An Embedded EEG Analyzing System Based on µC/os-II

Boqiang Liu, Yanyan Zhang, Zhongguo Liu and Cong Yin School of Control Science and Engineering, Shandong University, Jinan, 250061, China

Presented by: Tyler C. Major ECGR 6185 Adv. Embedded Systems April 3rd 2013

Agenda

- Background
- System Design
- Measurement Device
- Amplifier Design
- Software Design
- Task Configuration
- Data Structuring
- Filtered Data
- PC Software Design
- Experiment
- Conclusions

Background

- EEG systems traditionally bulky
- Can be used to detect seizures, monitor anesthesia, coma monitoring

System Design

- Two main parts:
 - EEG measurement PC
 - EEG measurement device

Measurement Device

- Amplifier, filter, and A/D conversion before sent to ARM
- Processes event-related potentials (ERPs)
- ERP uploaded to PC
- Uses 8 channels to distinguish eight different simulations
- Synchronized signals of different simulations are recorded then all processed together.

Amplifier Design

- Signals generally in the tens of microvolts range
- Prevent noise while ensuring stability of signals
- MAX4197 used as the HPF with a cutoff frequency of 0.96Hz (adjustable)
- MAX7403 used as the LPF with range of 0.1Hz-10kHz

Fig. 2. Schemaic of Amplifier

Software Design

- Based on µC/os-II Real-Time Operating System
- Systems functions divided into five modules
 - Signal Acquisition
 - Data Preprocessing
 - Parameter Setting
 - Order Implementing
 - Data Transmission
- The RTOS establishes a task priority table and breaks down the processes into many smaller tasks

Task Configuration

 Smaller tasks are prioritized into smaller system functions

TABLE I THE LOGIC OF TASK

mailbox					
ordinary transmission task priority 5 synchronous data transmission task priority 1	scheduling task in μC/os-II kernel	parameter setting task order Implementing task Priority 4 signal acquisition task priority 2			
data preprocessing task priority 3					

TABLEII CONFIGURATION OF MODE 1

- Configuration modes control the transmission
- Connected via USB to PC

Num	Endpoint Index	Transmissi on	Endpoint Type	Direction	Bit
0	0	controlling output	acquiescence	output	16
	1	controlling input		input	16
1	2	ordinary output	ordinary	output	16
	3	Ordinary input	ordinary	input	16
2	4	synchronos output	Synchroniza- tion	output	128

Data Structuring

- There are 18 EEG
 channels to collect data
 with a speed of 1000
 collections per second
- Data is stored in 18 small arrays corresponding with each channel as the Pre_Data

```
Typedef struct _PRE_DATA
{ uint nDatahead;
 uint nChannelNum;
 uint8 nChannel_1[3];
 ......
 uint8 nChannel_18[3];
 uint8 nRespons
}PRE_DATA, *P_PRE_DATA
```

Filtered Data

- The Data is then filtered via STRU_DATA to encapsulate it
- Every
 encapsulation has
 10 millisecond
 EEG data and the
 simulation signals

PC Software Design

 Function of PC is to provide a platform for the EEG data collection, display, and processing

 It is necessary to adjust cut-off frequency (15-120Hz) of filter for simulation signals

Data Acquisition Experiment

- EEG signals from 6 Channels
- PC received the signals from the ARM
- ER signals are considerably faint

Conclusion

- By processing and acquiring data on the ARM and making it compatible with a PC through USB the overall system size and power requirements have been drastically reduced.
- System expandable to 128 channels

- Moving forward:
 - Applications of signals
 - Show expandability with 128 channels (slowdowns?)

References

- http://www.megamedicals.com/small-images/691946.jpg
- Nikolaus Weiskopf, Klaus Mathiak, "Principles of a Brain-Computer Interface (BCI) Based on Real-Time Functional Magnetic Resonance Imaging." IEEE Trans On Biomedical Engineering, VOL. 51, NO. 6, pp :966-969, June, 2004.
- Piccini.L, "Wireless DSP Architecture for Biosignals Recording," Signal Processing and Information Technology, pp:487-490, Dec. 2004.
- http://en.wikipedia.org/wiki/Event-related_potential
- http://en.wikipedia.org/wiki/Electroencephalography
- http://www.tutorsindia.com/document/healthcare-science/introduction-to-biological-signal-analysis.pdf