Daylighting System Controller and Software Design

Design By:

Meihua Xu, Xiaoli Cao, ShihaoWeng

School of Mechatronical Engineering and Automation, Shanghai University Microelectronic Research and Development Center, Shanghai University

Presentation By: Keith Hunter

Electrical and Computer Engineering, University of North Carolina at Charlotte

Overview

- Motivation
- Solution
- Hardware
- Software
- Conclusion

Motivation

- 40% of energy used in U.S. is used in homes and buildings. [1]
- 22% of electricity in U.S. is used by lighting. [2]
- Energy Policy Act of 2005 allows savings up to \$1.80 per sq. ft. [3]
- Department of Energy has 17 grants in "green lighting" totaling \$37 million. [4]

[4] Popular Mechanics, "17 Projects Shaping the Future of LED Lights," Adam Hadhazy, 2010. http://www.popularmechanics.com/science/environment/green-energy/4343724

^[1] U.S. Energy Information Administration., "Energy Consumption by Sector", Annual Energy Review, 2006 (2007).

^[2] Navigent Consulting, Inc., "Solid-state lighting research and development portfolio: Multi-year program plan fy'09-fy'15," tech. rep., Lighting Research and Development Building Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Dept. of Energy, Chicago (2009).

^[3] Department of Energy, Energy-Efficient Commercial Buildings Tax Deduction, 2006. http://energy.gov/savings/energy-efficient-commercial-buildings-tax-deduction.

Solution

- Use solar lighting to save electricity.
 - Solar panels
 - Three mirrors
 - Motor
 - Microcontroller
 - Software
- Must use less energy than normal lighting.

http://images.wisegeek.com/solar-panel-blue.jpg

Hardware (Microcontroller)

- Atmega32L microprocessor.
 - Calculates daily sunrise, sunset, and azimuth of the sun.
 - Used to control rotation of motor.
 - Can operate in "power lost" state to save power.
 - Microprocessor operates on 2 µA in "power lost" state.

http://www.chinaicmart.com/uploadfile/ic-doc/313-44-TQFP.jpg

Hardware (Real-Time Clock)

- Phillips PCF8563 real-time clock.
 - Optimized for low-power consumption [5].
 - Gives the current time, used to track the sun.
 - Communicates using I²C.
 - Timer interrupt is used to wake up microprocessor.
- Microprocessor and real-time clock are powered by a battery during "power lost" state.
 - Uses less than 5 μA.

http://www.nxp.com/documents/data_sheet/PCF8563.pdf

[5] Phillips PCF8563 Datasheet: http://www.nxp.com/documents/data_sheet/PCF8563.pdf

Hardware (Mirrors and Motor Control)

- Three mirrors are used to reflect and spread sunlight across the room.
- Motor and angle sensor drive motors and solar panels to follow the sun.
- Angle sensor is used to measure rotation error.
 - Feedback is sent back to microcontroller.
- Large capacitors store electricity from photocell
 - This powers the entire system when the motor is running.

http://gardnerglass.com/html/images/SolarMirrors1sm.jpg

Hardware (Diagram)

Software

- Two running modes: normal and debug.
- Can upload/download information to/from GPS or PC via RS232.
 - Latitude, longitude, date, and time can be input.
 - Serial interrupt cannot wake up microprocessor.
- Real-time clock wakes up microprocessor every ten minutes.
 - Microprocessor calculates sun movement.
 - Motors then move mirrors and solar panels to face sun.
 - Sunrise and sunset are calculated at noon local.
 - Stays in "power lost" state otherwise.
- Checks voltage from photocell before moving motors.

Conclusion

- Controllers based on this design have been implemented in San Diego and Los Angeles.
 - Has been used in large warehouses and supermarkets.
- This controller can be used in other solar applications.
- Simple solution to green lighting.

Some text and images are used from the paper cited below:

Meihua Xu; Xiaoli Cao; Shihao Weng; , "Daylighting system controller and software design," *Natural Computation (ICNC)*, 2011 Seventh International Conference on , vol.3, no., pp.1721-1724, 26-28 July 2011