ENGR 1202

Lecture 3

Breadboard configurations

Note: row 1, cols. a-e are connected; row 1, cols. f-j are connected (all of row 1 is not connected)

Breadboard configurations

Here is an image of the breadboard "schematic"
Which resistor is wrong/bad?

Refresher - Lab 2 code

```
int main{
    long int i;
    WDTCTL = ...
    P1DIR = ...
    while(1){ //Do this forever
        //Light LED1 only
        P1OUT = ...
        //Delay for 2 seconds
        for(i = 0;...
        //Light LED2 only
        P10UT = ...
        //Delay for 2 seconds
        for(i = 0;...
    } //end of the while instruction
return 0;
}
```


Refresher - Switch

data $=\mathrm{P} 1 \mathrm{IN}$;
switch pressed $=$ port1, bit 3
data contains $00001000_{2}=0 \times 08=8_{10}$

Lab 3 Schematic

What we have

New instruction for "pull up" resistor in the MCU P1REN = 0x08; //more on this later

Now our PORT1 looks like:

7	6		5	4	3	2	1

How they work

When SW2 is pressed, reading 0 SW2 is not pressed, reading 1
When SW3 is pressed, reading 1
SW3 is not pressed, reading 0
char readit;
readit $=$ P1IN;
readit $=$ readit $\& 0 x 08 ; \quad / / S W 2$ isolated

00010000
\& 00001000
00000000
SW2 pressed

00011000
\& 00001000
00001000
\ SW2 not pressed

Build a table for Lighting LED 2

SW3	SW2	P1IN	P10UT	LED2	LED3
0 (pressed)	0×00	0×00	OFF		
1 (not pressed)	0×08	0×40	ON		
0 (pressed)	0×00	0×00	OFF		
1 (not pressed)	0×08	0×40	ON		

Note: the table will change when accommodating for P1REN
readit = P1IN \& 0x08;
if(readit == 0x00) P1OUT = 0x00; //SW2 pressed, turnoff LED2 else if(readit $==0 \times 08)$ P1OUT $=0 \times 40$;

7	6		5	4	3	2	1

Build a table for Lighting LED 3

SW3	SW2	P1IN	P1OUT	LED2	LED3
0 (not pressed)					ON
0 (not pressed)					ON
1 (pressed)					OFF
1 (pressed)					OFF

Note: the table will change when accommodating for P1REN
readit $=$ P1IN \& 0x10;
if(readit == 0x__) P1OUT = 0x__; //SW3 pressed, turnoff LED3
else if(readit $==0 x _$) P1OUT $=0 x _$;

7	6		5	4	3	2	1

Build a table for Lab 3

SW3	SW2	P1IN	P1OUT	LED2	LED3
0 (not pressed)	0 (pressed)	0×00	0×20	OFF	ON
0 (not pressed)	1 (not pressed)	0×08	0×60	ON	ON
1 (pressed)	0 (pressed)	0×10	0×00	OFF	OFF
1 (pressed)	1 (not pressed)	0×18	0×40	ON	OFF

Note: the table will change when accommodating for P1REN
readit = P1IN \& 0x18;
if(readit $==0 \times 00$) P1OUT $=0 \times 20$; //SW2 pressed, turnoff LED2 else if(readit $==0 \times 08)$ P1OUT $=0 \times 60$;

6		5	4	3	2	1	0
Unused	LED2	LED3	SW3	SW2	Unused	Unused	Unused

Isolating inputs using "AND"

(1) Read in P1, (2) and to id if switches are pressed, (3) Light LED
\rightarrow With both: readit $=$ P1IN \& 0×18;
Remember that if statements work like this:
if(expression is true) execute this;
example: if $((\mathrm{P} 1 \mathrm{IN} \& 0 \times 18)==0 \times 08)$ P1OUT $=0 \times 60$;
Read port1, then
look at only sw2
\& sw3 inputs by using an "AND" operation

Warning-to be examined again still

So, lab3 can be done with this simple logic in a while(1) loop
if (__) P1OUT $=0 x$ _ ;
else if $(\quad$) P1OUT $=0 x$ \qquad ;
else if (\quad) P1OUT $=0 x$ \qquad
else P1OUT = 0x \qquad ;

Table with P1REN accounted for

To get SW2 to work with the pull up resistor, you must use P1REN = 0x08; P1OUT = 0x08;
every time you output to port 1.
Therefore, the LED output instruction combined with setting the pull up resistor is in the new table below:

SW3	SW2	P1IN	P1OUT	LED2	LED3
0 (not pressed)	0 (pressed)	0×00	0×28	ON	OFF
0 (not pressed)	1 (not pressed)	0×08	0×68	OFF	OFF
1 (pressed)	0 (pressed)	0×10	0×08	ON	ON
1 (pressed)	1 (not pressed)	0×18	0×48	OFF	ON

All together...

Therefore, the whole assignment for lab3 is:
P1DIR = ___;
P1REN = 0x08;
P1OUT = 0x68;
while(1)\{
your logic
\}

Don't forget about include, main, and disable watchdog timer.

