A Hardware Filesystem Implementation
for High-Speed Secondary Storage

Dr.Ashwin A. Mendon, Dr.Ron Sass
Electrical & Computer Engineering
Department
University of North Carolina at Charlotte

Presented by: Manoja P Rao
ECGR 6185 Adv. Embedded Systems
April 17th 2013

Introduction

Platform FPGAs are capable of hosting entire Linux
based systems including standard peripherals,
Integrated network interface cards and even disk
controllers on a single chip.

Filesystems, however, are typically implemented in
software as part of the operating system.

Some applications are very sensitive to file 1/O latency
and Platform FPGA processor cores are clocked at
relatively slow frequencies.

This paper describes a design and implementation of a
filesystem in hardware.

Introduction

« In many simulation experiments like weather

forecasting, computational scientists are forced to code
their algorithms so that data is explicitly moved
between secondary storage and main memory

If part of the computation is performed by accelerators
Implemented in the programmable logic of an FPGA,

then the data does not necessarily have to go through
all of the traditional layers of an OS to reach the core.

By moving this functionality into hardware, the
proposed system gives computational accelerator
cores direct access to the files on a disk.

Introduction

Traditional Organization

Application

!

Operating System

> App Device Driver

Filesystem

Disk Device Driver SOFTWARE

Disk Drive Cilr

\‘ r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N # UNCCHARLOTTE
e

Introduction

Filesystem-in-Hardware

Application

Filesystem

App HW Core

Disk Drive Cr

<

\\ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N # UNCCHARLOTTE

!

HARDWARE

Background

super block: describes state of the filesystem such as
blocksize, filesystem size, number of files
stored and free space information

Inode list: list of pointers to data blocks
data blocks: contain actual file data

Super Block Inode List Data Blocks

Figure: Filesystem layout

Background

UNIX Inode structure

Root
Inode Block Drata Blocks

direct 0

direct |

direct 2

direct 3

direct 4

direct 9

single
indirect Inode

double Blocks

/
indirect \ 1
EE—

Direct and Indirect Inode Blocks

I
A

\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N # UNCCHARLOTTE

Design and Implementation

Experimental Apparatus to evaluate the feasibility and
performance of a hardware filesystem core .

« Behavioral model of a SATA host controller

« Hardware filesystem (HWFS Core)

 Testbench to exercise the hardware filesystem

SATA Host Controller

SATA host controllers core is expensive.Hence create a
behavioral simulation of the SATA host controller.

mkafs.vhd is run in a simulator to create an empty
filesystem which is written to a local disk file on the
workstation(virtdisk.bin).This includes the SuperBlock
metadata and an interleaved linked freelist of all the data
blocks.

Superblock is 4 blocks wide and can store up to 15 files.

During simulation, the SATA stub opens the empty disk
file virtdisk.bin and loads it into a 2D array in memory.

Depending on the command and block number received
from the controller state machine, disk blocks are copied
to and from read and write buffers

HWES Core

Hardware File System: State Machine and Components

OLOCE "
1K M
RHESET
RET —
- . HTATIIS
COPERATIO e
WHFIN . - WEITE_DISK
RN READ/WRITE/REMOVE
MY COUNT_EENET
EMITY
o FsM o
Lne SATA _MUIX _SEL
FLILL.
AL Bl ERLTM
FUSH
BN [HIE 5H N .
. -1: MUY 5H_BUF bl WX MITX H o i
oD DATAIN SEL AR P _ADDH WEH1 SEL SEl SH TATAIN ADDR WEI
L L -1 F._T
-1~ -~ =.:“.' -
¥ | - L
AT o ADDE Wl DATAHIT AR WS
SUPEEBLOCE § FREELIST
1% [NODE BURFER
BUTFER
DATA] [ATAZ DUATAIN DATADY
=T =T
5P P
i
IATA 1IN
7
ER_OIUm
OO PARATOR
NP &4 FILE
HAME

A
\‘ r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N # UNCCHARLOTTE
e

10

s
N

HWES Core

The Hardware FileSystem (HWFS) core consists of
« Controlling State Machine
« Datapath

. Two Block RAMs

Ii. A comparator

lii. Three 32-bit 4:1 multiplexers,

Iv. Two 32-bit 2:1 multiplexers,

v. FIFOs

11

HWFS Core: State Machine

The state machine implements the Open, Read, Write
and Remove file operations.

The 2-bit operation port is driven by a testbench to select
from the four operations.

The FSM issues an internal command signal and a 4-byte
blockid to read from or write to the appropriate location in
the satastub array.

The satastub sends out the block 4-bytes at a time through
portout.

After completing a block transaction, it asserts the status
signal. WriteDisk signals satastub to write the entire 2D
array to disk file.

Testbench to exercise the hardware filesystem

— e LK
N CMD
7 I L OPERATION
TESTEENCH STATUS
=l FILENAME
— WRITE_DISK SATA
—
HWFS COUNT_RESET STUB
EMFTY BLENUM ,,3-: -
pos DATA IN | PORT_OUT
— LI 2
- EATA_MUX_SEL
FUSH SA_OUT
FL_OUT FORT 4
1
FUSH DATA_IN [
-
FULL "'JC- A
EEAL " CaTh n
-
32 SAT)
i) FIFO : MK
>~ DATA_OUT i
A1 1
POF DATA_OUT
EMPTY)
WERITE
1 FIFO

—= .I].l'l.'l.'ﬁ IN

Figure: Experimental Setup

A
\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N # UNCCHARLOTTE

Example Operations : Open File

reset=1 «State machine starts from the
Read Super Block state ,reads

F']:"h minlue=i] -
u.ram)/ | blocks 0-3 from satastub into the

If'.é"mlr and SuperBlock buffer.
{f""';,'{}ﬁ\,mm Match Filename State performs
NAME [/ linear search for the 8 byte
found-=1 filename
aperaticn={] -
FIND oIf filename found, FSM which

INCDE
transitions to the Find Inode state.

ﬂﬁb‘\.]]

'_‘\ *If the search is unsuccessful,
I\Ej'f; filenotfound signal is asserted.

Figure: Open File State Machine

WRITE

.\\]-’[[E

\‘ r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N # UNCCHARLOTTE
e

Testbench to exercise the hardware filesystem

« ModelSim and Xilinx ISE for simulation and synthesis purposes.
Block RAMs were chosen in the design for the superblock/inode
buffer and freelist buffer. VHDL testbench file instantiates the
top level structural VHDL module of the design.

* Input test sequence includes a 64-bit filename for opening the
required file from the disk and a 2-bit operation signal to select
either: open, read, write and remove.

« On completing the read/write/remove file operations the state
machine transitions to the idle state and asserts the stop-
simulation signal.

« The testbench checks for this signal and reports a "Testbench
Successful” message alongwith the iteration time.

« ModelSim verification environment, version 6.3b, running on a
Linux Workstation was used for simulation and debugging

L 4
- ‘ ’ r 4 The WILLIAM STATES LEE COLLEGE of ENGINEERING 15
N # UNCCHARLOTTE

e

Results and Analysis

<

A\

74

Table 4.1: HWFS Read/Write Execution Time with single RAM Disk

41

Read

The WILLIAM STATES LEE COLLEGE of ENGINEERING

UNC CHARLOTTE

Write
File Size (Bytes) 64 B 512 B 1024 B 64 B 512 B 1024 B
1 KB 0.28 us 12.54 ps 19.62 us 94 ps 283 ps 5177 us
10 KB T3.59 pus A58 ps 51.28 us 623 ps 50.55 ps 83.02 pus
100 KB T09.84 ps | 380,97 ps | 366.32 us 483 ps 301.56 ps | 396.65 ps
1 MB 7.18 ms 3.76 ms 3.55 ms 4.9 ms 3.57 ms 3.54 ms
10 MB T1.8 ms 3744 ms | 3535 ms | 4897 ms | 3548 ms | 34.82 ms
100 MB T17.93 ms | 37433 ms | 353.32 ms | 48065 ms | 354.53 ms | 347.60 ms
Table 4.2: HWFS Execution time for a 1 KB file, 64B block size
Operation | Total | HWFS | RAMs
Write 9.29 ps | 5.54 pus | 3.75 ps
Read 9.16 ps | 4.32 us | 4.84 ps
Delete 5.27 ps | 2.66 ps | 2.61 ps

16

Results and Analysis

Efficiency

READ/WRITE Efficiency in Simulation

|deal
Read Efficiency (BlockSize 64B) - -
Read Efficiency (BlockSize 256B) ¥
Read Efficiency (BlockSize 512B) - »
Write Efficiency (BlockSize 64B)
Wnte Efficiency (BlockSize 256B)
Whnte Efficiency (BlockSize 512B) --@--

09

08| -e't',’.'.'"."...':.. .--"*'i' i
07 t o
0.6 -|':_:_:".-::

05 k!

*
L L L
VL

110 100
File Size (KB)

raw block transfer time

el =

~ filesystem block transfer time

. file size x clock cycle time
raw block transfer time =

bytes per clock eycle

Table 1. Statistics for HWFS resource utiliza-
tion with different block sizes

Block Size | Slices | LUTs | F/Fs | BRAMs
64 B 759 1471 | 343 2
128 B 724 1369 | 345 2
256 B 749 1446 | 349 2
512B 783 1502 | 353 2
1024 B 762 1463 | 356 3

4096 B 779 1476 | 364 10

Figure:HWFS Sequential Read/Write efficiency in simulation

A
\\ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N # UNCCHARLOTTE

17

Conclusion

It enables the cores to get direct, high bandwidth
access to large data sets.

« The design, correctly implements the four basic
filesystem operations: open, read, write and remove.

« The design currently provides seguential access to a
file. It can be enhanced to incorporate random reads
and writes by implementing the Iseek operation.

* Once the SATA IP core is purchased, the filesystem
can be interfaced to it for measuring the actual File I/O
performance.

« The hardware file system can then be replicated on
each node of the 64-node cluster. This is important first
step to develop and evaluate a parallel filesystem

Conclusion

It enables the cores to get direct, high bandwidth
access to large data sets.

« The design, correctly implements the four basic
filesystem operations: open, read, write and remove.

« The design currently provides seguential access to a
file. It can be enhanced to incorporate random reads
and writes by implementing the Iseek operation.

* Once the SATA IP core is purchased, the filesystem
can be interfaced to it for measuring the actual File I/O
performance.

« The hardware file system can then be replicated on
each node of the 64-node cluster. This is important first
step to develop and evaluate a parallel filesystem

References

Mendon, A.A.; Sass, R., "A Hardware Filesystem Implementation for
High-Speed Secondary Storage," Reconfigurable Computing and
FPGASs, 2008. ReConFig '08. International Conference on, vol., no.,
pp.283,288, 3-5 Dec. 2008

A. A. Mendon. Design and implementation of a hardware filesystem.
Master’s thesis, University of North Carolina at Charlotte, Aug. 2008.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1996.

http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-
superblock.html

L 4

Wz

The WILLIAM STATES LEE COLLEGE of ENGINEERING
UNC CHARLOTTE

20

http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html
http://www.cyberciti.biz/tips/understanding-unixlinux-filesystem-superblock.html

