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For defining the odometry specific to parking procedures 
we assume that the single wheel model is reliable to our pur-
pose. The middle point of the rear axis of the vehicle is being 
tracked and also represents the reference point for the sensor 
infrastructure design.  

The driving path is calculated within the incremental sen-
sors installed on each rear wheel axis and the steering wheel 
angle sensor. 

The first task of the autonomous vehicle consists on Map-
ping. It represents the basic component of the Simultaneous 
Localization and Mapping (SLAM) concept. This is performed 
using the SICK LD 1000 laser sensor for environment scanning 
and incremental map building.  

The real time processing of data has to be considered while 
the implementation on the PC-104 system. The communication 
between the laser scanner and the computation unit is made 
trough the CAN I/O port. After reading the data, the computa-
tion unit programmed with xPC, the embedded component of 
Matlab/Simulink, executes algorithmic data reduction for the 
further Mapping process. 

 

 

Figure 1. The SICK LD 1000 laser scanner and PC-104 computing unit on the 
vehicle. 

  
For short range object identification we use extended ultra-

sonic cells. Each cell compounds of two sensors capable of 
measuring the closest surrounding area, specific for completing 
parking procedures. The blind zone of the sensor measuring far 
is completed by another sensor having a shorter measuring 
range. The obtained data is also processed by the PC-104 com-
putation unit and used for the parking procedures.  

 

Figure 2. Autonomous vehicle equipped with the SICK LD laser scanner, ultra-
sonic sensor cells and the PC-104 system. 

 
The visualization of data is transferred to a host PC (Lap-

top) via wireless protocol. We define as target the PC-104 sys-
tem running the real time computation. Only relevant data is 
being kept and processed in the target PC while applying the 
on-line incremental map building algorithms.  

IV.  MAP BUILDING PROCEDURE 

We provide a method for map building by considering the ac-
quired scans the input for the system. Each scan consists of 360 
points and covers the area in front of the vehicle by indexing a 
laser beam each 0.5 unit until reaching 180 degrees. 

 

 

Figure 3. Laser beam sensing area 
 
After reaching a number of m scans acquired (in this method, 

10 scans=1cycle), the system creates an array of intersection 
points which are sorted by angle. The array is structured as 
following:  

 
DS1= [n, x1, y1 … xn, yn] (1) 

 
While n represents the number of points generated from the 

sensor by scanning the environment, the sorted array becomes 
the input for the clustering module, which operates the points 
in clusters. Additional sorting of the array of points is neces-
sary for the dynamical map building. As shown in Figure 6 
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Introduction 

Problem: How to collect information and utilize in a 
Simultaneous Localization and Mapping (SLAM) algorithm? 
 
•  End use: Navigate in unknown environment with the aim of 

safe self parking on a standard parking lot, through the use 
of external sensors. 

 
•  Main Focus: Reduce data, by algorithms, while 

maintaining enough map complexity to accomplish task. 
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Related Work 

•  Identification Convexity Rule for Shape Decomposition Based on Discrete 
Contour Evolution. 

 
 
•  Map building for a mobile robot equipped with a 2d laser rangefinder. 

 Integration of numerous local maps into one global map to represent the whole 
environment observed by the robot during navigation. 

 
•  Precise positioning using model-based maps. 

 The basis for this paper is using the environment and location of matching previous 
scans to interpret the position of the mobile robot with respect to fixed landmarks. 

 
•  A comparison of Line Extraction Algorithms using 2D Laser Rangefinder for 

indoor mobile robots. 
     compare 6 popular algorithms for speed, complexity, correctness and precision in robots 
 
•  A Method for Building Small-Size Segment-Based Maps 
     using a map manager to organize smaller maps into a global map. 
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FIG. 1. A few stages of the proposed discrete curve evolution. Contour shown in (a) is a distorted version of the contour on the WWW page http://www.ee.
surrey.ac.uk/Research/VSSP/imagedb/demo.html.

in Fig. 1. Since in every evolution step, the number of digital line
segments in the curve decomposition decreases by one, the evo-
lution converges to a convex polygon, which defines the highest
level in the shape hierarchy, e.g., Fig. 1f. The presented evolution
method is translation, rotation, reflection, and scaling invariant.
The obtained shape hierarchy is a base for object decomposi-

tion into relevant visual parts. The parts obtained on the highest
levels of the hierarchy determine the most significant parts of
the object. To decompose a digital curve into relevant parts on
a given level of the shape hierarchy, we group the digital line
segments of its boundary curve into maximal convex arcs.
The fact that visual parts are somehow related to convexity

has been noticed in the literature; e.g., Basri et al. [1] state

Parts generally are defined to be convex or nearly convex shapes separated
from the rest of the object at concavity extrema, as inHoffman andRichards
[12], or at inflections, as in Koenderink and Doorn [15].

InVaina andZlateva [31] largest convex patcheswere used for
part decomposition of 3D objects. Although the observation that
visual parts are “nearly convex shapes” is very natural, the main
problem is to determine the meaning of “nearly” in this context.
We will present the details of our solution to this problem in
Section 2. Now we state a few simple definitions.
We call maximal convex arcs supported arcs following

Latecki and Rosenfeld [17]. We call finite unions of supported
arcs tame arcs. Maximal supported arcs determine alternating
and overlapping convex and concave parts of the object bound-
ary. For example, Fig. 2 shows a decomposition of a polygonal

FIG. 2. Decomposition of a polygonal arc into maximal supported arcs.

curve into maximal supported arcs: the dashed arcs (inside the
polygon) indicate the concave arcs with respect to the polygon
while the dotted arcs (outside of the polygon) indicate the con-
vex arcs with respect to the polygon. In the following, the term
maximal convex arc denotes a supported arc that is convex with
respect to the object.
Recall that we work with digital arcs, which can be treated

as polygonal arcs without loss of information. Thus, we use
polygonal definitions of the global curvature, which is equal
to the total turn of a polygonal arc. The definition of the global
curvature (or total turn) of a polygonal arc is illustrated in Fig. 3.
This definition has been extended to digital arcs in Latecki and
Rosenfeld [17].

2. SHAPE DECOMPOSITION

It is a simple and natural observation that maximal convex
parts of objects determine visual parts. However, the problem is
that many significant visual parts are not convex, since a visual
part may have concavities. We solve this problem by identifying
convex parts at different stages of the proposed contour evolution
in which significant visual parts will become convex object parts
at higher stages of the evolution: A significant visual part may
have concavities, whose boundary parts are supported concave
arcs. Since these concave arcs contribute in a less relevant way
to the shape of the object than the boundary arc enclosing the
significant visual part, the concavitieswill disappear in an earlier
stage of the boundary evolution. Thus, there exists an evolution
stage at which a significant visual part is a convex part. We base
our approach to shape decomposition into visual parts on the
following rule:

• Hierarchical convexity rule. The maximal convex arcs
(w.r.t. the object) at various levels of the contour evolution de-
termine parts of object boundary that enclose visual parts of the
object.

The visual parts are determined on the original shape, i.e., it
is not a maximal convex arc that is itself a visual part, but the

442 LATECKI AND LAKÄMPER
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Hardware/Software Utilized 

SICK LD1000 
Laser Measurement System 
 
•  Rotating scanner head 

–  5-10 Hz 
–  Angular resolution 0.125° 

•  Supports CAN standard 2.0A 
–  Data transmission between 10 bit/s and 1 Mbit/s. 
–  Can configure ID for priority on bus 
–  Used to transmit distances only 

•  Digital Outputs 
•  Emits laser pulses at a max frequency of14.4 kHz (14,400 per second) 

•  Measurement range up to 250m (~820 ft.) 
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Operating Instructions

LD(LRS

For your safety
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Chapter 2

Laser output aperture

The laser output aperture is the round optic in the rotating scanner head on the 

LD(LRS1000 or the cover on the LD(LRSx100.

Fig. 1: Laser output aperture in the rotating scanner head on the LD(LRS1000

Fig. 2: Laser output aperture on the LD(LRSx100

Laser power

The laser operates at a wavelength � = 905 nm (invisible infrared light). The radiation 

emitted in normal operation is not harmful to the eyes and human skin.

Rotating scanner head
Laser output aperture

Laser output aperture



   

Hardware/Software Utilized 

PC/104 
 
•  An Embedded Computer Standard 

–  Defined form factor and bus. 
–  Intended for specialized embedded 

computing environments dependent on 
reliable data acquisition. 

 
•  Modules stack together like building blocks 

–  Typically includes a motherboard, analog-to-
digital converter and digital I/O for data 
acquisition. 

 
•  Constraints 

–  3.55 x 3.775 inches 
–  Height is typically constrained to the 

boundaries of the connectors. 
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Hardware/Software Utilized 

xPC Target 
 
•  Enables the execution of Matlab/Simulink models on the PC104 

system for real-time testing. 

•  It provides a library of drivers, a real-time kernel and a host target 
interface for real time monitoring. 

 
•  Download code generated by Simulink  to the PC104 target via the 

communications link. 
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Algorithms 

Map Building Procedure 
 
1.  180° scans of the environment as an input to 

the system. 

2.  Creates an array of points which is sorted by 
the laser angle. 

3.  Array structure 
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For defining the odometry specific to parking procedures 
we assume that the single wheel model is reliable to our pur-
pose. The middle point of the rear axis of the vehicle is being 
tracked and also represents the reference point for the sensor 
infrastructure design.  

The driving path is calculated within the incremental sen-
sors installed on each rear wheel axis and the steering wheel 
angle sensor. 

The first task of the autonomous vehicle consists on Map-
ping. It represents the basic component of the Simultaneous 
Localization and Mapping (SLAM) concept. This is performed 
using the SICK LD 1000 laser sensor for environment scanning 
and incremental map building.  

The real time processing of data has to be considered while 
the implementation on the PC-104 system. The communication 
between the laser scanner and the computation unit is made 
trough the CAN I/O port. After reading the data, the computa-
tion unit programmed with xPC, the embedded component of 
Matlab/Simulink, executes algorithmic data reduction for the 
further Mapping process. 

 

 

Figure 1. The SICK LD 1000 laser scanner and PC-104 computing unit on the 
vehicle. 

  
For short range object identification we use extended ultra-

sonic cells. Each cell compounds of two sensors capable of 
measuring the closest surrounding area, specific for completing 
parking procedures. The blind zone of the sensor measuring far 
is completed by another sensor having a shorter measuring 
range. The obtained data is also processed by the PC-104 com-
putation unit and used for the parking procedures.  

 

Figure 2. Autonomous vehicle equipped with the SICK LD laser scanner, ultra-
sonic sensor cells and the PC-104 system. 

 
The visualization of data is transferred to a host PC (Lap-

top) via wireless protocol. We define as target the PC-104 sys-
tem running the real time computation. Only relevant data is 
being kept and processed in the target PC while applying the 
on-line incremental map building algorithms.  

IV.  MAP BUILDING PROCEDURE 

We provide a method for map building by considering the ac-
quired scans the input for the system. Each scan consists of 360 
points and covers the area in front of the vehicle by indexing a 
laser beam each 0.5 unit until reaching 180 degrees. 

 

 

Figure 3. Laser beam sensing area 
 
After reaching a number of m scans acquired (in this method, 

10 scans=1cycle), the system creates an array of intersection 
points which are sorted by angle. The array is structured as 
following:  

 
DS1= [n, x1, y1 … xn, yn] (1) 

 
While n represents the number of points generated from the 

sensor by scanning the environment, the sorted array becomes 
the input for the clustering module, which operates the points 
in clusters. Additional sorting of the array of points is neces-
sary for the dynamical map building. As shown in Figure 6 

DS1= [n, x1, y1,..., xn, yn ]

new points are generated between the existent (intermediate) 
while the vehicle movement form position 1 to position 2. The 
array needs to be updated with the sorted angular information 
after each scan cycle.  

 

 

Figure 4. Obtaining the sorted DS1 
 
The obtained sorted data points are further processed in  

sorted clusters. 
The nearest neighbor method is used to proof the limits of 

the clusters. Each cluster begins new when the distance is 
greater than the one established by the parameter and is placed 
in a new line of a matrix. The sorted clusters are further 
processed in the line extraction algorithm. Figure 4 represents 
the flow of data from sensor until reaching the clustering. Ob-
stacle edges are identified within the intersection points. 

 

 

Figure 5. DS1 Data representation 
 
Mapping becomes effective only when the number of seg-

ments is kept as small as possible.  

Therefore the next module after clustering merges points 
into lines and poly-lines, each representing a separate cluster. 
Separate points representing a higher distance then the one 
defined in the algorithm represent separate clusters and are not 
unified to lines in this phase. The right order of joining points 
into lines and reducing the irrelevant mapping data becomes 
very important because of firstly reduced processing time and a 
correct shape construction. 

 Considering shape information obtained by a range sensor, 
scanning the same object from different position generates the 
effect of doubled data, which requires the merge and sorting 
before the line creation.  

The reduction of data becomes consistent when clustering 
points into linear segments. Only the beginning and ending 
points of the segments are held for further processing of the 
map. This makes our approach applicable to scenarios in which 
the map is generated in real time. The defined structure of the 
map at this moment has the following data structure, each in-
dexed row of the matrix defining a line or poly-line consisting 
on variable number of points: 

 
DS2= [n1, x1, y1 … xn1, yn1;  

                         n2, x1, y1 … xn2, yn2; …] 
 (2) 

Until reaching the final map structure data reduction is done 
in two steps. Firstly a clustering of the points and merging of 
them together into lines and poly-lines is done.  

 

 

Figure 6. Theoretical cluster formation on obstacle edges 
 
Because of the variable distances between clusters, points 

merge together in short line segments, statement which has to 
be solved further in the implementation of the DCE (Discrete 
Contour Evolution) algorithm. We assume two conditions for 
the DCE algorithm implementation. Firstly a linear regression 
is applied. The ending line points are relevant. Secondly by 
connecting the relevant obtained points, following conditions 
are important for the line segment generation, where L1 and L2 
are two different line lengths of segments and L12 the reducing 
line. 

intermediate 
points 

position1 

position2 



   

Algorithms 

Map Building Procedure 
 
4.  Clustering Module 

–  Grouping of neighbors 
–  New clusters begin when the distance is 

greater than a predefined parameter. 
–  Sorts the clusters. 
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new points are generated between the existent (intermediate) 
while the vehicle movement form position 1 to position 2. The 
array needs to be updated with the sorted angular information 
after each scan cycle.  
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merge together in short line segments, statement which has to 
be solved further in the implementation of the DCE (Discrete 
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is applied. The ending line points are relevant. Secondly by 
connecting the relevant obtained points, following conditions 
are important for the line segment generation, where L1 and L2 
are two different line lengths of segments and L12 the reducing 
line. 

intermediate 
points 
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Algorithms 

Map Building Procedure 
 
5.  Lines Module 

–  Discrete Contour Evolution, DCE, algorithm 
–  First remove doubled data 
–  Linear regression is applied 
–  Endpoints maintained, intermediate forgotten. 

6.  DS2 matrix created 
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L12<L1+L2 (3) 

 
A merging between the resulted lines is calculated. We as-

sume that the orientation of the merged lines is having similar 
values. By merging line segments together we obtain a new 
data reduction similar to the first step.  

 

  
Figure 7. Reducing DS1 to relevant data DS2 

 
The final shape of the objects from the environment is to be 

generated after the reduction steps and line merging algo-
rithms. Therefore a map manager is required to establish the 
shape of the objects and the representation of the environment. 
Figure 8 indicates the data reducing flow. The input for the 
map becomes DS2 after data reduction, while creating poly-
lines. 

 

 
Figure 8. Reducing DS1 to relevant data DS2 

 
The mapping completes the reduction algorithms and gets 

the reliable information of the environment. By reaching this 
point, a simplified graphical representation of data is obtained. 

 

 

Figure 9.  DS2 data representation reduced by lines and poly-lines. 
 
For further processing of the localization a correction of the 

vehicles odometry is required. Over time and motion, locating 
and mapping errors build cumulatively, grossly distorting the 
map and therefore the vehicles ability to determine its actual 
location and heading with sufficient accuracy. To compensate 
errors, recognizing features that has come across previously 
and re-skewing recent parts of the map to make sure the 
instances of that feature become one is required. A scan 
matching method assumes that generated poly-lines can be 
compared and matched together within the map manager 
similar to the way of the data reduction. 

Figure 9 indicates generated and merged lines as a result of 
data reducing based on a simulation environment. We are 
considering the final map as a representation of the 
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DS2 = [n1, x1, y1,..., xn1, yn1;
n2, x1, y1,..., xn2, yn2;...]



   

Algorithms 

Map Building Procedure 
 
7.  Map Manager 

–  Vehicle Odometry Correction 
 uses previous lines to reskew 

 

–  Segmented Maps 
 for occlusion and doubled data(segmented) 
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Figure 10. Occlusion effect 

 
By moving from point A to B the observation of the line seg-
ments differ. In position A the lines S2 and S4 are observable. 
Position B shows line S1 and S3 as the mapped lines. The 
mapped segments are actually representing the same edge. We 
therefore provide a segmented map comparison to find simi-
larities within different map segments.  
A triggered system is sensed in this way, so that the actual map 
segment is compared to the pervious map segment. The global 
map consists on joining these segments. 

Schematically, the problem of map building consists of 
the following steps: 

• Sensing the environment of the vehicle at time t using 
onboard sensors; 

• Processing of sensor data (feature based line extraction); 
• Integration of the recently perceived observations at time t 

with the previously learned structure of the environment 
estimated at time t − 1. 

V.  MAPPING PARKING LOTS 

Our main goal is to detect spare places to use as parking 
lots. By identifying the obstacles edges we assume a classifica-
tion of the objects into classes.   

The main premise represents the detection of other vehicles 
in the first place and the space between them. The “L” shaped 
edges are mostly common for vehicles.  

The resulting shapes extracted from the mapping process 
represent reliable data for further localization of the vehicle 
trough landmarks which represents our future work after map-
ping the environment. 

 

 
Figure 11. Masked vehicles extracted from mapping data. 

 
Within the information received we obtain a virtual map of 

the parking area surrounding the autonomous vehicle which is 
continuously added to the global map. The available map ma-
trix is considered as input in the further movement calculation 
process. 

VI.  CONCLUSIONS 

The described sensor infrastructure used for autonomous na-
vigation and map building in an arbitrary environment search-
ing for parking lots represents a common solution for mobile 
robots navigation.  

Although we are looking to describe the environment in the 
further research by switching the laser scanner off to obtain the 
same reliable data by using only the ultrasonic sensor cells. In 
this case these sensors will also be capable of mapping and will 
be used not only as a guidance system during the parking ma-
neuvers.  

The actual designed infrastructure permits a flexible ap-
proach for mapping the environment and using the data for an 
automated parking procedure.  

The algorithmic computation on the PC-104 target is based 
on a real time computation using embedded Software. By the 
implementation of the wireless protocol we get flexibility in 
viewing the data during the computation progress. 

The map building procedure is based on object identification 
by using data reducing algorithms.  

By merging and sorting points we obtain sorted clusters used 
for further data reducing and shape simplification. Within this 
method data is being reduced as described in the figure below. 



   

Further Use/Research 

•  Implement an algorithm responsible for 
object avoidance and for the calculation of 
the shortest path during parking procedures 

 
•  Remove laser scanner and replace with 

network of ultrasonic sensor cells. 
 
•  Be able to safely autonomously drive the 

vehicle to a parking lot, based off potential 
field theory. 
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For defining the odometry specific to parking procedures 
we assume that the single wheel model is reliable to our pur-
pose. The middle point of the rear axis of the vehicle is being 
tracked and also represents the reference point for the sensor 
infrastructure design.  

The driving path is calculated within the incremental sen-
sors installed on each rear wheel axis and the steering wheel 
angle sensor. 

The first task of the autonomous vehicle consists on Map-
ping. It represents the basic component of the Simultaneous 
Localization and Mapping (SLAM) concept. This is performed 
using the SICK LD 1000 laser sensor for environment scanning 
and incremental map building.  

The real time processing of data has to be considered while 
the implementation on the PC-104 system. The communication 
between the laser scanner and the computation unit is made 
trough the CAN I/O port. After reading the data, the computa-
tion unit programmed with xPC, the embedded component of 
Matlab/Simulink, executes algorithmic data reduction for the 
further Mapping process. 

 

 

Figure 1. The SICK LD 1000 laser scanner and PC-104 computing unit on the 
vehicle. 

  
For short range object identification we use extended ultra-

sonic cells. Each cell compounds of two sensors capable of 
measuring the closest surrounding area, specific for completing 
parking procedures. The blind zone of the sensor measuring far 
is completed by another sensor having a shorter measuring 
range. The obtained data is also processed by the PC-104 com-
putation unit and used for the parking procedures.  

 

Figure 2. Autonomous vehicle equipped with the SICK LD laser scanner, ultra-
sonic sensor cells and the PC-104 system. 

 
The visualization of data is transferred to a host PC (Lap-

top) via wireless protocol. We define as target the PC-104 sys-
tem running the real time computation. Only relevant data is 
being kept and processed in the target PC while applying the 
on-line incremental map building algorithms.  

IV.  MAP BUILDING PROCEDURE 

We provide a method for map building by considering the ac-
quired scans the input for the system. Each scan consists of 360 
points and covers the area in front of the vehicle by indexing a 
laser beam each 0.5 unit until reaching 180 degrees. 

 

 

Figure 3. Laser beam sensing area 
 
After reaching a number of m scans acquired (in this method, 

10 scans=1cycle), the system creates an array of intersection 
points which are sorted by angle. The array is structured as 
following:  

 
DS1= [n, x1, y1 … xn, yn] (1) 

 
While n represents the number of points generated from the 

sensor by scanning the environment, the sorted array becomes 
the input for the clustering module, which operates the points 
in clusters. Additional sorting of the array of points is neces-
sary for the dynamical map building. As shown in Figure 6 



   

Conclusion 

•  Data reduction represents a common solution to mobile robot 
navigation 

•  Utilizing real time computation using embedded software data reduction 
is accomplished. 

•  Object identification and data reducing algorithms are used and 
intermediate points/lines are discarded, reducing memory required. 
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