

A Hardware Filesystem Implementation

for High-Speed Secondary Storage

1

Dr.Ashwin A. Mendon , Dr.Ron Sass

 Electrical & Computer Engineering

Department

University of North Carolina at Charlotte

Presented by: Manoja P Rao

ECGR 6185 Adv. Embedded Systems

April 17th 2013

Introduction

• Platform FPGAs are capable of hosting entire Linux

based systems including standard peripherals,

integrated network interface cards and even disk

controllers on a single chip.

• Filesystems, however, are typically implemented in

software as part of the operating system.

• Some applications are very sensitive to file I/O latency

and Platform FPGA processor cores are clocked at

relatively slow frequencies.

• This paper describes a design and implementation of a

filesystem in hardware.

2

Introduction

• In many simulation experiments like weather

forecasting, computational scientists are forced to code

their algorithms so that data is explicitly moved

between secondary storage and main memory

• If part of the computation is performed by accelerators

implemented in the programmable logic of an FPGA,

then the data does not necessarily have to go through

all of the traditional layers of an OS to reach the core.

• By moving this functionality into hardware, the

proposed system gives computational accelerator

cores direct access to the files on a disk.

3

Introduction

Traditional Organization

4

Introduction

Filesystem-in-Hardware

5

Background

super block: describes state of the filesystem such as

 blocksize, filesystem size, number of files

 stored and free space information

inode list: list of pointers to data blocks

data blocks: contain actual file data

6

Figure: Filesystem layout

Background

7

UNIX Inode structure

Design and Implementation

 Experimental Apparatus to evaluate the feasibility and

performance of a hardware filesystem core .

• Behavioral model of a SATA host controller

• Hardware filesystem (HWFS Core)

• Testbench to exercise the hardware filesystem

8

SATA Host Controller

• SATA host controllers core is expensive.Hence create a

behavioral simulation of the SATA host controller.

• mkafs.vhd is run in a simulator to create an empty

filesystem which is written to a local disk file on the

workstation(virtdisk.bin).This includes the SuperBlock

metadata and an interleaved linked freelist of all the data

blocks.

• Superblock is 4 blocks wide and can store up to 15 files.

• During simulation, the SATA stub opens the empty disk

file virtdisk.bin and loads it into a 2D array in memory.

• Depending on the command and block number received

from the controller state machine, disk blocks are copied

to and from read and write buffers

9

HWFS Core

Hardware File System: State Machine and Components

10

HWFS Core

The Hardware FileSystem (HWFS) core consists of

• Controlling State Machine

• Datapath

i. Two Block RAMs

ii. A comparator

iii. Three 32-bit 4:1 multiplexers,

iv. Two 32-bit 2:1 multiplexers,

v. FIFOs

11

HWFS Core: State Machine

• The state machine implements the Open, Read, Write

• and Remove file operations.

• The 2-bit operation port is driven by a testbench to select

from the four operations.

• The FSM issues an internal command signal and a 4-byte

blockid to read from or write to the appropriate location in

the satastub array.

• The satastub sends out the block 4-bytes at a time through

portout.

• After completing a block transaction, it asserts the status

signal. WriteDisk signals satastub to write the entire 2D

array to disk file.

12

Testbench to exercise the hardware filesystem

Figure: Experimental Setup

13

Example Operations : Open File

14

Figure: Open File State Machine

•State machine starts from the

Read Super Block state ,reads

blocks 0-3 from satastub into the

SuperBlock buffer.

•Match Filename State performs

linear search for the 8 byte

filename

•If filename found, FSM which

transitions to the Find Inode state.

•If the search is unsuccessful,

filenotfound signal is asserted.

Testbench to exercise the hardware filesystem

• ModelSim and Xilinx ISE for simulation and synthesis purposes.

Block RAMs were chosen in the design for the superblock/inode

buffer and freelist buffer. VHDL testbench file instantiates the

top level structural VHDL module of the design.

• Input test sequence includes a 64-bit filename for opening the

required file from the disk and a 2-bit operation signal to select

either: open, read, write and remove.

• On completing the read/write/remove file operations the state

machine transitions to the idle state and asserts the stop-

simulation signal.

• The testbench checks for this signal and reports a ”Testbench

Successful” message alongwith the iteration time.

• ModelSim verification environment, version 6.3b, running on a

Linux Workstation was used for simulation and debugging

15

Results and Analysis

16

Results and Analysis

Figure:HWFS Sequential Read/Write efficiency in simulation

17

Conclusion

• It enables the cores to get direct, high bandwidth

access to large data sets.

• The design, correctly implements the four basic

filesystem operations: open, read, write and remove.

• The design currently provides sequential access to a

file. It can be enhanced to incorporate random reads

and writes by implementing the lseek operation.

• Once the SATA IP core is purchased, the filesystem

can be interfaced to it for measuring the actual File I/O

performance.

• The hardware file system can then be replicated on

each node of the 64-node cluster. This is important first

step to develop and evaluate a parallel filesystem

18

Conclusion

• It enables the cores to get direct, high bandwidth

access to large data sets.

• The design, correctly implements the four basic

filesystem operations: open, read, write and remove.

• The design currently provides sequential access to a

file. It can be enhanced to incorporate random reads

and writes by implementing the lseek operation.

• Once the SATA IP core is purchased, the filesystem

can be interfaced to it for measuring the actual File I/O

performance.

• The hardware file system can then be replicated on

each node of the 64-node cluster. This is important first

step to develop and evaluate a parallel filesystem

19

20

References

Mendon, A.A.; Sass, R., "A Hardware Filesystem Implementation for

High-Speed Secondary Storage," Reconfigurable Computing and

FPGAs, 2008. ReConFig '08. International Conference on , vol., no.,

pp.283,288, 3-5 Dec. 2008

 A. A. Mendon. Design and implementation of a hardware filesystem.

Master’s thesis, University of North Carolina at Charlotte, Aug. 2008.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publishers, Inc., San

Francisco, California, 1996.

http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-

superblock.html

http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html

