A Hexapod Robot Modeled on the stick insect, Carausius Morosus

By,

William A. Lewinger, Member, IEEE, H. Martin Reekie, Member, IEEE, and Barbara Webb

Agenda

- Abstract
- Introduction
- Mechanical Design
- Leg Controller Design
- Walking System
- Control Infrastructure
- Initial Results
- References

Abstract

- Motivation: Why imitate insects?
 - navigation over uneven terrain
 - adjust gait based on speed
 - overcome or avoid obstacles

Goals:

- Imitate the gait of the Stick Insect
- Add a vision system that creates a depth map which will help the hexapod to avoid obstacles and potholes

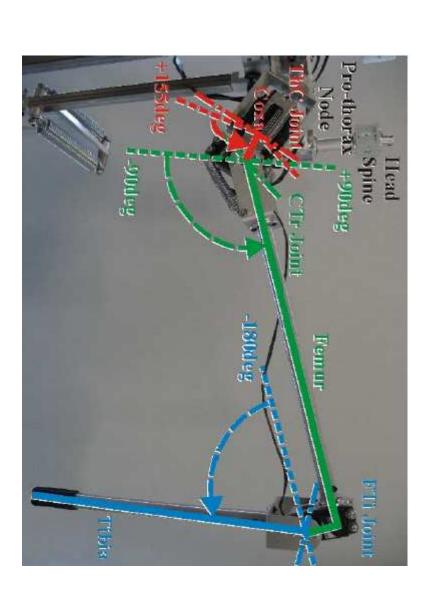
(I) Introduction

- Previous robots that used insects for inspiration:
 - Tarry Series
 - Robot II
 - LAURON series

- Previously walking systactions
- New ones based on observation of neurobiological systems controlling the leg movement

BILL-Stick: Biologically Inspired Legged Legged Carausius Morosus

BILL-Stick


- ▶ 18.8:1 Scale model of the Stick insect
- Single leg control system based on insect's neurobiological system
- Gait generation based on externally observed stepping patterns

(II) Mechanical Design

Physical Aspects

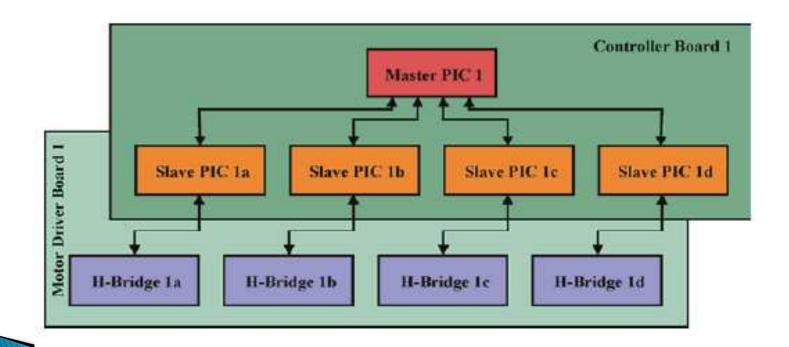
- Dimensions based on data collected by Cruse and Pfiffer et al
- Body and leg segment length-scaled to create hexapod
- Joint attachment angles and joint ranges of motion – used as they were

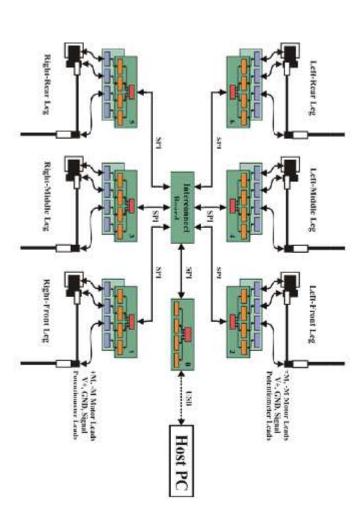
- Joint Actuators
- Leg joints actuated by modified hobby sevro motors, the Hitec HSR 5990TG
- these motors chosen for:
 - High torque
 - Titanium geared transmission
 - Can be powered through 2-cell Li-Ion batteries

- Leg controls system needs to know the current joint angles(servo position) and joint load(current consumption).
- So, the hobby servo motor is modified
- The motor is disconnected from its drivers and connected to the Motor Driver Boards and Controller Board

(III) Leg Controller Design

- ▶ The leg controller design consists of 4 parts:
 - Controller Board
 - Motor Driver Board
 - Router
 - Interconnect Board


- (A) Controller board
- Custom made leg with
 - high control loop speed
 - capability of interfacing with a variety of motors and sensors
- Each leg has its own controller.
- All the leg controllers are interconnected for data sharing for gait generation


Controller Board 2x8 Interconnect

Contains:

- One PIC18F4550 microcontroller
- Four PIC16F616 microcontrollers

- ▶ (B) Motor Driver Board
- A motor driver board is attached to each controller board
- Contains: Four H-Bridge Circuits(one for each motor channel)

- (C) Router Board
- No physical difference between Controller and Router
- Router board uses USB to communicate with a central computer

- ▶ (D) Interconnect Board
- Used to couple custom buses between 6 controller boards and router

(IV) The Walking System

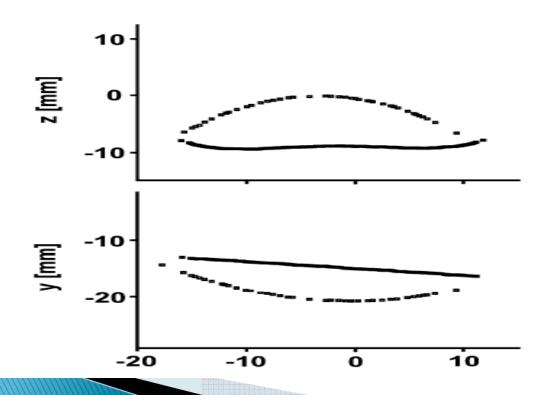
- It consists of:
 - Central computer to provide walking parameters
 - Leg controllers to execute leg control
 - Gail generation algorithms

Leg control

- Pattern generation : nominal stepping motion
- Reactive system :Alters nominal motions according to environment
- Reflexes:
 - searching Reflex
 - Elevator Reflex

Gait control

 Observations of insects have yielded a set of rules to create coordinated gait patterns


The signals from ThC joint angles are used to influence the stepping patterns of neighboring legs

(V) Control Infrastructure

- Two central computers: fit-PC2 (CompuLab, Haifa, Israel) with a 1.6GHz Intel Atom Z530 processor, 1GB of RAM, and a 160GB HDD and OS Ubuntu 10.10
- Central Computer #1 : database and 3-D physics engine simulator
- Central Computer #2 : Depth maps using stereo vision

Initial Stepping Result

- First tested for single leg of hexapod
- The right middle leg was tested and gave the following results

Conclusion

- Implemented leg control methods as identified in the insect neurobiology
- Implemented gait generation methods based on insect observations
- combine these with a learning system that is capable of identifying and predicting reflextriggering events.

References

- http://ieeexplore.ieee.org.librarylink.uncc.ed u/stamp/stamp.jsp?tp=&arnumber=6088569
- http://en.wikipedia.org/wiki/Carausius_moro sus
- http://www.micromo.com/application-casestudy-lauron-nature-inspired-robot.aspx