Introduction to Computer Engineering

ENGR1202
Computer Engineering
Lecture 1 Notes

Engineers Have a Sense of Humor

Moo-shoe pork

Computers are Everywhere

Q: Where are computers today?
On your desktop (of course!)
In your microwave oven
Controlling automobiles In a GPS
In a camera In a iPhone In a Nintendo 3DS In a Wii U . . .
Everywhere!

What is Embedded?

What is an Embedded System?

A microprocessor based device which has:

- Pre-defined, specific functions
- Constrained resources (memory, power)
- Application runs from ROM

Computer purchased as part of some other piece of equipment:

- Typically dedicated software (may be user-customizable)
- Often replaces previously electromechanical components
- Often no "real" keyboard
- Often limited display or no general-purpose display device

A Customer View

Reduced Cost Increased Functionality Improved Performance Increased Overall Dependability

Designing a Microcontroller into a System

Power supply
Clock signal generator Reset controller Memory

Digital interfacing
Analog interfacing
Communic?

- IVCC
 P3otXout

cc

40/ANEX0
\rightarrow P41/ANEX

- P42/NT3

$\xrightarrow{+} \mathrm{P}_{1}$

 \rightarrow P33/TCIN
How do we represent data in a computer?

At the lowest level, a computer is an electronic machine.

- works by controlling the flow of electrons

Easy to recognize two conditions:

1. presence of a voltage - we'll call this state " 1 "
2. absence of a voltage - we'll call this state " 0 "

Could base state on value of voltage, but control and detection circuits more complex.

- compare turning on a light switch to measuring or regulating voltage
We'll see examples of these circuits in later chapters.

Computer is a binary digital system.

Digital system:

- finite number of symbols

Binary (base two) system:

- has two states: 0 and 1

Basic unit of information is the binary digit, or bit.
Values with more than two states require multiple bits.

- A collection of two bits has four possible states: 00, 01, 10, 11
- A collection of three bits has eight possible states:
- A collection of n bits has 2^{n} possible states.

Basic Logic Gates

NOT

OR

AND

NOR

NAND

Building a Truth Table

AND

OR
NOT

How to Encode Numbers: Binary Numbers

Each position represents a quantity; symbol in position means how many of that quantity

- Base ten (decimal)
- Ten symbols: 0, 1, 2, ..., 8, and 9
- More than 9 -- next position
- So each position power of 10
- Nothing special about base 10 -- used because we have 10 fingers
- Base two (binary)
- Two symbols: 0 and 1
- More than 1 -- next position
- So each position power of 2

How to Encode Numbers: Binary Numbers

Working with binary numbers

- In base ten, helps to know powers of 10
- one, ten, hundred, thousand, ten thousand, ...
- In base two, helps to know powers of 2
- one, two, four, eight, sixteen, thirty two, sixty four, one hundred twenty eight
- (Note: unlike base ten, we don't have common names, like "thousand," for each position in base ten -- so we use the base ten name)
- Q: count up by powers of two

Converting from Decimal to Binary Numbers

This slide from F. Vahid, Digital Design, 2007

- Get the binary weights to add up to the decimal quantity
- Work from left to right
- (Right to left - may fill in 1s that shouldn't have been there - try it).
- To make the job easier (especially for big numbers), we can just subtract a selected binary weight from the (remaining) quantity
- Then, we have a new remaining quantity, and we start again (from the present binary position)
- Stop when remaining quantity is 0

Desired decimal number: 17

$$
\left.\begin{array}{llllll}
\overline{32} & \overline{16} & \overline{8} & \overline{4} & \overline{2} & \overline{1} \\
\frac{0}{32} & \overline{16} & \frac{-}{8} & \frac{4}{4} & \frac{1}{2} & \overline{1} \\
=32 \\
\text { too much } \\
=3 & 16(17-16=1)
\end{array}\right)
$$

Converting from Decimal to Binary: Example

This slide from F. Vahid, Digital Design, 2007
Q: Convert the number " 29 " from decimal to binary
A: Remaining quantity
Binary Number

$$
\frac{0}{32} \frac{0}{16} \frac{0}{8} \frac{0}{4} \frac{0}{2} \frac{0}{1}
$$

$\begin{array}{r}29 \\ -16 \\ \hline 13\end{array}$

$$
\frac{0}{32} \frac{1}{16} \frac{0}{8} \frac{0}{4} \frac{0}{2} \frac{0}{1}
$$

$$
\begin{array}{r}
13 \\
-8 \\
\hline 5
\end{array}
$$

$$
\frac{0}{32} \frac{1}{16} \frac{1}{8} \frac{0}{4} \frac{0}{2} \frac{0}{1}
$$

$\begin{array}{r}5 \\ -4 \\ \hline 1\end{array}$

$$
\frac{0}{32} \frac{1}{16} \frac{1}{8} \frac{1}{4} \frac{0}{2} \frac{0}{1}
$$

$$
\frac{0}{32} \frac{1}{16} \frac{1}{8} \frac{1}{4} \frac{0}{2} \frac{1}{1}
$$

Done! 29 in decimal is 10111 in binary.

Converting Decimal to Binary Practice

- Convert decimal 70 to binary

n	2^{n}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
(K) 10	1024
(M) 20	1048576

More Converting Decimal to Binary Practice

- Convert decimal 255 to binary

n	2^{n}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
(K) 10	1024
(M) 20	1048576

Converting from Binary $\leftarrow \rightarrow$ Hexadecimal

- Every four bits is a hex digit.
- start grouping from right-hand side

Every hex digit is represented by 4-bits.

- start with $1^{\text {st }}$ hex digit from right-hand side

Converting from Hexadecimal to Decimal

- Every hex digit position has a base value
- multiply the value at the position by the base value


```
8\times16}\mp@subsup{}{}{3}+4\times1\mp@subsup{6}{}{2}+13\times1\mp@subsup{6}{}{1}+7\times1\mp@subsup{6}{}{0}
8\times4096 + 4x256 + 13\times16 + 7x1 =
32768 + 1024 + 208 + 7 = 34007
```

Another method is to convert to binary first (easy) then convert to decimal:

```
\(-84 D 7 h=100001001101{0111_{2}}=\)
    \(1+2+4+16+64+128+1024+32768=34007\)
```


Practice Converting from Hex to Decimal

Electronics Packaging

- There are several packaging technologies available that an engineer can use to create electronic devices.
- Some are suitable for inexpensive toys but not miniature consumer products, and some are suitable for miniature consumer products but not inexpensive toys.
- These packages have metal leads that are the conductive wire that connect electricity from the outside world to the silicon inside the package.
- Leads between packages are connected with small copper traces on a printed circuit board (PCB), and the package leads are soldered to the PCB.

Examples of Electronics Packages

Dual In-line Package (DIP) Older technology, requires the metal leads to go through a hole in the printed circuit board.

Dual Flat Pack (DFP) - A fairly recent technology, metal leads solder to the surface of the printed circuit board.

Examples of Electronics Packages

Quad Flat Pack (QFP) - like the Dual Flat Pack, except here are metal leads are on four sides.

Ball Grid Array (BGA) - The connections to the component are on the bottom of the chip, and have balls of solder on these connections.

LaunchPad Development Board

LEDs and Jumpers P1. 0 \& P1.6

Assignment 1: Setup

- Download and install tools and documentation on your PC
- Review kit contents
- Connect hardware
- Test preloaded software
(Launchpad Quick Start Guide steps 1-3)

Assignment 2: Program

- Program operation of Launchpad LEDs

Assignment 3: Hardware and Software

- Wire breadboard
- Program operation of breadboard switch and LED
- Program operation of breadboard switch and LED

Assignment 4: Setup

- Wire breadboard (solder board?)
- Program to play music or an annoying tune

