Embedded Platform for Automation of Medical Devices

By: Apoorva Tamhankar

Introduction

- Small potable device
- General purpose Reconfigurable Platform
- Uses control logic to adjust parameters and adjusts them depending on what is sensed from patient
- Components required for specific applications are assembled with configuration files
- No need of compilation
- Individual component testing is possible

System Description

- Vital signals from sensors
- ADC, serial ports, ethernet
- Sensor calibration
- System configuration and control
- Logging information
- Remote access
- Reliablity
- Battery powered

Hardware Layer

Hardware layer

TS-7300 board is used

- ARM920T processor
- Ethernet ports-2
- USB-2
- UART-2
- SD Cards-2
- PC/104 bus
- 16 adc channels
- 4 12 bit DACs

Software layer

Software Layer

- Preconfigured Linux debian based distribution
 Kernel version-2.4.26
- Ethernet configuration
- Ssh remote access
- sd read/write access
- Embedded Qt provides user interface
- Source code is downloaded and configured to be compiled for specific platform

Medical Device Control Program

- Uses Automedic Library
- BaseObject Abstract class-fundamental component
- Output port-name, value
- Connect port-Name and pointer to OutPort
- A calculate () method is used
- Contains the operations required to generate the output signals

MDC Objects

Input/Output Parameters

Signal Intputs: AOC, ECG, Sp02, Network

Operators: Derivative.Sum.Gain

Saturation, Filter, Reference Model, Oelay

Control: Basic Controller, Adaptive Controller

Outputs: DAC, Scope, Network, CAN, RS232

Table 1. MOC Objects

Supervisor System

- Resposible for safety and reliability of system
- Input signals from sensors-Safety checks of critical min and maximum values are checked all times
- Control signals are checked –predefined range
- Two supervising components-
- SMART(Smart Monitering and Rebooting Tool)-Monitors MDC program.Restarts the system in case a service stops working
- Additional Microprocessor
- FreeRTOS is used
- Alarms are generated to inform user of system failure

Case study-Heart Lung Machine

- Ultrasonic flow probe with pressure sensors
- Uses ADC to convert the inputs
- Target values introduced by operator
- Fuzzy controllers used -2

One for target MAP and second for EFR

Output of both the controllers are added to generate one single value

Case study -Heart Lung Machine

- Two input parameters control the MAP and EFR
- Controller tries to reach the normal value of MAP and EFR by adjusting speed of centrifugal pump(PumpSpeed)
- Fuzzy controller acts as PI controller

HLM Pump Controller

Conclusion

- Possible to port software easily
- Use of same configuration files
- Adapting the required drivers
- Capable of controlling flow and pressure