# An Implementation of ROS on the Yellowfin

**Autonomous Underwater Vehicle** 

(AUV)



Sam Shue

[1]



#### The Yellowfin AUV

- Designed for Multi-Robot cooperation projects
- Can be refitted with sensors for underwater sampling and mine detection
- Uses 2 Microcontrollers one for high level operations and one for sensing and control
- Weighs less than 17 lbs.



Backseat High-Level Controller **Imaging Sonar** Frontseat XMOS XC-2 Low-Level Low-Level Controller Controller Actuators Sensors

Figure 1: The Yellowfin [1] Figure 2: System Architecture [1]



#### **Microcontrollers and Sensors**

- XMOS XC-2,
  - Four-core XS1-G4 Microcontroller
  - Ethernet Controller
- WHOI MicroModem
  - Low-speed Communications
- Pico-ITX Single-Board-Computer
  - Intel Atom Z510
  - 2 GB RAM
  - Ubuntu
- Imaging Sonar

#### XMOS XC-2

- Quad Core CPU, which each core can run up to 8 threads
- The Robot's Control loops are implemented on the microcontroller to reduce latency
- Reads sensor data and then transmits the data back to the single board computer through ethernet
- Interfaced with the IMU (Intertial Measurement Unit), Leak Sensor, Pressure Sensor, and Digital Compass



Figure 3: The XMOS XC-2 Board [4]

# **Pico-ITX Single Board Computer**

- Intel® Atom™ Z510/ Z530 Pico-ITX SBC
- VGA/LVDS
- SATA
- LAN
- SDIO (Secure Digital Input Output, used to boot Ubuntu)



[5]



Figure 7: The Pico-ITX SBC [5]

# ROS (Robotic Operating System) ::: ROS.org

- ROS is a software framework for developing robotic software
- It provides numerous libraries for sensors, robotic drive bases, path planning and localization algorithms, and more
- ROS allows multiple software to communicate with each other through a publishing and subscription method
- ROS is designed to be hardware "agnostic," allowing each algorithm and hardware driver to be completely modular, so essentially any code can run on any robot

# **MOOS (Mission Oriented Operating Suite)**

- Another Publish and Subscribe messaging system similar to ROS
- While MOOS has historically been popular within the underwater robotics community, the Robot Operating System(ROS), has been widely accepted among the academic ground and aerial robotics community.
- Unlike ROS, MOOS's publishing and subscribe system is not peer-to-peer, but instead all data goes through the central MOOS database

# **Integrating ROS and MOOS**

- A bridge node joins ROS and MOOS
- Designed so information could be relayed without changing the bridge code itself
- Reads an xml file that specifies the messages that will be used on startup



# **Auctioneer and Bidder Task Planning**

- A task is presented to the network of UAV
- Each robot places a "bid" to the "Auctioneer," which is the source of the task
- After all the bids are in, the robot with the lowest bid is assigned the task
- A bid's cost is determined by the robot's distance away from the area of interest
- This model allows for easy scalability of the network



Figure 5: The Auctioneer Communication Protocol [1]

# **AUV Equations of State**

- Six Degrees of Freedom described by 12 state variables
- Fossen's AUV Model  $\eta_1 = [x, y, z]^T; \quad \eta_2 = [\phi, \theta, \psi]^T;$ 
  - x, y, and z variables represent the vehicle's position
  - Φ,Θ, and ψ represent the vehicle's orientation relative the earth's fixed reference frame

$$\nu_1 = [u, v, w]^T; \qquad \nu_2 = [p, q, r]^T$$

 The u, v, and w represent the vehicle's linear velocities and p, q, and r represent the rotational velocities with respect to the fixed reference frame

$$\tau_1 = [X, Y, Z]^T; \qquad \tau_2 = [K, M, N]^T$$

The tau variables represent external forces on the vehicle

# **AUV Equations of State (continued)**

- The position of the vehicle is described by Euler Angles
- The following rotation matrix gives the pose of the robot in Euler angles:

$$J_1(\eta_2) = \begin{bmatrix} c\psi c\theta & -s\psi c\phi + c\psi s\theta s\phi & s\psi s\phi + c\psi c\phi s\theta \\ s\psi c\theta & c\psi c\phi + s\phi s\theta s\psi & -c\psi s\phi + s\theta s\psi c\phi \\ -s\theta & c\theta s\phi & c\theta c\phi \\ s \cdot \equiv \sin(\cdot) & c \cdot \equiv \cos(\cdot) & t \cdot \equiv \tan(\cdot) \end{bmatrix}$$

 The following relationship computes the translational velocities:

$$\nu_1 = J_1^{-1}(\eta_2)\dot{\eta}_1.$$



Figure 8: Euler Angles [6]

# **AUV Equations of State (continued)**

The Updated Pose can be computed with:

$$J_2(\eta_2) = \begin{bmatrix} 1 & s\phi t\theta & c\phi t\theta \\ 0 & c\phi & -s\phi \\ 0 & s\phi/c\theta & c\phi/c\theta \end{bmatrix}$$

With the relationship:

$$\nu_2 = J_2^{-1}(\eta_2)\dot{\eta}_2.$$

AUV dynamics can be compactly expressed as:

$$M\dot{\nu} + C(\nu)\nu + D(\nu)\nu + g(\eta) = \tau.$$

M represents the vehicle's inertia with added mass, C() is the matrix that includes the Coriolis\* and centripetal terms, D() is the damping matrix, g() is the vector of gravitational forces and moments, and is the vector of control inputs.

\* the Coriolis
effect is a
deflection of
moving objects
when they are
viewed in
a rotating
reference frame
[6]

#### **NASA WorldWind**

- Open Source Java Application for plotting on a map
- ROSJava used to interface with WorldWind
- WorldWind displayed the locations of the robots and paths on a map GUI



Figure 6: NASA Worldwind [3]



Figure 7: MOOS To WorldWind [1]



#### Conclusion

- Integration of ROS/MOOS node was successful
- Using both ROS and MOOS allows further development using libraries and features on both systems
- Path planning and mission distribution could be improved in future work, by allowing the system to determine whether an auctioneer method would work or not

#### References

- [1] DeMarco, K.; West, M.E.; Collins, T.R.; , "An implementation of ROS on the Yellowfin autonomous underwater vehicle (AUV)," *OCEANS 2011* , vol., no., pp.1-7, 19-22 Sept. 2011 [2] ROS.org
- [3] <a href="http://worldwind.arc.nasa.gov/java/">http://worldwind.arc.nasa.gov/java/</a>
- [4] <a href="http://www.nlvocables.com/blog/?p=207">http://www.nlvocables.com/blog/?p=207</a>
- [5] http://www.axiomtek.com/products/ViewProduct.asp?view=680
- [6] http://en.wikipedia.org/wiki/Euler\_angles