
 1

INTEGRATION OF LINUX COMMUNICATION STACKS INTO
EMBEDDED OPERATING SYSTEMS

Jer-Wei Chuangξ, Kim-Seng Sewξ, Mei-Ling Chiang+, and Ruei-Chuan Changξ

Department of Information Management+
National Chi-Nan University, Puli, Taiwan, R.O.C.

Email: joanna@ncnu.edu.tw

Department of Computer and Information Scienceξ
National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.

Email: kssew@os.nctu.edu.tw, rc@cc.nctu.edu.tw

ABSTRACT

As the explosion of Internet, Internet connectivity is
required for versatile computing systems. TCP/IP
protocol is the core technology for this connectivity.
However, to implement TCP/IP protocol stacks for a
target operating system from the scratch is a
time-consuming and error-prone task. Because of the
spirit of GNU GPL and open source codes, Linux
gains its popularity and has the advantages of stability,
reliability, high performance, and well documentation.
These advantages let making use of the existing open
source codes and integrating Linux TCP/IP protocol
stacks into a target operating system become a
feasible and cost-effective way.

In this paper, we describe how to integrate Linux
communication stacks into LyraOS, a compo-
nent-based operating system for embedded systems.
Under the component design principle, the commu-
nication stack should also be implemented as a sepa-
rate and self-contained component. So the integration
work should deal with the difference of system design
principles and kernel architectures. This work in-
cludes modifying Linux communication stack codes
and implementing LyraOS kernel support modules.
Performance evaluation shows that for TCP transmis-
sion, LyraOS performed better than Linux by 7.39%.
The experience of this integration study can be of
practical value to serve as the reference for embed-
ding TCP/IP stacks into a target system.

1. INTRODUCTION

Embedded applications are versatile and the hardware
devices range from simple controllers to more
complex systems. For the versatile hardware devices
and different application requirements, a
reconfigurable embedded operating system is needed.

Thus, various operating systems design dedicated for
embedded systems are thus created, such as PalmOS
[22], EPOC [12], Windows CE [25], GEOS [16],
QNX [23], Pebble [2,17], MicroC/OS [21], eCos [11],
LyraOS [3-7,18,19,26], etc.

As the explosion of Internet, adding Internet
connectivity is required for embedded systems.
TCP/IP protocol [8,9,24] is the core technology for
this connectivity. However, to implement the TCP/IP
protocol stacks for a target operating system from the
scratch is a time-consuming and error-prone task.
Because of the spirit of GNU General Public License
(GPL) [15] and open source codes, Linux [1] gains its
popularity and has the advantages of stability, reli-
ability, high performance, and well documentation.
These advantages let making use of the existing open
source codes and integrating Linux TCP/IP protocol
stacks into a target operating system become a feasi-
ble and cost-effective way.

This paper describes how to integrate Linux
communication stacks into LyraOS [3-7,18,19,26].
LyraOS is a component-based operating system de-
signed for embedded systems. Under the component
design principle [2,14,17,20], the communication
stack should also be implemented as a separate com-
ponent, such that the advantages of modularity, re-
configurability, component replacement and reuse can
be maintained. However, there are many difficulties
to deal with for this integration work. For example,
being a monolithic kernel, Linux communication
stack is not a separate component that has closely re-
lationship and interaction with other kernel functions
such as file system, device driver, and kernel core.

Therefore, the integration work should solve the
difficulties from different system design principles
and different kernel architectures. Our work focuses
on two parts. First, implementing the communication
stacks as a self-contained component, which requires

 2

modifying the Linux TCP/IP codes to separate them
from other kernel functions. Second, implementing
kernel support modules in LyraOS for integrating
Linux TCP/IP protocols.

The rest of this paper is organized as follows.
Section 2 briefly describes the difference between
LyraOS and Linux, which affects the integration work.
The difficulties that should be dealt with for this inte-
gration are also discussed and presented. Section 3
presents the integration work including modifying
Linux communication codes and adding kernel sup-
port modules. Section 4 shows primitive performance
evaluation results, and Section 5 concludes this paper.

2. INTEGRATION ISSUES

In this section, we first briefly describe the Linux
communication stack architecture and the LyraOS
architecture. Then the difficulties and problems
encountered in the integration work are discussed and
presented.

2.1 Linux Communication Stack Architecture

The basic Linux I/O system architecture is illustrated
in Figure 1, which includes network subsystem and
file system. The network subsystem includes socket
layer, network protocol layer, and network device
layer, as shown in Figure 2.

Figure 1: Linux I/O System Architecture.

Programmers make use of the socket interfaces
to access network services. The invocation is made
through system call interface in C library to enter into
kernel’s socket layer. The exported C library func-
tions are listed in Table 1. Since Linux supports many

different socket address families [1], so the main task
of socket layer is to call the service functions of the
requested address family (e.g. INET sockets). The
INET layer will call the service functions of underly-
ing TCP or UDP layers, which in turn will call the
service functions of IP layer. The IP layer deals with
the packets sent/received to/from network interfaces.

Figure 2: The Layer Architecture of Linux Network

Subsystem.

int socket(int domain, int type, int protocol);

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

int listen(int s, int backlog);

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

int accept(int s, struct sockaddr *addr, int *addrlen);

int send(int s, void *msg, int len, unsigned int flags);

int sendto(int s,void *msg,int len,unsigned int flags,
struct sockaddr *to, int tolen);

int sendmsg(int s, struct msghdr *msg, unsigned int flags);

int recv(int s, void *buf, int len, unsigned int flags);

int recvfrom(int s,void *buf,int len,unsigned int flags,
struct sockaddr *from,int *fromlen);

int recvmsg(int s, struct msghdr *msg, unsigned int flags);

int getsockopt(int s, int level, int optname, void *optval, int *optlen);

int setsockopt(int s, int level, int optname, void *optval, int optlen);

Table 1: The Related C Library Functions.

Linux network subsystem shares some data
structures and operations with file systems, which
adds the difficulties in the integration work for im-

Network
Applications User

Kernel
BSD

Sockets

INET
Sockets

TCP UDP

IP

Ethernet

ARP

Socket
Interface

Protocol
Layers

Network
Devices

UNIX, AX25,
IPX, APPLETALK,
X25 ...

System Call Interface

Socket

Hardware

Network Protocol

Network
Device Driver

File Systems

 3

plementing the network system as a separate compo-
nent. As shown in Figure 3, when BSD sockets are
used, kernel will create inode (consists of socket) and
sock data structures and then make the corresponding
links in the invoking process’s file descriptor table
and open file table [1].

Figure 3: Linux BSD Socket Data Structures.

2.2 LyraOS

LyraOS [3-7,18,19,26] is a component-based
operating system which aims at serving as a research
vehicle for operating system and providing a set of
well-designed and clear-interface system software
components that are ready for Internet PC, hand-held
PC, embedded systems, etc.

It was implemented most in C++ and some as-
sembly codes. It is designed to abstract the hardware
resources of computer systems, so low-level machine
dependent layer is clear cut from higher-level system
semantics. Therefore, it can be easily ported to dif-
ferent hardware architectures [4,6]. Each system com-
ponent is complete separate, self-contained, and
highly modular. So the system is also designed to be
scalable and reconfigurable.

Besides being light weight system software, it is
a time-sharing multi-threading kernel. Threads can be
dynamically created and deleted, and thread priorities
can be dynamically changed. It provides a preemptive
prioritized scheduling and supports various mecha-
nisms for passing signals, semaphores, and messages
between threads. On top of the kernel core component,
a micro window component with Windows OS look
and feel is provided [18]. Figure 4 shows the system
architecture.

Figure 4: LyraOS System Architecture.

2.3 Integration Issues and Difficulties

Since LyraOS and Linux are different in system
architecture, Linux communication stacks must be
modified for being integrated into LyraOS. LyraOS
should also provide some kernel support functions for
this integration.

Currently, LyraOS supports single address space
[4,10] with static binding of applications and kernel.
No system call invocation is needed for applications
to use the kernel’s exported services. To provide the
compatible system call interface with Linux, LyraOS
should provide the same socket interfaces for applica-
tions’ use as Linux C library functions listed in Table
1.

Aside from the different OS architecture, under
the component design principle, each LyraOS system
component is complete separate, self-contained, and
highly modular. Each component has clean exported
and imported interfaces for components to communi-
cate with. So, the communication stack should also be
implemented as a separate component such that the
advantages of modularity, reconfigurability, compo-
nent replacement and reuse can be maintained. How-
ever, Linux is a monolithic kernel, its communication
stack codes have closely relationship and interaction
with other kernel functions such as file systems, de-
vice drivers, and kernel core. As introduced in Sec-
tion 2.1, the socket layer shares the same data struc-
tures and operations with file system. Therefore, our
first work is to separate Linux communication stack
codes from file system codes.

To sum up, the integration work focuses on two
parts. First, implementing the communication stacks
as a self-contained component. We should clarify its

files_struct

count
close_on_exec
open_fs
fd[0]
fd[1]

fd[255]

file
f_mode
f_pos
f_flags
f_count
f_owner
 f_op
f_inode
f_version

inode

socket
type
ops
data

sock
type
protocol
socket

SOCK_STREAM

SOCK_STREAM
Address Family
socket operations

BSD Socket
File Operations

lseek
read
write
select
ioctl
close
fasync

File Description
Table

Open File Table

Hardware Hardware (ARM /(ARM / AMD AMD ElanElan SC400 / PC)SC400 / PC)

Kernel Core Kernel Core
ComponentsComponents

TCP/UDPTCP/UDP
IPIP

Device DriverDevice Driver

File SystemFile System

ChaiVMChaiVM

POSIX 1003.4 subset APIPOSIX 1003.4 subset API

Embedded Browser /DesktopEmbedded Browser /Desktop

Lyra Lyra Framework Framework --
Multimedia SupportsMultimedia Supports

APIAPI

Hardware Abstraction Layer Hardware Abstraction Layer

Hardware Hardware (ARM /(ARM / AMD AMD ElanElan SC400 / PC)SC400 / PC)

Kernel Core Kernel Core
ComponentsComponents

TCP/UDPTCP/UDP
IPIP

Device DriverDevice Driver

File SystemFile System

ChaiVMChaiVM

POSIX 1003.4 subset APIPOSIX 1003.4 subset API

Embedded Browser /DesktopEmbedded Browser /Desktop

Lyra Lyra Framework Framework --
Multimedia SupportsMultimedia Supports

APIAPI

Hardware Abstraction Layer Hardware Abstraction Layer

import and export interfaces clearly and modify
Linux TCP/IP codes to separate them from other ker-
nel functions. Second, implementing kernel support
modules in LyraOS for integrating Linux TCP/IP
protocols.

3. DESIGN AND IMPLEMENTATION

This section describes the integration work including
modifying Linux TCP/IP codes in Section 3.1 to 3.4
and adding kernel support modules in Section 3.5.

3.1 Socket Interfaces

As introduced in Section 2.1, programmers make use
of the socket interfaces to use network services. This
invocation is made through system call interface in C
library to enter into kernel’s socket layer. However, in
LyraOS, no system call invocation is needed for
applications to use the kernel’s exported services.

To provide the compatible system call interface
with Linux, we add in LyraOS the same socket inter-
faces for applications as in Linux C library functions
as listed in Table 1. For example, the socket function
called by applications is implemented in this way that
it directly calls Linux socket layer service function as
shown in Figure 5.

3

A
s
w
t
m
t
m
d
n
k

and the address of socket data structure is the LyraOS
socket descriptor.

Figure 6: Socket Data Structures for Linux and
LyraOS.

3.3 select() Function and fd_set Data Structure

In Linux, the select() function uses the fd_set data
structure that is a bit array for mapping to file
descriptor table. The select() function uses this bit
array to check which corresponding socket is
selected.

However, in LyraOS, this file descriptor table
should not exist as explained in Section 3.2. There-
fore, the fd_set data structure and its related manipu-
lating macros should be modified. As shown in Figure
7, the fd_set data structure is modified to store Ly-
raOS socket descriptor instead of bit array. It’s related
manipulating macros, i.e. FD_SET, FD_CLR,

files_struct
count
close_on_exec
open_fs
fd[0]
fd[1]

fd[255]

file
f_mode
f_pos
f_flags
f_count
f_owner
f_op
f_inode
f_version

inode

sock

socket
type
protocol
data

type
protocol
socket

SOCK_STREAM

SOCK_STREAM
Address Family
socket operations

BSD Socket
File Operations

lseek
read
write
select
ioctl
close
fasync

File Descritpor Table

Open File Table

LyraOS socket
descriptor

Linux socket
descriptor

files_struct
count
close_on_exec
open_fs
fd[0]
fd[1]

fd[255]

file
f_mode
f_pos
f_flags
f_count
f_owner
f_op
f_inode
f_version

inode

sock

socket
type
protocol
data

type
protocol
socket

SOCK_STREAM

SOCK_STREAM
Address Family
socket operations

BSD Socket
File Operations

lseek
read
write
select
ioctl
close
fasync

File Descritpor Table

Open File Table

LyraOS socket
descriptor

Linux socket
descriptor
extern int sys_socket(int family, int type, int protocol);

int socket(int family, int type, int protocol)
{
 int err;

 NO_PREEMPT();
 err = sys_socket(family, type, protocol);
 PREEMPT_OK();
 return err;
4

Figure 5: socket Function.

.2 Socket Descriptor

s introduced in Section 2.1, Linux network
ubsystem shares some data structures and operations
ith file systems, as shown in Figure 3. To implement

he network system as a separate component, we
odify Linux communication stack codes to separate

hem from file system codes as shown in Figure 6. It
eans there is no need to access process’s file

escriptor table and open file table for invoking
etworking services. So, when BSD sockets are used,
ernel will create only socket and sock data structures

FD_ISSET, FD_ZERO, are modified to manipulate
arrays of socket descriptors instead of bit array. Fig-
ure 8 shows Linux over LyraOS fd_set data structure.

Figure 7: LyraOS fd_set Data Structure.

}

#define __SELECT_FD_SETSIZE 63

typedef struct {
 in t nr;
 void *fd[__SELECT_FD_SETSIZE];
} __select_fd_set;

typedef __select_fd_set fd_set;

#define FD_SETSIZE __SELECT_FD_SETSIZE
typedef __select_fd_set fd_set;

 5

Figure 8: fd_set Data Structure for Linux and LyraOS.

Since fd_set data structure is modified to store
array of LyraOS socket descriptor, the select() func-
tion is modified to manipulate the array of LyraOS
socket descriptor instead of bit array.

3.4 Other Modified Communication Stack
Routines

This section describes the other part of Linux
communication stack codes modified for being
integrated into LyraOS.

wait queue Related Functions

The Linux communication stacks implement the
following wait queue related functions:
add_wait_queue(), remove_wait_queue(), sleep_on(),
interruptible_sleep_on(), wake_interruptible(),
wake_up(), etc. To be integrated into LyraOS, these
routines are modified to call LyraOS kernel’s
thread_sleep() and thread_wakeup() functions.

In Linux communication stack codes, the current
system variable is used to represent the current run-
ning process. When porting to LyraOS, the related
codes are modified to call self_thread_id() to get cur-
rent running thread’s id.

alarm() functions

In Linux, alarm() function can be used to set the
timing information and timer related functions. Linux
uses kernel’s add_timer() function to implement the
alarm(). Therefore, LyraOS kernel must also provide
the timer related functions. The alarm() function is

implemented as shown in Figure 9.

Figure 9: Implementation of alarm() Function.

schedule() Function

Linux communication stack uses kernel’s schedule()
function to relinguish current process’s CPU
execution. To be integrated into LyraOS, schedule() is
modified to call the thread_sleep() that is a
comparable kernel function to relinguish current
thread’s CPU execution in LyraOS. Figure 10 shows
the implemented schedule() function.

F

soc

In
wa
thi
op
Ly
thi
Ly
soc

void do_alarm(unsigned long data)
{
 send_signal(data, SIGALRM);
}

int alarm(int t)
{
 static struct timer_list tl;
 tl.expires = jiffies + t * 100;
 tl.data = self_thread_id();
 tl.function = do_alarm;

add_timer(&tl);
return 0;

}

files_struct
count
close_on_exec
open_fs
fd[0]
fd[1]

...
fd[1023]

File Descriptor Table

1024 bit array

select(...)

fd_set: 128 bytes

counter
fd[0]
fd[1]
fd[2]
…

...
fd[62]

fd_set: 256 bytes

Linux

LyraOS

63 socket address: (void*)

files_struct
count
close_on_exec
open_fs
fd[0]
fd[1]

...
fd[1023]

File Descriptor Table

1024 bit array

select(...)

fd_set: 128 bytes

counter
fd[0]
fd[1]
fd[2]
…

...
fd[62]

fd_set: 256 bytes

Linux

LyraOS

63 socket address: (void*)
void schedule(void)
{
 PREEMPT_OK();
 thread_sleep();
 NO_PREEMPT();
igure 10: Implementation of schedule() Function.

k_wake_async() Function

Linux, sock_wake_async() function is used to
ke up all processes waiting on the socket. However,
s function is implemented through file system’s
erations and data structures. To be integrated into
raOS and implemented as a separate component,
s function is rewritten to use wake_up() function in
raOS to wake up all the threads waiting on this
ket, as shown in Figure 11.

}

 6

Figure 11: Implementation of sock_wake_async()
Function.

3.5 LyraOS Kernel Support Functions

This section describes what functions LyraOS kernel
must support for integrating Linux communication
stacks.

self_thread_id() Function

This function returns the current running thread’s id
that is the address of thread data structure in LyraOS.

thread_sleep() and thread_wake()

The thread_sleep() function used to relinghish CPU’s
execution is provided for the implementation of
schedule() function and wait queue related functions
as introduced in Section 3.4. The thread_wake()
function used to wake up the waiting threads is
provided for the implementation of
sock_wake_async() function and wait queue related
functions as introduced in Section 3.4.

Linux Device Driver Emulation Environment

Communication stacks must interact with network
device driver for transferring packets from/to network
interface card. To reduce implementation overhead
and make use of Linux device drivers, LyraOS
provides the Linux device driver emulation
environment [26]. Under this environment, Linux
device driver codes can be integrated into LyraOS
without modification. Therefore, a thread is created
for running this network device driver emulation
environment. Detail about the implementation of this
emulation environment can be referred to the paper
[26].

4. PERFORMANCE EVALUATIONS
This section describes the primitive performance
evaluation for this ported communication stacks. To
measure the maximum data transferring rate, two PCs
are directly connected. Figure 12 and Table 2 show
the experimental platform.

Figure 12: Experimental Platform.

 NODE 1 NODE 2

CPU Pentium 200 MHz Pentium 90 MHz
RAM 64MB DRAM 80M DRAM
OS Linux Kernel version:

2.0.36 and LyraOS
Linux 2.0.35

Network
Interface

Card

3com 3c509

NE2000

Table 2: Experimental Platform.

4.1 Code Size

This section measures the modification of Linux
communication stacks and implementation of socket
interface for application use in LyraOS. Table 3
shows the modification and code size about the
ported TCP layer. kern_inf.c is the added socket
interface in LyraOS.

4.2 Data Transfer Rate

This section describes evaluation of LyraOS TCP
transmission performance. The maximum data
transfer rate is measured. The same evaluation was
conducted under Linux and LyraOS in order to
compare the performance difference under different
systems.

One set of benchmark including client and server
programs are created to measure the elapsed time of

int sock_wake_async(struct socket *sock, int how)
{
 struct sock *p;
 if (!sock)
 return -1;
 p = (struct sock *)(sock->data);
 wake_up(p->sleep);
 return 0;
}

Node 1 Node 2cable

LinuxLinux

LyraOS

Node 1 Node 2cable

LinuxLinux

LyraOS

Node 1 Node 2cable

LinuxLinux

LyraOS

Node 1 Node 2cable

LinuxLinux

LyraOS

 7

transferring 10,000 times of 1460-byte packets. Two
kinds of evaluation were performed as shown in Fig-
ure 13 and 14. One evaluation measured the elapsed
time for server to send data; the other measured the
elapsed time for server to receive data. Each evalua-
tion was performed 100 times.

Table 3: Code Size of TCP Layer.

Figure 13: Evaluation of Data Send Rate on Server.

Figure 14: Evaluation of Data Receive Rate on
Server.

Table 4 shows the evaluation results. In our
measurement, LyraOS performed better than Linux
by 7.39%. The reason can be explained as follows.
First, in LyraOS, no system call invocation is needed
for accessing network services, which eliminates the
overhead for crossing user mode and kernel mode.
Besides, since communication stacks are imple-
mented as a separate component in LyraOS and sepa-
rated from file system, the overhead to manipulate
and access file system data structures are eliminated.

 Average Rate

(Bytes per sec.)

LyraOS 1,051,741

Linux 979,285

Table 4: Data Transferring Rate.

5. CONCLUSIONS

To add Internet connectivity to LyraOS, we have
successfully integrated Linux communication stacks
into LyraOS. In this paper, we have described how to
solve the integration difficulties from different system
design principles and different kernel architectures.
The integration work focuses on two parts as follows.
For implementing the communication stacks as a
self-contained component, we clarify its import and
export interfaces and modify Linux TCP/IP codes to
separate them from other Linux kernel functions.
Some kernel support modules are implemented in
LyraOS for integrating Linux TCP/IP protocols.

Performance evaluation shows that for TCP
transmission, LyraOS performed better than Linux by
7.39%. This improvement is because the elimination
of overhead from system call invocation and from
crossing protection domains. Data copy between user
space and kernel space is also removed. Besides, the
overhead to access and manipulate file system data
structures is also eliminated.

To sum up, the success of this porting and the
experience of this integration study can be of practi-
cal value to serve as the reference for embedding
TCP/IP stacks into target systems which need com-
munication capability.

ACKNOWLEDGEMENT

This research was supported in part by the National
Science Council of the Republic of China under grant

S o u r c e
C o d e s

L i n u x
O r i g i n a l
L i n e s o f

C o d e s

M o d i f i e d
L i n e s o f

C o d e s

O b j e c t
C o d e S i z e

t c p . c 2 4 3 8 3 0 0 1 5 1 8 2
t c p _ i n p u t . c 2 7 7 1 2 0 1 2 5 2 8

t c p _ o u t p u t . c 1 4 4 9 2 0 1 0 6 9 9
t c p _ t i m e r . c 3 1 0 0 2 4 8 1
k e r n _ i n f . c N / A 3 3 6 1 4 4 7

s e l e c t . c 3 0 0 2 8 6 2 4 8 1

ClientServer

data Size (4bytes)，data Volume (4bytes)

Time point 1

send: data size*data volume (bytes)

Time point 2

send: elapsed time between time point 1 and 2
Record results

Send
experimental
parameters

ClientServer

data Size (4bytes)，data Volume (4bytes)

Time point 1

send: data size*data volume (bytes)

Time point 2

send: elapsed time between time point 1 and 2
Record results

Send
experimental
parameters

ClientServer

data Size (4bytes)，data Volume (4bytes)

Time point 1

send: data size*data volume (bytes)

Time point 2

send: elapsed time between time point 1 and 2
Record results

Send
experimental
parameters

ClientServer

data Size (4bytes)，data Volume (4bytes)

Time point 1

send: data size*data volume (bytes)

Time point 2

send: elapsed time between time point 1 and 2
Record results

Send
experimental
parameters

 8

No. NSC89-2213-E-001-010 and
NSC89-2213-E-260-027.

REFERENCES

[1] Michael Beck, Harald Bohme, Mirko Dziadzka,
Ulrich Kunitz, Robert Magnus, and Dirk Verworner,
Linux Kernel Internals, Addison-Wesley Publishing
Company Inc., September 1996.

[2] J. Bruno, J. Brustoloni, E. Grabber, A. Silberschatz,
and C. Small, “Pebble: A Component Based
Operating System for Embedded Applications,” In
Proceedings of 3rd Symposium on Operating Systems
Design and Implementation, USENIX, February
1999.

[3] Zan-Yu Chen, “Draft-LyraOS Component Interface
Design Spec. – Machine Dependant Layer, Ver. 1.2,”
Technical Report, Department of Information and
Computer Science, National Chiao-Tung University,
2000.

[4] Zan-Yu Chen, “A Component Based Embedded
Operating System,” Master Thesis, Department of
Information and Computer Science, National
Chiao-Tung University, June 2000.

[5] Zan-Yu Chen, Mei-Ling Chiang, and Ruei-Chuan
Chang, “The LyraOS APIs,” Technical Report,
Department of Information and Computer Science,
National Chiao-Tung University, 2000.

[6] Zan-Yu Chen, Mei-Ling Chiang, and Ruei-Chuan
Chang, “Putting LyraOS onto ÉlanTM µforCE,”
Technical Report, Department of Information and
Computer Science, National Chiao-Tung University,
2000.

[7] Mei-Ling Chiang, “Draft-LyraOS Component
Interface Design Spec. - Kernel Core, Ver. 1.7,”
Technical Report, Department of Information
Management, National Chi-Nan University, 2000.

[8] D. E. Comer, Internetworking with TCP/IP, Volume
I – Principles, Protocols and Architecture, 2nd
edition, Prentice-Hall International, Inc.

[9] D. E. Comer and D. L. Stevens, Internetworking with
TCP/IP, Volume II – Design, Implementation, and
Internals, 1st edition, Prentice-Hall International, Inc.

[10] Luke Deller and Gernot Heiser, “Linking Programs
in a Single Address Space,” In Proceedings of 3rd
Symposium on Operating Systems Design and
Implementation, USENIX, February 1999.

[11] Embedded Configurable Operating System (eCos),
http://www.redhat.com/products/ecos/, 2000.

[12] EPOC, Psion, Nokia, Ericsson, and Motorola,
http://www.tcm.hut.fi/Opinnot/Tik-111.550/1999/Esi

telmat/Symbian/report.html, 2000.

[13] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P.
Tullmann, “Interface and Execution Models in Fluke
Kernel,” In Proceedings of 3rd Symposium on
Operating Systems Design and Implementation,
USENIX, February 1999.

[14] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. “The Flux OSKit: A Substrate for OS and
Language Research,” In Proc. Of the 16th ACM
Symp. On Operating System Principles, Oct. 1997.

[15] GNU General Public License (GPL),
http://www.linux.org/info/gnu.html.

[16] GEOS, Geoworks Corporation,

http://www.geoworks.co.uk/os/wireless_big.html.

[17] E. Grabber, C. Small, J. Bruno, J. Brustoloni, and A.
Silberschatz, “The Pebble Component-Based
Operating System,” In 1999 USENIX Annual
Technical Conference, June 1999.

[18] Wen-Shu Huang and R. C. Chang, “An
Implementation of a Configurable Window System
on LyraOS,” Master Thesis, Department of
Computer and Information Science, National Chiao
Tung University, 2000.

[19] Chi-Wei Yang, C. H. Lee, and R. C. Chang, “Lyra: A
System Framework in Supporting Multimedia
Applications,” IEEE International Conference on
Multimedia Computing and Systems'99 (ICMCS'99)
Florence, Italy, June 1999.

[20] X. Liu, C. kreitz, R. van Renesse, J. Hickey, M.
Hayden, K. Birman, and R. Constable, “Building
reliable, high-performance communication systems
from components,” In 17th ACM Symposium on
Operating Systems Principles(SOSP’ 99), Dec 1999.

[21] MicroC/OS II homepage at http://www.ucos-ii.com/,
2000.

[22] PalmOS homepage at http://www.palmos.com/,
2000.

[23] QNX homepage at http://www.qnx.com/, 2000.

[24] W. R. Stevens, TCP/IP Illustrated: The Protocols
Volume 1. Reading, MA: Addison-Wesley.

[25] Windows CE homepage at
http://www.microsoft.com/embedded/, 2000.

[26] Chi-Wei Yang, Paul C. H. Lee, and R. C. Chang,
“Reuse Linux Device Drivers in Embedded
Systems,” Proceeding of the 1998 International
Computer Symposium(ICS’98), Taiwan, 1998.

