
An Implementation of ROS on the
Yellowfin
Autonomous Underwater Vehicle
(AUV)

Sam Shue

1

[1]

The Yellowfin AUV

2

• Designed for Multi-Robot
cooperation projects

• Can be refitted with sensors for
underwater sampling and mine
detection

• Uses 2 Microcontrollers – one
for high level operations and one
for sensing and control

• Weighs less than 17 lbs.

Figure 1: The Yellowfin [1] Figure 2: System Architecture [1]

Microcontrollers and Sensors

• XMOS XC-2,
– Four-core XS1-G4 Microcontroller
– Ethernet Controller

• WHOI MicroModem
– Low-speed Communications

• Pico-ITX Single-Board-Computer
– Intel Atom Z510
– 2 GB RAM
– Ubuntu

• Imaging Sonar

3

XMOS XC-2

• Quad Core CPU, which each core can run up to 8 threads
• The Robot’s Control loops are implemented on the

microcontroller to reduce latency
• Reads sensor data and then transmits the data back to the

single board computer through ethernet
• Interfaced with the IMU (Intertial Measurement Unit), Leak

Sensor, Pressure Sensor, and Digital Compass

4

Figure 3: The XMOS XC-2 Board [4]

Pico-ITX Single Board Computer

5

• Intel® Atom™ Z510/ Z530 Pico-ITX SBC
• VGA/LVDS
• SATA
• LAN
• SDIO (Secure Digital

Input Output, used to
boot Ubuntu)

Figure 7: The Pico-ITX
SBC [5]

[5]

ROS (Robotic Operating System)

• ROS is a software framework for developing
robotic software

• It provides numerous libraries for sensors, robotic
drive bases, path planning and localization
algorithms, and more

• ROS allows multiple software to communicate
with each other through a publishing and
subscription method

• ROS is designed to be hardware “agnostic,”
allowing each algorithm and hardware driver to
be completely modular, so essentially any code
can run on any robot

6

MOOS (Mission Oriented Operating Suite)

• Another Publish and Subscribe messaging system similar
to ROS

• While MOOS has historically been popular within the
underwater robotics community, the Robot Operating
System(ROS), has been widely accepted among the
academic ground and aerial robotics community.

• Unlike ROS, MOOS’s publishing and subscribe system is
not peer-to-peer, but instead all data goes through the
central MOOS database

7

Integrating ROS and MOOS

• A bridge node joins ROS
and MOOS

• Designed so information
could be relayed without
changing the bridge code
itself

• Reads an xml file that
specifies the messages that
will be used on startup

8

9

Auctioneer and Bidder Task Planning

Figure 4: The Auctioneer
Communication Protocol [1]

• A task is presented to the network of
UAV

• Each robot places a “bid” to the
“Auctioneer,” which is the source of
the task

• After all the bids are in, the robot
with the lowest bid is assigned the
task

• A bid’s cost is determined by the
robot’s distance away from the area
of interest

• This model allows for easy
scalability of the network Figure 5: The Auctioneer

Communication Protocol [1]

AUV Equations of State

• Six Degrees of Freedom described by 12 state variables
• Fossen’s AUV Model

• x, y, and z variables represent the vehicle’s position
• �,�, and � represent the vehicle’s orientation relative the earth’s

fixed reference frame

• The u, v, and w represent the vehicle’s linear velocities and p, q,
and r represent the rotational velocities with respect to the fixed
reference frame

• The tau variables represent external forces on the vehicle

10

AUV Equations of State (continued)

• The position of the vehicle is described by Euler Angles
• The following rotation matrix gives

the pose of the robot in Euler
angles:

• The following relationship computes
the translational velocities:

11

Figure 8: Euler Angles [6]

AUV Equations of State (continued)

• The Updated Pose can be computed with:

• With the relationship:

• AUV dynamics can be compactly expressed as:

M represents the vehicle’s inertia with added mass, C()
is the matrix that includes the Coriolis* and centripetal terms,
D() is the damping matrix, g() is the vector of gravitational
forces and moments, and is the vector of control inputs.

12

* the Coriolis
effect is a
deflection of
moving objects
when they are
viewed in
a rotating
reference frame
[6]

NASA WorldWind

• Open Source Java Application for
plotting on a map

• ROSJava used to interface with
WorldWind

• WorldWind displayed the locations
of the robots and paths on a map
GUI

Figure 6: NASA Worldwind [3] Figure 7: MOOS To WorldWind [1]

13

Conclusion

• Integration of ROS/MOOS node was successful
• Using both ROS and MOOS allows further

development using libraries and features on both
systems

• Path planning and mission distribution could be
improved in future work, by allowing the system to
determine whether an auctioneer method would
work or not

14

15

References

[1] DeMarco, K.; West, M.E.; Collins, T.R.; , "An implementation
of ROS on the Yellowfin autonomous underwater vehicle
(AUV)," OCEANS 2011 , vol., no., pp.1-7, 19-22 Sept. 2011
[2] ROS.org
[3] http://worldwind.arc.nasa.gov/java/
[4] http://www.nlvocables.com/blog/?p=207
[5] http://www.axiomtek.com/products/ViewProduct.asp?view=680
[6] http://en.wikipedia.org/wiki/Euler_angles

