addressing. The issue here is how to serialize the previously
synchronous motion of the droplets at each clock cycle. By

Griffith and Akella / Coordinating Multiple Droplets 941

identifying those droplets whose movements may interfere
with each other, we can identify sets of droplets that can be
safely moved simultaneously.

5.3. Digital Microfluidic System Operation

The DMFS can be operated in two modes, as follows.

1. Batch mode. Here, all the droplets necessary for an anal-
ysis are input at the source components in one batch.
The droplets are coordinated to complete the analysis,
and then the next batch of droplets is processed. The
droplets are input in a synchronized manner based on
when they are required for the reactions.After each mix
and split operation, one of the two resulting droplets is
sent to a waste output. An analysis performed in batch
mode will typically require a smaller number of tiles in
the array since the number of droplets in the system is
small.

One advantage of the batch mode is that the droplet rout-
ing is almost entirely deterministic, and we can easily
analyze the system behavior. Only when no work units
are available for a droplet will an intersection compo-
nent route the droplet randomly.

2. Continuous mode. Here, the source components input
the droplets at a fixed rate. (The rate for each droplet
type is specified by the human designer.) One advan-
tage of this mode is that it produces a larger volume
of product droplets than the batch mode in the same
amount of time, especially when no droplets are dis-
carded as waste droplets. A potential disadvantage is
that system behavior is harder to analyze. We explore
this issue, and in particular, potential system instability,
in Section 6.

In both modes, multiple analyses yielding different prod-
ucts can be processed in parallel to better utilize the array.

6. System Stability

The behavior of a general-purpose DMFS changes with the
chemical analysis it performs. The stability of a system operat-
ing in continuous mode depends on its parameters, especially
the input flow rates. In an unstable system, droplets enter the
system faster than the system is able to process them, and
a steady-state flow may cease (Gross and Harris 1998). If a
system is not stable, in time it will become heavily congested
and may finally become deadlocked. A system is deadlocked
when droplets are unable to reach their destinations.

We treat congestion as an indicator of instability, and try
to identify conditions that lead to or result from congestion.
Deadlock, which is the result of severe congestion, is a suf-
ficient condition for a system to be unstable. At least one of
two conditions must hold for a system to become congested.

The first is for some droplets to be unable to follow the short-
est paths to their destinations. The second condition is for
droplets to be unable to be assigned a destination. Either con-
dition is an indicator that the system is not processing droplets
fast enough. To identify when these conditions may occur, we
employ two methods. At the operation level, we analyze a
graph of the operations to be performed based on the system
parameters. At the component level, we model droplet flow
in the system using the component graph. Using the infor-
mation from these methods, we are able to design the system
to be more stable by selecting system parameters such as in-
put droplet rates and source and sink locations to avoid these
conditions.

6.1. Analysis Graph

The (biochemical) “analysis graph” provides a representation
of the operations of the system. It is a directed graph, with
an input node for each droplet type entering the system, an
output node for each droplet type leaving the system, and a mix
node for each mixing operation performed in the system. The
nodes are connected based on the droplet types they require
and produce, and the edges represent transport operations.
Each node stores the duration of its operation, and the analysis
graph is augmented with additional information (Figure 7).

The first augmentation is the rate at which droplets will en-
ter and leave each node. Droplet rate can be most intuitively
described in terms of a source. If a source introduces a par-
ticular droplet type once every k cycles, then its rate r would
be 1/k droplets per cycle. Also, there would be k − 1 empty
cells between each introduced droplet. This rate is propagated
through the graph. If these droplets perform a mixing opera-
tion, then, on average, and assuming no unusual delays, one
of these droplets would begin its mixing operation every k

cycles. Similarly, one droplet would complete the mixing op-
eration every k cycles.

The second augmentation is the best-case expected dis-
tance to travel between performing operations. Each node’s
operation can be performed at one or more components on the
array; specific components are chosen during destination se-
lection for the droplets. The expected distance is the average
of the shortest path between each possible originating com-
ponent and each possible destination component. We use this
definition because destination components are assigned on a
rotating basis, and a droplet leaving a component is equally
likely to be assigned to any of the possible destination com-
ponents. In a system with two work areas and a source com-
ponent introducing droplets for mixing, the distance from the
input node to the mix node would be the average of the lengths
of the shortest paths from the source to each of the two work
areas.

The third augmentation is the best-case expected time at
which the first droplets will enter each node. There is a sepa-
rate arrival time from each parent node of a given node, and

942 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November 2005

Mix Output

Droplet Type 1

Rate: 0.111, Distance: 30

Droplet Type 2

Rate: 0.111, Distance: 30

Droplet Type 3

Rate: 0.222, Distance: 30Input

Input
Arrival Time: 0

Duration: 0

Departure Time: 0

Arrival Time: 0

Duration: 0

Departure Time: 0

Arrival Time: 30

Duration: 120

Departure Time: 150

Arrival Time: 180

Duration: 0

Departure Time: 180

Fig. 7. A simple analysis graph with four nodes: two input nodes, one mix node, and one output node. Droplet types, rates,
and expected distances traveled are indicated along the edges. Expected arrival time, duration, and departure time (in units of
clock cycles) are indicated at the nodes. Times (and distances) are in units of clock cycles, and rates are in terms of number
of droplets per clock cycle.

it is computed as the expected departure time from the parent
node plus the best case expected travel time from the parent
node to the current node. The expected departure time from a
given node is the average of the arrival times, plus the duration
of the operation.

The graph is then checked to ensure that the following
properties hold:

1. every path from every source node must lead to a sink
node;

2. droplets must enter a node at the same rate from each
parent node;

3. arrival times to a node should be about the same from
each parent node.

If any of these properties are violated, this is likely to result in
inefficient processing of droplets. In the event that the proper-
ties are violated, the system parameters can be adjusted until
they result in a graph without violations.

6.2. Droplet Flow Analysis

The analysis graph provides a reasonable estimate of the over-
all system stability. However, a more detailed component level
analysis of system stability may be required. There may be
certain bottleneck components that become congested from
too many droplets moving through them, and so slow down
droplet flow. These bottlenecks can result in an unstable sys-
tem when they prevent droplets from reaching their desti-
nations. Some simple experiments have demonstrated that
this can arise in larger arrays (for example, arrays of size
295 × 297), where there is a lot of droplet traffic around the
perimeter near the sources and sinks but relatively light traffic
in the interior. Modeling the droplet flow through the system
can be an effective tool to identify unstable systems, espe-
cially those that are unstable due to these bottleneck, con-
gested components.

The droplet flow modeling attempts to predict the expected
flow through the component graph (described in Section 4.3)

using the rate information from the analysis graph (see Fig-
ure 8). The idea is to determine the rate at which droplets enter
and leave each component on the array, which is the flow rate
through that component, when the system is in a steady state.
To approximate the expected flow rate through components,
we developed an iterative analysis. For this analysis, we make
the assumption that work areas are uniformly utilized. That
is, a droplet being assigned to a work area is equally likely to
be assigned to any work area on the array.

Each component is initially assigned inflow and outflow
rates of 0. Sources generate a certain amount of flow, dictated
by the analysis graph, destined for each work area. For exam-
ple, if a source produces droplets at a rate of 1/4 in a system
with two work areas, it generates a flow of 1/8 to each work
area. Similarly, work areas generate a certain amount of flow
destined for each work area and to each sink.At each iteration,
the output of each node in the graph is defined as a function
of the input to the node. The input of a node is the sum of the
outputs, from the previous iteration, of its parent nodes plus
any flow it generates at that iteration. For intersections, the in-
put flow is divided amongst the possible exits based on where
the flow is destined. If a particular node becomes congested,
nodes sending flow to it try to redirect excess flow away.

Nodes in the graph are assigned a maximum inflow capac-
ity. For all nodes except work areas, this is set as 1/4, which
is the maximum rate that droplets may make a turn through
an intersection without inadvertently merging. The maximum
inflow rate to a work area is computed based on the duration
of its operations in the analysis graph. For example, consider
a system where mixing operations take 100 cycles to com-
plete. Each mixing operation requires two droplets and each
work area can support eight simultaneous mixing operations.
If the droplets entered a work area at a rate of one droplet
every seven cycles, the first mixing operation should com-
plete shortly after, or even before, the eighth operation begins.
Droplets would likely not be able to enter the work area at a
faster rate than this because there would not be any free work
units. To respect the maximum inflow rates, parent nodes must
adjust their outflows, which may result in some of the inflow

Griffith and Akella / Coordinating Multiple Droplets 943

So
u

rc
e

Droplet Type 1

Rate:

So
u

rc
e

Sink

1—
10

Droplet Type 2

Rate:
1—

10

Droplet Type 3

Rate:
1—

10

Droplet Type 3

Rate:
1—

10

Work Area

1—
20

1—
20

1—
10

Work Area

1—
10

1—
10

1—
10

1—
10

1—
5

1—
5

1—
503—

20
3—

20
1—
4

1—
4

1—
4

1—
4

1—
4

1—
4

1—
20

1—
20

1—
10

Fig. 8. A component graph for a system with the analysis graph in Figure 7 depicting the steady-state flow through the
system. For clarity, this component graph uses a simplified layout. Each circular node contains a pie chart for flow through
the component. The actual flow is the shaded portion of the maximum flow rate of 1/4 in each node. In this example, inflow
is equal to outflow. The total flow through each component is depicted by the fraction in the node. The work areas receive
flow from both sources and produce flow destined for the sink. The rate of flow and droplet type (color) produced by each
source and work area is indicated by the node.

not translating into outflow. A congested node is defined as a
node with inflow greater than outflow.

Once the computed flow through the system converges,
the component graph is analyzed. If the system is stable, the
inflow will equal the outflow at every street, connector, work
area, and intersection node. Otherwise, the system is likely to
be unstable. A simplified example system with steady-state
flow information is depicted in Figure 8. The system flow
equations are more effective in estimating the steady-state be-
havior of the system than for the analysis of transient behavior
and unstable behavior of the system.

7. System Simulation

We have simulated example systems operating in batch mode
and in continuous mode. We now describe an example sys-
tem based on the DNA polymerase chain reaction (PCR) op-
erations outlined in Ding, Chakrabarty, and Fair (2001). The
reaction involves eight input droplet types and seven mixing
operations. See Figure 9 for an analysis graph of the system.
(Note that the PCR reaction requires heating once the sample
is prepared. We assume that droplets may be routed off-chip
for heating.) Immediately following each mixing operation,
the resulting droplet is split into two droplets. The layout is
set up with four work areas, eight sources each introducing
an input droplet type, and one sink to collect the final product
(Figure 2). The size of the layout in this example is 53 × 41
cells. The system parameters were set with the aid of the stabil-
ity analysis described above. In continuous mode, the system
has an average of 66 droplets on the array. The routing com-
putations for this array with 2 × 2 tiles are performed at a

rate of about 60,000–70,000 cycles a second, enabling rapid
simulation of the system to verify stability. Animations of the
PCR analysis, in both batch mode and continuous mode, as
well as animations of multiple analyses in parallel, can be
seen at http://www.cs.rpi.edu/∼sakella/microfluidics/ and in
Appendix A.

When the system is in its stable operating range, there is
a linear relation between the input droplet rate and output
droplet rate, since no droplets are accumulating on the array
(Figure 9a). Once a critical input rate is exceeded, there is
a rapid drop off in the number of cycles at which instability
occurs (Figure 9b). Note that the “input rate” referred to in
these and subsequent graphs is the rate at which each of the
four chemicals on the left of Figure 9 are introduced. The
subsequent input chemicals are introduced at correspondingly
higher multiples of the input rate.

7.1. Simulation Analysis

Our most reliable tool for predicting system stability is the
implemented software used as a simulator. On a 1.7 GHz
Pentium machine, it is possible to simulate 10,000–20,000
cycles per second when dealing with an array that is 3 × 3
tiles in size. Even assuming a very rapid actual operation speed
of the order of 50–100 Hz, we are able to simulate 24 hours of
operation in approximately 6 minutes. Significantly less time
is usually needed to identify unstable systems because they
tend to result in deadlock quickly. In fact, we can use binary
search to rapidly identify the input rate at which instability
starts to occur.

The simulation approach has also provided us with in-
sights into the behavior of the system. We have observed sharp

944 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November 2005

Tris-HCL

Rate: 0.0067

KCl and

MgCl2

Rate: 0.0067

Gelatin

Rate: 0.0067

Bovine Serum

Albumin

Rate: 0.0067

Mix

Mix

Mix

Mix

Mix

Mix

Mix

Deoxynucleotide

Triphosphate

Rate: 0.013

Primer

Rate: 0.013

AmpliTaq DNA

Polymerase

Rate: 0.027

λDNA

Rate: 0.027

Output

Rate: 0.106

Rate: 0.053Rate: 0.027Rate: 0.013

InputInput

InputInput
Input

Input

Input

Input

Fig. 9. PCR analysis graph. Input nodes are labeled with the samples they introduce and the rate at which they introduce
them. Edges out of mix nodes are labeled with the droplet rate resulting from the operation.

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065 0.007

O
ut

pu
t r

at
e

Input rate

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0.007 0.008 0.009 0.01 0.011 0.012 0.013

C
yc

le
s

to
 in

st
ab

ili
ty

Input rate

(a) (b)
Fig. 10. Simulation data for the PCR reaction illustrating (a) the variation of droplet output rate with input rate in the stable
range, and (b) the number of cycles at which the system goes into deadlock, as input rate is increased in the unstable range.
For this example, mixing time is 128 cycles, the number of work units per work area is 8, and the tiles are in a 2× 2 pattern.

variations in behavior when simulating systems that are on the
borderline between stability and instability. Small changes in
the rate at which droplets enter the system can mean the dif-
ference between becoming deadlocked in 5,000 cycles, be-
coming deadlocked in 2,000,000 cycles, or running contin-
uously for 10,000,000 cycles without deadlock. Figure 11
shows the number of cycles at which deadlock occurs, as the
input droplet rate is varied.

In the same tests, we examined the effects of varying the
number of work units in each work area for a layout with a

fixed number of tiles. As expected, increasing the number of
work units permits the system to be stable at a higher input
rate. However, Figure 11 indicates that as the input rate in-
creases, the effectiveness of maintaining system stability by
increasing the number of work units decreases. This suggests
that the performance bottleneck is shifting from the work ar-
eas to the transportation components as the total number of
work units in the array increases.

Because larger arrays are able to handle higher input rates,
we compared the area-normalized droplet output rate (com-

Griffith and Akella / Coordinating Multiple Droplets 945

)RCP(selcyC eerF kcoldaeD fo rebmuN
selcyC 821 :emiT xiM ,seliT 2x2 :eziS yarrA

001

0001

00001

000001

0000001

2609300.0

5 2609800.0

5 2609310.0

5 2609810.0

5 2609320.0

5 2609820.0

5

etaR tupnI telporD

C
yc

le
s

stinU kroW 2
stinU kroW 4
stinU kroW 6
stinU kroW 8
stinU kroW 01
stinU kroW 21
stinU kroW 41
stinU kroW 61
stinU kroW 81

Fig. 11. Number of cycles at which deadlock occurs, as input droplet rate is varied. Each curve corresponds to a different
number of work units in each work area. Note that the number of cycles is plotted on a logarithmic scale, and the simulations
were run to a maximum of one million cycles. Simulation data are for the PCR reaction.

puted as droplet output rate divided by number of cells in
array) as the number of work units is increased (Figure 12).
The maximum peak area-normalized output rate occurs with
12 work units per work area. However, the peak value oc-
curs on the borderline between stability and instability. When
considering the peak value for 12, 14, 16, and 18 work units,
there is a slight downward trend, which suggests that there is
a limit to the benefit of adding more work units to the array.
In general, the smallest array size for which a given rate is
stable yields the best value. The benefit of adding more work
units is stability at higher input rates.

To gauge the performance of the array in terms of the work
area utilization, we recorded the states of the individual work
units during the course of the simulation. For each work unit,
there are three possible states: empty, reserved, and active.
An empty work unit has no droplets in it (or assigned to it).
A reserved work unit has one droplet in it (or assigned to it)
and is waiting for another to arrive for a mixing operation.
A work unit is active at all other times, as it performs mix or
split operations. Figure 13 shows a plot of the average percent
of work units in each state for varying input rates. There is a
sharp change in the pattern when the system transitions from
stable to unstable. When the system is stable, the percentage
of empty work units indicates the stress level of the system. In
stable systems near the point of instability, the percentage of
reserved work units serves as an indicator of what is prevent-
ing the system from being able to handle higher input rates.

If the percentage of reserved work units is low, then droplets
are moving quickly to work areas, and the performance bot-
tleneck is a shortage of work areas. On the other hand, if the
percentage is high, then droplets are having to travel too far
to reach their assigned work area, which indicates the bottle-
neck is either insufficient transportation capacity or inefficient
droplet transportation around the array.

8. Conclusions and Future Work

We have described a new approach to creating a general-
purpose DMFS by partitioning the planar array into a collec-
tion of virtual components and coordinating the motions of
droplets by implementing a decentralized routing algorithm.
We have explored techniques to identify potentially unstable
systems, and applied them to successfully demonstrate a sta-
ble DNA polymerase chain reaction in simulation.

The system described here can semi-automatically gener-
ate a layout given a set of system parameters, and then per-
form real-time droplet manipulation. It has successfully co-
ordinated hundreds of droplets, and is a proof of concept that
decentralized network-like motion planning can work for a
digital microfluidic system. Further, the software can be eas-
ily modified to act as a controller for a physical array. The
same array can perform a variety of chemical analyses, and
has been demonstrated to even perform multiple analyses in
parallel.

946 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November 2005

)RCP(etaR tuptuO dezilamroN aerA
selcyC 821 :emiT xiM ,seliT 2x2 :eziS yarrA

00+E.0

50-E.1

50-E.2

50-E.3

50-E.4

50-E.5

50-E.6

2609300.0

5 2609800.0

5 2609310.0

5 2609810.0

5 2609320.0

5 2609820.0

5

etaR tupnI telporD

O
u

tp
u

t
R

at
e

/ A
rr

ay
 S

iz
e

stinU kroW 2
stinU kroW 4
stinU kroW 6
stinU kroW 8
stinU kroW 01
stinU kroW 21
stinU kroW 41
stinU kroW 61
stinU kroW 81

Fig. 12. The plot of area-normalized output rate (output rate/array size) as droplet input rate is varied illustrates the effect of
adding more work units. Simulation data are for the PCR reaction.

)RCP(noitazilitU aerA kroW
8 :aerA kroW rep stinU kroW ,seliT 2x2 :eziS yarrA

selcyc 821 :emiT xiM

%0

%01

%02

%03

%04

%05

%06

%07

%08

%09

%001

2609300.0

5 2609800.0

5 2609310.0

5 2609810.0

5 2609320.0

5 2609820.0

5

etaR tupnI telporD

P
er

ce
n

t

ytpmE stinU kroW
evitcA stinU kroW

devreseR stinU kroW

Fig. 13. The work area utilization, measured by the percentage of active, reserved, and empty work units, as input droplet rate
is varied. Simulation data are for the PCR reaction.

Griffith and Akella / Coordinating Multiple Droplets 947

The current system can be enhanced in a number of ways
for greater flexibility and efficiency. The overall design of
the components and the system allows for the introduction
of new component types. For example, optical sensing com-
ponents that permit monitoring of the reactions, and storage
components, where droplets can be temporarily stored, can
be incorporated. The system can also support simpler hard-
ware that permits only limited row–column addressing of
electrodes. Automatically sequencing operations to achieve
desired droplet concentrations would be a useful extension.
Automatically generating the array for a given reaction re-
quires optimizing the number of tiles and their layout, as well
as the locations of the sinks and sources on the array. Optimiz-
ing tile design to optimize droplet flow rates, and optimizing
array layout for a given tile pattern are interesting problems.

Modeling the optimization of system throughput as a net-
work routing and flow control problem and the stability prob-
lem as a deadlock avoidance problem can improve system
performance and provide guarantees of stability. Further, they
can provide insights into changes to the layout design. How-
ever, this droplet routing system differs from network routing
in several ways. First, the system cannot discard droplets. Sec-
ondly, mix and split operations are more complex than packet
routing operations. Thirdly, the system has multiple classes
of nodes, and has rate constraints on both intersections and
streets. Fourthly, only one droplet can enter an intersection at
any instant, since there are no buffers for droplets. Therefore,
even though the network graph for the system is relatively
simple, analysis of the system is difficult.

Techniques for stability and performance analysis, drawing
upon methods from queueing theory and networking (Max-
emchuk 1987; Brassil and Cruz 1991; Bertsekas and Gal-
lagher 1992), can be applied to this system. Detailed analysis
of the system can help identify components where conges-
tion or deadlock may occur, and automatically set droplet
input rates to avoid such problems. More sophisticated dy-
namic routing techniques can be explored to more effectively
load balance the transport sections of the array and reduce
bottlenecks at components. The design and control of fully
reconfigurable arrays, where any part of the array may be
used for any desired operation, pose particularly interesting
challenges.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org. These animations include the PCR example run on
the array in Figure 2. The layouts have two sinks along the
right side. Each droplet is typically depicted as a small square,
and the color of a droplet indicates its droplet type. When two
droplets are mixed, the mixed droplet type is indicated by its
unique color.

Table of Multimedia Extensions
Extension Type Description

1 Animation PCR analysis, in batch mode.
Waste droplets are depicted as
blue diamonds.

2 Animation PCR analysis, in continuous
mode.

3 Animation Two analyses running in
parallel (continuous mode).
Droplets of the PCR analysis
are depicted as squares and
droplets of the second analysis
are depicted as diamonds.

4 Animation Unstable PCR example (con-
tinuous mode), showing the
system reaching a deadlock
state.

Acknowledgments

Many thanks to Karl Böhringer for introducing us to this prob-
lem and providing encouragement and advice along the way.
We benefited from discussions on network models with Bulent
Yener, Biplab Sikdar, Costas Busch, and Jayasri Akella. This
work was supported in part by the National Science Founda-
tion under CAREER Award No. IIS-0093233.

References

Abrams,A. and Ghrist, R. 2002. Finding topology in a factory:
configuration spaces. American Mathematical Monthly
109(2):140–150.

Akella, S. and Hutchinson, S. 2002. Coordinating the motions
of multiple robots with specified trajectories. Proceedings
of the IEEE International Conference on Robotics and Au-
tomation, Washington, DC, May, pp. 624–631.

Bertsekas, D. P. and Gallagher, R. G. 1992. Data Networks,
2nd edition, Prentice-Hall, Englewood Cliffs, NJ.

Bicchi, A. and Pallottino, L. 2000. On optimal cooperative
conflict resolution for air traffic management systems.
IEEE Transactions on Intelligent Transportation Systems
1(4):221–231.

Böhringer, K. F. 2003. Optimal strategies for moving droplets
in digital microfluidic systems. Proceedings of the 7th
International Conference on Miniaturized Chemical and
Biochemical Analysis Systems (MicroTAS 2003), Squaw
Valley, CA, October.

Böhringer, K. F. 2004. Towards optimal strategies for moving
droplets in digital microfluidic systems. Proceedings of the

948 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / November 2005

IEEE International Conference on Robotics and Automa-
tion, New Orleans, LA, April.

Böhringer, K. F. and Donald, B. R. 1998.Algorithmic MEMS.
Robotics: The Algorithmic Perspective, P. K. Agarwal,
L. E. Kavraki, and M. T. Mason, editors, A. K. Peters,
Natick, MA.

Brassil, J. and Cruz, R. 1991. Non-uniform traffic in the Man-
hattan street network. Proceedings of the IEEE Interna-
tional Conference on Communications (ICC’91), Denver,
CO, June, pp. 1647–1651.

Busch, C., Herlihy, M., andWattenhofer, R. 2000. Hard-potato
routing. Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing (STOC 2000), Portland, OR, May,
pp. 278–285.

Cho, S. K., Moon, H., and Kim, C-J. 2003. Creating, transport-
ing, cutting, and merging liquid droplets by electrowetting-
based actuation for digital microfluidic circuits. Journal of
Microelectromechanical Systems 12(1):70–80.

Choudhury, A. K. and Li, V. O. K. 1993. An approximate
analysis of the performance of deflection routing in regular
networks. IEEE Journal on Selected Areas in Communi-
cations 11(8):1302–1316.

Desrochers, A. A. 1990. Modeling and Control of Automated
Manufacturing Systems, IEEE Computer Society, Wash-
ington, DC.

Ding, J., Chakrabarty, K., and Fair, R. B. 2001. Schedul-
ing of microfluidic operations for reconfigurable two-
dimensional electrowetting arrays. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems 20(12):1463–1468.

Erdmann, M. and Lozano-Perez, T. 1987. On multiple moving
objects. Algorithmica 2(4):477–521.

Fair, R. B., Srinivasan, V., Ren, H., Paik, P., Pamula, V., and
Pollack, M. G. 2003. Electrowetting-based on-chip sam-
ple processing for integrated microfluidics. Proceedings of
the IEEE International Electron Devices Meeting (IEDM),
Washington, DC, December, pp. 779–782.

Fan, S-K., Hashi, C., and Kim, C-J. 2003. Manipulation of
multiple droplets on NxM grid by cross-reference EWOD
driving scheme and pressure-contact packaging. Proceed-
ings of the IEEE Conference on MEMS, Kyoto, Japan, Jan-
uary, pp. 694–697.

Gowdy, J. and Rizzi, A. 1999. Programming in the architec-
ture for agile assembly. Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, Detroit,
MI, May, pp. 3103–3108.

Griffith, E. and Akella, S. 2005. Coordinating multiple
droplets in planar array digital microfluidics systems. Al-
gorithmic Foundations of Robotics VI, In M. Erdmann,
D. Hsu, M. Overmars, and A. F. van der Stappen, editors,
Springer-Verlag, Berlin, pp. 219–234.

Gross, D. and Harris, C. M. 1998. Fundamentals of Queueing
Theory, 3rd edition, Wiley, New York.

Hopcroft, J. E., Schwartz, J. T., and Sharir, M. 1984. On the

complexity of motion planning for multiple independent
objects: PSPACE-hardness of the “warehouseman’s prob-
lem”. International Journal of Robotics Research 3(4):76–
88.

Jones, T. B., Gunji, M., Washizu, M., and Feldman, M. J.
2001. Dielectrophoretic liquid actuation and nanodroplet
formation. Journal of Applied Physics 89:1441–1448.

Kant, K. and Zucker, S. W. 1986. Toward efficient trajectory
planning: The path-velocity decomposition. International
Journal of Robotics Research 5(3):72–89.

Kelly, F., Maulloo, A., and Tan, D. 1998. Rate control in com-
munication networks: shadow prices, proportional fairness
and stability. Journal of the Operational Research Society
49:237–252.

Klavins, E. 2000. Automatic compilation of concurrent hy-
brid factories from product assembly specifications. Hy-
brid Systems: Computation and Control, Lecture Notes
in Computer Science Vol. 1790, Springer-Verlag, Berlin,
pp. 174–187.

LaValle, S. M. and Hutchinson, S. A. 1998. Optimal mo-
tion planning for multiple robots having independent
goals. IEEE Transactions on Robotics and Automation
14(6):912–925.

Lawley, M. A. 1999. Deadlock avoidance for production sys-
tems with flexible routing. IEEE Transactions on Robotics
and Automation 15(3):497–509.

Maxemchuk, N. F. 1987. Routing in the Manhattan street net-
work. IEEE Transactions on Communications 35(5):503–
512.

Maxfield, C. 2004. The Design Warrior’s Guide to FPGAs:
Devices, Tools, and Flows, Elsevier, Burlington, MA.

O’Donnell, P. A. and Lozano-Perez, T. 1989. Deadlock-free
and collision-free coordination of two robot manipula-
tors. Proceedings of the IEEE International Conference on
Robotics and Automation, Scottsdale, AZ, May, pp. 484–
489.

Paik, P., Pamula, V. K., and Fair, R. B. 2003. Rapid droplet
mixers for digital microfluidic systems. Lab on a Chip
3:253–259.

Peng, J. and Akella, S. 2005. Coordinating multiple robots
with kinodynamic constraints along specified paths. Inter-
national Journal of Robotics Research, 24(4):295–310.

Pollack, M. G., Fair, R. B., and Shenderov, A. D. 2000.
Electrowetting-based actuation of liquid droplets for mi-
crofluidic applications. Applied Physics Letters 77:1725–
1726.

Reif, J. and Sharir, M. 1985. Motion planning in the presence
of moving obstacles. Proceedings of the 26th Annual Sym-
posium on the Foundations of Computer Science, Portland,
OR, October, pp. 144–154.

Reveliotis, S. A., Lawley, M. A., and Ferreira, P. M. 1997.
Polynomial-complexity deadlock avoidance policies for
sequential resource allocation systems. IEEE Transactions
on Automatic Control 42(10):1344–1357.

Griffith and Akella / Coordinating Multiple Droplets 949

Rizzi, A. A., Gowdy, J., and Hollis, R. L. 2001. Distributed
coordination in modular precision assembly systems. In-
ternational Journal of Robotics Research 20(10):819–838.

Sanchez, G. and Latombe, J. 2002. On delaying collision
checking in PRM planning – application to multi-robot
coordination. International Journal of Robotics Research
21(1):5–26.

Schouwenaars, T., De Moor, B., Feron, E., and How, J. 2001.
Mixed integer programming for multi-vehicle path plan-
ning. Proceedings of the European Control Conference,
Porto, Portugal.

Simeon, T., Leroy, S., and Laumond, J.-P. 2002. Path coordi-
nation for multiple mobile robots: A resolution-complete
algorithm. IEEE Transactions on Robotics and Automation

18(1):42–49.
Švestka, P. and Overmars, M. 1998. Coordinated path plan-

ning for multiple robots. Robotics and Autonomous Sys-
tems 23(3):125–152.

Tanenbaum, A. S. 1996. Computer Networks, 3rd edition,
Prentice-Hall, Upper Saddle River, NJ.

Tomlin, C., Pappas, G. J., and Sastry, S. 1998. Conflict reso-
lution for air traffic management: A study in multi-agent
hybrid systems. IEEE Transactions on Automatic Control
43(4):509–521.

Zhang, T., Chakrabarty, K., and Fair, R. B. 2002. Microelec-
trofluidic Systems: Modeling and Simulation, CRC Press,
Boca Raton, FL.

