Relocating Vehicles to Avoid Traffic Collision Through Wireless Sensor Networks

P.J Aditya Vignesh and G.K Vignesh Department of Electronics & Communication Anna University, India.

Presented by: Sravankumar reddy Kambam ECGR 6185 Advance Embedded Systems 27th March 2013

AGENDA

- Introduction
- Motivation
- Hardware
 - XBee series 2 wireless module
 - Arduino layout module
 - Position Calculation using Triangle algorithm
 - Collision estimation and Correction
 - Advantages and Conclusion
 - References

Introduction

- The present technologies available are not adequate to prevent fast moving vehicles from collision.
- Wireless sensor networks along with essential electronics can be used to avoid fast moving vehicles from collision.

Motivation

- One in every ten thousand people die in the US every year due to road accidents.
- Most of the accidents occur due to speeding or drunken driving.
- Present technologies have capability to hinder user actions that can cause collision and not to relocate vehicles to avoid collision.

Hardware

XBee series 2 module:

- XBee Series 2 does not offer any 802.15.4-only firmware; it is always running the ZigBee mesh firmware.
- Typical range- 40 meters.
- Best range- 120 meters.
- Supply voltage- 2.8 to 3.4 Volts.
- Supported network topologies:

Point-to-point

Point-to-multipoint

Mesh

Hardware

Arduino mega module:

Specifications:

Microcontroller - ATmega1280

Operating voltage - 5V

Flash memory - 128 Kb

SRAM - 8 Kb

Clock speed - 16 MHz

Digital I\O pins - 54

Analog input pins- 16

Hardware

In car modules:

Foxboro module

Triconex module

- The Foxboro systems could be used to control and monitor the mechanical parts in the vehicle.
- Triconex system could be used for emergency shutdown for the system.

Position Calculation

- Triangle algorithm is used to calculate the position of the vehicle on the road.
- The distance between the car and layout module can be calculated based on signal strength measured by XBee.
- The position of vehicle can be known by measuring distances between two successive layouts which are separated by fixed distance.

Collision estimation and correction

 Based on position and speed of every vehicle the mother controller would estimate the chance for collision.

Flow chart for collision avoidance

Collision estimation and correction

In low speed scenarios the accidents can be prevented by braking or

reducing speed.

Flow Chart for speed control

Collision estimation and Correction

In high speed scenarios it might be necessary to measure the angle of the steering and to control it.

Flow Chart for Relocating vehicles

Advantages and Conclusion

- Human road-safety
 - The proposed system can be developed to improve safety of pedestrians also. Signals from mobile phones can be used to track people in a similar way.
- The system is robust and other advanced features like clearing traffic can be for emergency services can be incorporated in the system.
- The system size makes practical implementation easier.
- The system can be used for real time monitoring of the traffic density.

References

- 1. http://arduino.cc/en/Main/arduinoBoardMega
- http://iom.invensys.com/EN/pdfLibrary/Datasheet_Tricone x_PriorityLogicModule_11-10.pdf
- 3. http://iom.invensys.com/EN/Pages/Foxboro_DCSIASeries_
 Lontrollersandlo.aspx
- 4. ftp://ftp1.digi.com/support/documentation/90000866_A.pdf