Embedded On-Board Control of a Quad rotor Aerial Vehicle

Cory J. Bryan
Ohio Northern University
c-bryan.1@onu.edu

Mitchel R. Grenwalt
Ohio Northern University
m-grenwalt@onu.edu

Adam W. Stienecker
Ohio Northern University
a-stienecker.1@onu.edu

Presented by: Mayuka.Srinivasan ECGR 6185 Adv. Embedded Systems January 28th 2013

Quad Rotor Aerial Vehicle

- Inherent ability to hover in place while carrying small payloads.
- Requires high processing power for stable flight using four control loops.
- Fixed pitch rotors driven by electric motors provide the required thrust.

fig 1. Helicopter [1]

fig 1.1. Quad rotor [2]

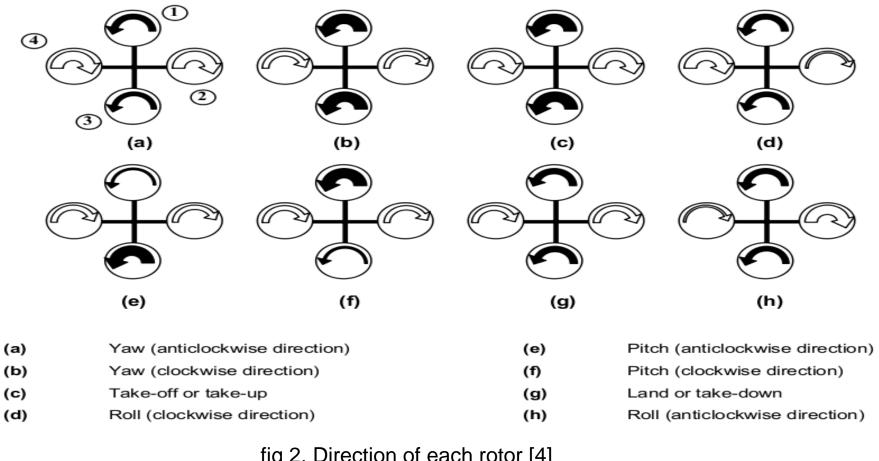
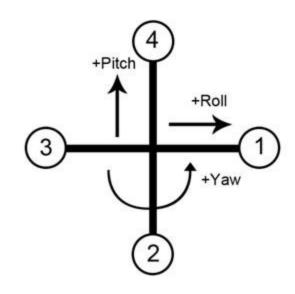



fig 2. Direction of each rotor [4]

■Two rotors spin in clockwise direction, Two other rotors in counter-clockwise direction.

The action of the structure

o
$$T_y = K/\alpha (T_N + T_S - T_E - T_W) (4)$$

where,

fig 3. Direction of axes [3]

$$T_T$$
 = total thrust, T_R = roll thrust, T_P =pitch thrust, T_Y = yaw thrust, T_N =north, T_E =east, T_S =south and T_W =west

L =the length from the center of the structure to the thrust point,

K= the drag coefficient,

 α = the thrust coefficient respectively.

■ Equations (1)-(4) can be represented as a transformation matrix, M, shown in Equation (5) that relates altitude thrust to motor thrust.

$$T_{A} = MT_{M} \rightarrow \begin{bmatrix} T_{T} \\ T_{R} \\ T_{P} \\ T_{A} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 \\ 1 & -1 & 0 & 0 \\ \kappa/\alpha & \kappa/\alpha & -\kappa/\alpha & -\kappa/\alpha \end{bmatrix} \begin{bmatrix} T_{N} \\ T_{S} \\ T_{E} \\ T_{W} \end{bmatrix}$$

$$M$$
(5)

where, $T_A = altitude thrust$, $T_M = Motor thrust$

The inverse of the transformation matrix, as given Equation (6), is more useful.

$$T_{M} = M^{-1}T_{A} \Rightarrow \begin{bmatrix} T_{N} \\ T_{S} \\ T_{W} \end{bmatrix} = \begin{bmatrix} 0.25 & 0 & \frac{1}{2l} & \frac{\alpha}{4\kappa} \\ 0.25 & 0 & \frac{-1}{2l} & \frac{\alpha}{4\kappa} \\ 0.25 & \frac{-1}{2l} & 0 & \frac{-\alpha}{4\kappa} \\ 0.25 & \frac{1}{2l} & 0 & \frac{-\alpha}{4\kappa} \end{bmatrix} T_{T}$$
(6)

Hardware Design

- Most structure is carbon fiber.
- Parts that experience force are made of aluminum.
- Connectors are made of ABS plastic.
- Overall weight = 2 Kg.

Fig 4. carbon fiber structure [5]

Motors

 Rimfire 35-36-1200kv brushless motors

Fig 6. Motor controller [7]

Pusher and Tractor rotors

- Ten inches in diameter.
- An aggressive pitch of 4.5
 provides an excellent amount of
 thrust.
- Flexible and fragile nature reduces efficiency.

Fig 5. Motor [6]

Motor controllers

- Turnigy TR_B25A
- Motor controllers connect directly to the battery.

Fig 7. Pusher Rotor and Tractor Rotor [8]

Battery

- lithium-polymer batteries (4 cell, 6Ah)
- Battery damages internally if voltage falls below ~13V
- Temperature and voltage of the battery are continuously monitored.
- Fail-safe protocols are triggered in case of emergencies.

Fig 8. Battery [9]

Temperature sensors

To read battery temperature.

Fig 10. SMPS [11]

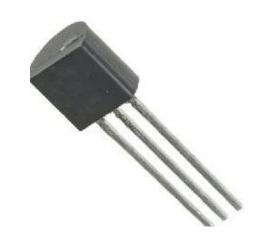


Fig 9. Temperature Sensor [10]

Switching mode power supply (SMPS)

• To regulate the battery voltage down to the necessary operating voltage.

Analog-to-Digital Converter (ADC)

• Also can be used to monitor battery voltage.

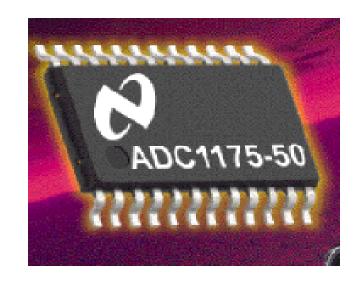


Fig 11. ADC [12]

Fig 12. AHRS [13]

An Altitude Heading Reference System (AHRS)

- Measure battery voltage
- 9 DOF Razor IMU

Sonar Sensor

- Parallax Ping Sensor.
- Measures altitude during take-off, landing and low-level flight.

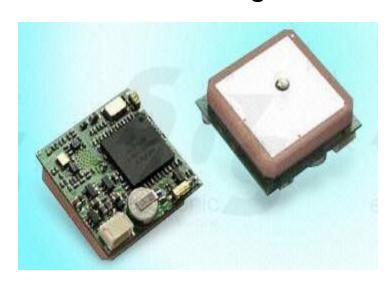


Fig 14. GPS [15]

Fig 13. Sonar Sensor [14]

GPS (Global Positioning System)

- Parallax PMB-248
- Measures latitude, longitude and altitude.
- For equipment recovery and data logging the signals are transmitted to monitoring station.

Fig 15.Zigbee module [16]

Zigbee communication Module

- For communication between the Quadrotor and the monitoring station.
- reliable, short-range 2.4GHz communication channel

Micro controller

 Parallax propeller multi-core microcontroller can communicate and pass data amongst each other.

Fig 16. Micro controller [17]

Multi-core Micro Controllers

Parallax Propeller multi-core microcontrollers

Architecture: 32-bits

System Clock Speed: DC to 80 MHz

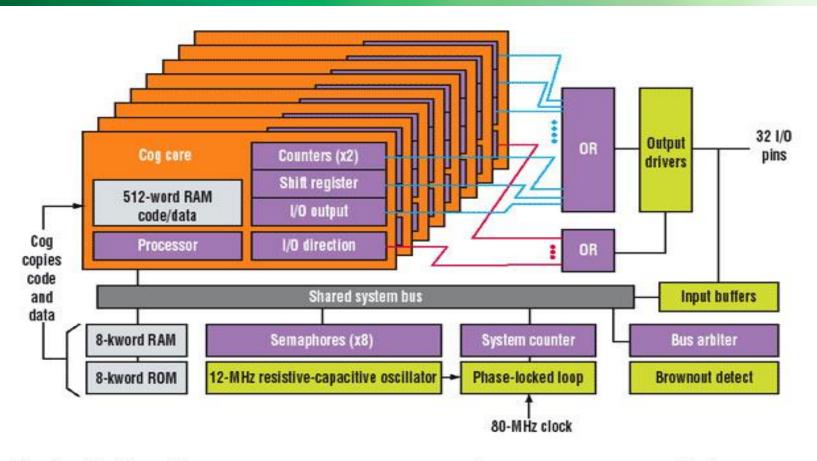


fig17 .MCU [18]

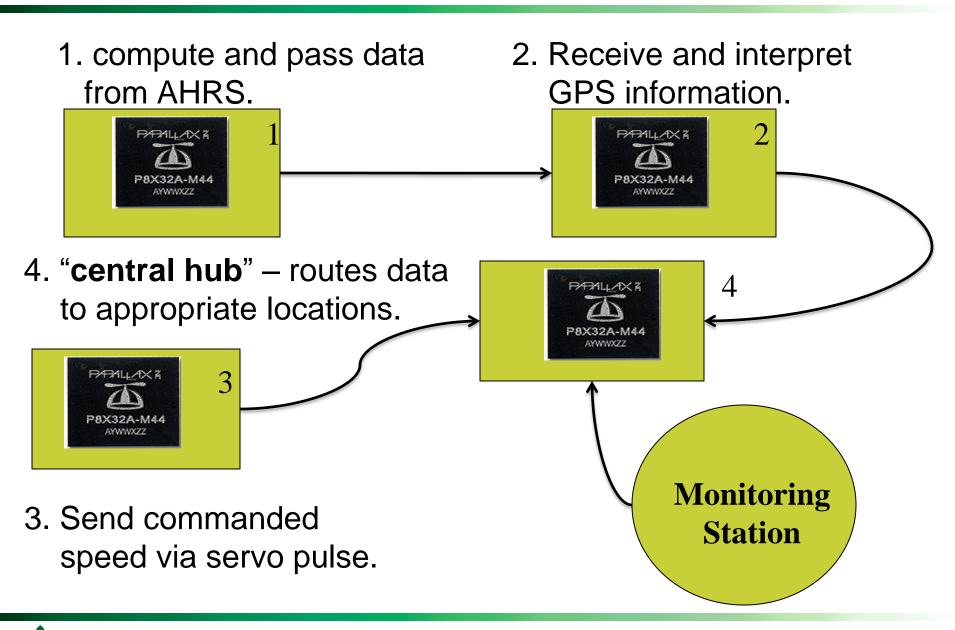
Global RAM/ROM: 64 K bytes; 32 K RAM / 32 K ROM

I/O Pins: 32 (simultaneously addressable by all eight cogs)

Multi-core Micro Controllers cont.

The Parallax Propeller powers up as many cog processing cores as necessary. Each core can utilize any combination of I/O pins. A cog gets one system bus time slot each per cycle, but it also can execute multiple instructions from local memory each cycle.

Fig 18. Internal Structure of micro controller [19]


Micro controller Software

Programming language (high-level) : SPIN

```
long Stk[3] 'declare an array of longs
PUB Main
 cognew (DispCnt, @Stk) "Acvtivate cog 1 and run the DispCnt routine in it
   also pass the adress of the array we created, for use as a call stack
 Waitandstop 'Run Wait routine in this cog (cog 0)
PUB DispCnt
 dira set all bits in port a direction register to 1 (output)
 repeat
   waitcnt (3 000 000 + cnt)
   outa := cnt "move value current system counter to port a
PUB Waitandstop
 waitcnt(40 000 000 + cnt) "wait until counter = current value + 40,000,000 (wait 40mil clocks)
 cogstop (1) stop cog 1
 cogstop (0) stop cog 0
```

Fig 19 . Software micro controller [20]

Multi-core Micro controller

Linearization Techniques

- Control loops: Roll, Yaw, Pitch and Altitude.
- Pounds Equation: [6]

$$\dot{T}_t = -AT_t + Bu_t$$

where i = N, S, E, and W,

$$A = \frac{2}{\tau} + \frac{3\kappa}{2\sqrt{\alpha}} \sqrt{T_0}, \text{ and } B = \frac{2\sqrt{\alpha}\kappa}{\tau} \sqrt{T_0}$$

satisfied only adaptive PID controller and for first order systems

Linearization Equations

Generic system model is given as:

$$\frac{y(k)}{u(k)} = \frac{b_1 q^{-1} + b_2 q^{-2}}{1 + a_1 q^{-1} + a_2 q^{-2}} = \frac{B(q^{-1})}{A(q^{-1})}$$

Solving for gain equations:

$$K_i = \frac{-(g_0 + g_1 + g_2)}{S_T}, \quad K_p = \frac{g_1 + 2g_2}{1 + r_1},$$

$$K_d = S_T \left[\frac{r_1 g_1 - (1 - r_1) g_2}{1 + r_1} \right]$$

Implementing Linearization Model

- Successfully implemented on embedded environment.
- Adaptive algorithm and linearized gave successful results on MATLAB.
- Adaptive PID control did not produce expected results for second-order systems for pitch and roll channels.
- Gains from digital implementation of standard PID control was suitable for Quad rotor flight control.

Problems Encountered

- Motor controllers were directly below the rotors leading to reduction of lift.
- Battery life was another major concern.
- The use of more motors made the craft more maneuverable but also requires more power.
- Flight time varies with the motor specifications.

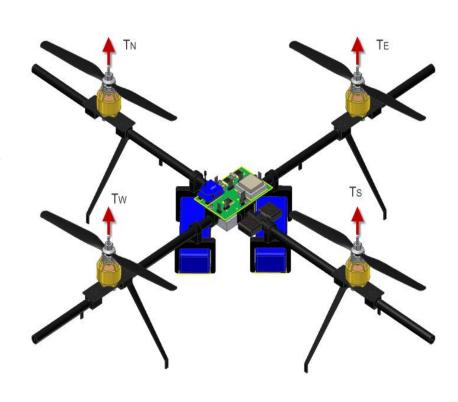


Fig 20 Quad rotor [21]

Conclusions

- Hardware Design was successfully implemented.
- Adaptive PID controller based on a second-order model is not sufficient for the control of a quad rotor on the pitch or roll channels.
- Adequacy of the standard PID control was validated on the pitch, roll and altitude channels.
- Further work include use of non-adaptive PID in adaptive PID to obtain starting point and limit gains around known tuning parameters.

References

Pictures

- [1] Helicopter fig1 .

 [Web Photo] http://www.rc-airplane-world.com/image-files/blade-400-rtf-rc-helicopter.gif
- [2] (2008)systems engineering research laboratory "Quad Rotor" fig 1.1.

 Web Photo] http://systemsengineeringresearchlaboratory.org/wp-content/uploads/2012/07/2012-06-29_15-20-25_461.jpg
- [3] (2013)Direction of Axes: Airhacks.org "Pitch, Yaw and roll" fig 3. [Web Photo] http://airhacks.org/wp-content/uploads/motorlayout.jpg
- [4] (2000)Direction of Each rotor fig 2. [Web Photo] http://bitsofunderstanding.wordpress.com/2011/08/20/attitude-control-in-mikrokopterquadrotor
- [5] Carbon fiber: xaircraft.org "carbon fiber structure of Quad rotor" fig. 4. [Web Photo] www.xaircraft.org
- [6] Motor: Andrewscalemodels: "Rimfire 35-36-1200kv" fig 5. [Web Photo] <u>www.andrewsscalemodels.com.au</u>
- [7] Motor controller : Andrewscalemodels : "Turnigy TR_B25A" fig 6. [Web Photo] www.andrewsscalemodels.com.au
- [8] Rotors Rc groups"pusher rotor and tractor rotor" fig 7. [Web Photos] www.rcgroups.com
- [9] Battery alibaba.com : "lithium-polymer batteries (4 cell, 6Ah)" fig 8. [Web Photo] www.alibaba.com
- [10] temperature sensor reuk: "LM35": fig.9. [We Photo] www.reuk.co.uk

References cont.

Pictures

- [11] SMPS worldwidesatellites: "Switching Mode Power Supply" fig.10. [Web Photo] www.worldwidesatellites.com
- [12] A/D converter : hit.bme.hu "Analog-to-digital converter" fig 11. [Web Photo] www.hit.bme.hu
- [13] AHRS- pilotshop: "Altitude Heading Reference System" fig.12. [Web Photo] http://www.pilotshop.nl/contents/en-uk/d145.html
- [14] Sonar Sensor Parallax.com "Ping))) Parallex sensor" fig.13.
 - [Web Photo] www.parallax.com
- [15] GPS pic2fly: "Global Positioninig system" fig.14
 [Web Photo] http://www.pic2fly.com/PMB+648+GPS.html
- [16] Zigbee module numitech solutions: "xbee module" fig 15 [Web Photo] www.numitechsolutions.com
- [17] microcontroller www.sumeetinstruments.com
- [18] (2010) Parallax products "Parallax Propeller multi-core micro controller" fig 17. [Web Photo]http://www.parallaxsemiconductor.com/products/propellerchips
- [19] Electronic design: "multi-core microcontroller internal structure block diagram" fig 18. [Web Photo] www.electronicdesign.com
- [20] Electrapk: "software of micro controller" fig.19
 [Web Photo] www.electrapk.com
- [21] Quad rotor: "Embedded on-board control Quad rotor aerial vehicle" fig 20.