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This book is the result of a long relationship the author has enjoyed with Renesas Elec-
tronics America, Inc. (and one of its predecessors, Mitsubishi Electronics). I originally
worked with this company because of their commitment to providing a low-cost evaluation
board and free development software that students could purchase and use in classes and
senior design projects. Over the years the boards have remained as affordable (and popu-
lar) as ever, and the software development tools available have added more functionality
while still available for free to our students.

I have been teaching embedded systems courses for over fourteen years (and working
in the field even longer). I had not been able to find a book suitable for using in an under-
graduate course that would lend itself to the theoretical and applied nature of embedded
systems design. Renesas had been asking us to create a book for several years, and the in-
troduction of the new RX62N microcontroller offered a wonderful opportunity to work
with this powerful device and integrate it into my classes. An update to the original RX62N
book was made to take advantage of additional features of the RX63N processor. A book
covering the advanced features of the RX63N was requested by popular demand - and this
book is the result.

This book also has a radical feature not seen in many books currently on the market
(if any). It is freely available for download and is also provided with the Renesas RX63N
evaluation board. It is also available for purchase in hardcopy form for a modest price.

This book can be used on its own for an Advanced Microprocessors/ Microcontrollers/
Embedded Systems class or it can be used as a supplement in many different types of classes.

This book would not have been possible had it not been for the assistance of numer-
ous people. Several students and educators contributed to and extensively tested some of
the chapters, including: Joseph Collins (1), Aditya Bahulekar (1), Jason Wright (2, 3),
Sultana Alimi (2, 3, 4), Aswin Ramakrishnan (4), Sravankumar Kambam (4, 5), Shweta
Gupte (5), Swapneel Chitale (6), Shashank Hebbale (7), Pratik Jadhav (7), Jeremy Sabo
(8), Ruban Veeraragavan (8), Bhanu Patibandala (9), Vishwas Subramanian (9), Sameer
Sondur (10), Sunil Gurram (10), Gopinath Shanmuga Sundaram (11), Akshatha
Udayashankar (11), and Vamsi Alla (12). Stephanie Conrad heavily edited versions of the
chapters. Thanks go to the publisher, Linda Foegen, and especially June Harris, Rob
Dautel and Todd DeBoer of Renesas for their help in getting this book produced and pub-
lished (and for their patience!). Many, many thanks go to the reviewers who offered
valuable suggestions to make this book better, especially David Brown, Mitch Ferguson,
BarryWilliams, Jean LaBrosse, John Donovan,Anthony Harris, Anthony Canino, Nicholas
Gillotte, John A. Onuska, Rick Pray, Mark Radley, David Thomas, and students from my
UNC Charlotte Embedded Systems course.

Preface
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I would like to personally thank my parents, the Conrads, and my in-laws, theWarrens,
for their continued assistance and guidance through the years while I worked on books.
Also, I would especially like to thank my children, Jay, Mary Beth, and Caroline, and my
wife Stephanie for their understanding when I needed to spend more time on the book than
I spent with them.

James M. Conrad, March 2014
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For more than a decade the microcontroller world has been dominated by the quest for
ultra-low power, high performance devices—two goals that are typically mutually exclu-
sive. The Renesas RX MCU quickly achieved market leadership by achieving both of these
goals with a highly innovative architecture. The RX Family enables embedded designs that
previously would have required some uncomfortable tradeoffs.

However there are no simple solutions to complex problems, and mastering all of the
RX63N’s advanced features is not a task to be undertaken lightly. Fortunately in this book
Dr. Conrad, has crafted a guidebook for embedded developers that moves smoothly from
concepts to coding in a manner that is neither too high level to be useful nor too detailed to
be clear. It explains advanced software engineering techniques and shows how to imple-
ment them in RX63N-based applications, moving from a clear explanation of problems to
techniques for solving them to line-by-line explanations of example code.

Modern embedded applications increasingly require hardware/software co-design,
though few engineers are equally conversant with both of these disciplines. In this book the
author takes a holistic approach to design, both explaining and demonstrating just how soft-
ware needs to interact with RX63N hardware. Striking a balance between breadth and depth
it should prove equally useful and illuminating for both hardware and software engineers.

Whether you are a university student honing your design skills, a design engineer look-
ing for leading edge approaches to time-critical processes, or a manager attempting to fur-
ther your risk management techniques, you will find Jim’s approach to embedded systems
to be stimulating and compelling.

Peter Carbone
Renesas
March, 2014

Foreword
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Chapter 1

1

1.1 INTRODUCTION

1.1.1 Introduction to Assembly Language

The RX63N microcontroller executes a single instruction for each clock cycle [1, p.17].
These instructions are 1 to 8 bytes long and are stored in program memory in the native
language: machine code. The processor fetches each of these instructions from program
memory and executes them to perform the tasks that we require of it.

When HEW or E2Studio is used to develop C code for the Renesas RX63N, the
compiler converts each C instruction into the machine language equivalent. For some
instructions, the conversion ratio is 1:1 (that is, one C instruction equates to a single
machine language instruction); however, some high-level C instructions are converted
into a larger set of machine instructions. This conversion saves the user time and al-
lows coding to be more intuitive. In some situations, however, the compiler does not
adequately optimize the conversion of C code to machine code; therefore, writing our
own machine code equivalent can solve this optimization problem. For example, con-
sider a task that runs once and isn’t time sensitive. Writing low-level machine code can
be time consuming and unnecessary. But now consider a task that will be executed of-
ten and must be completed in a shorter amount of time than the compiler optimizations
allow. A block of custom machine code could be very useful in this case. In addition to
possibly speeding up processes, using machine code also allows the user to make
more decisions about how the program is executed, such as choosing which registers
will be used.

Writing machine language in 1’s and 0’s is cumbersome, and debugging such a pro-
gram would be prohibitively difficult. Luckily, there’s a programming language in which
each instruction corresponds to a single machine language instruction: assembly language.
Since this is a 1:1 conversion, programming in assembly is essentially the same as pro-
gramming in machine language.

Renesas Assembly Language
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2 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

1.1.2 What We Will Learn

Every processor and microcontroller has a specific instruction set defined in the datasheet
and/or software manuals that describes the behavior of each assembly instruction. In this
chapter, we look at those instructions and learn how to use them in HEW. Assembly lan-
guage is a subject that merits several college-level lectures in itself, so the following chapter
focuses on specifics related to the RX63N only. Students should supplement their reading
with additional books about assembly language for a more comprehensive understanding.

1.2 BASIC CONCEPTS OF DATA STORAGE AND USE

The fundamental functions of a computer are as follows:

� Data processing
� Data storage
� Data movement
� Data control

This chapter discusses how the microcontroller manipulates and moves data around using
assembly language instructions.

Viewing the memory features of the RX63N before proceeding to memory allocation
in the MCU is important. According to the Renesas RX63N Hardware Manual, the follow-
ing are the memory specifications:

Figure 1.1 Memory features of the RX63N [1], page 51.

Memory ROM Capacity: ROMless, 256 Kbytes, 384 Kbytes, 512 Kbytes,
768 Kbytes, 1 Mbyte, 1.5 Mbytes, 2 Mbytes

100 MHz, no-wait access

On-board programming: Four types

Off-board programming (parallel programmer mode)
(for products with 100 pins or more)

RAM Capacity: 64 Kbytes, 128 Kbytes, 192 Kbytes, 256 Kbytes

100 MHz, no-wait access

E2 DataFlash Capacity: 32 Kbytes

Programming/erasing: 100,000 times
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CHAPTER 1 / RENESAS ASSEMBLY LANGUAGE 3

1.2.1 RX63N Register Set

The RX63N has sixteen general-purpose registers, nine control registers, and one accumu-
lator for Digital Signal Processing (DSP) instructions. All register definitions can be found
in the RX63N User’s Manual: Software [1]. This chapter discusses how the data is
arranged in the registers.

R0 (SP)*1

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

ISP (Interrupt stack pointer)

USP (User stack pointer)

INTB (Interrupt table register)

PC (Progam counter)

PSW (Process status word)

BPC (Backup PC)

BPSW (Backup PSW)

FINTV (Fast interrupt vector register)

FPSW (Floating point status word)

b31 b0

General-purpose register

Control register

b31 b0

b63 b0

DSP instruction register

ACC (Accumulator)

Note 1. The stack pointer (SP) can be the interrupt stack pointer (ISP) or the user stack
pointer (USP), according to the value of the U bit in the PSW.

Figure 1.2 Register set of the CPU [2], page 117.
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4 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

1.2.2 Data Types

The RX63N supports integer, floating point, bitwise, and string data types.

1. Integer:
The integer (int) is the most common data type. Integers are commonly used not

only for arithmetic operations, but also as flags and counters. Figure 1.3 describes the
different data lengths of the integer data type that the RX Family can handle.

Signed byte (8-bit) Integer

Unsigned byte (8-bit) Integer

Signed word (16-bit) Integer

Unsigned word (16-bit) Integer

Signed longword (32-bit) Integer

Unsigned longword (32-bit) Integer

b31

b31

b15

b15

b7

b7

b0

b0

b0

b0

b0

b0

Figure 1.3 Integer length representations [1], page 31.

2. Floating-Point:
IEEE defines four types of precision for floating point operations: single pre-

cision, double precision, single-extended precision, and double-extended preci-
sion. The RX Family only supports single precision (32 bits) floating point com-
putations. The RX operations used with floating point operands include FADD,
FCMP, FDIV, FMUL, FSUB, FTOI, ITOF, and ROUND. The applications of these
operations can be found in the Renesas User’s Manual: Software [1]. Floating
point numbers and operations are described in more detail in Chapter 4.

b31 b0

FE
Legend:
S: Sign bit (1 bit)
E: Exponent (8 bits)
F: Mantissa (23 bits)

S

Figure 1.4 Single precision floating point representation.
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b31 b0

b7 b0

Memory

Register

#bit, Rn
(bit: 31 to 0, n: 0 to 15)

#bit, mem
(bit: 7 to 0)

Example

Example

#30, R1 (register R1, bit 30)

#2, [R2] (address [R2], bit 2)

Figure 1.5 Bitwise Operation [1], page 32.

String of byte (8-bit) data

String of word (16-bit) data

String of longword (32-bit) data

8

16

32

Figure 1.6 String data sizes [1], page 32.

1.3 BASIC CONCEPTS OF RENESAS ASSEMBLY LANGUAGE

In this section, we introduce assembly language and the basic concepts required to use it
effectively.

1.3.1 Addressing Modes

The RX63N has a total of 10 addressing modes that define how the syntax of assembly in-
structions are read and interpreted by the compiler. These modes can all be found in the

3. Bitwise:
For a bitwise operation to take place, a number taken in its binary form is ma-

nipulated bit by bit rather than the entire bit stream at once. For example, binary op-
erations would include taking a logical AND, OR, or XOR of two binary numbers.

4. Strings:
The strings data type consists of a sequence of characters often used to repre-

sent text, spaces, and symbols such as punctuation. Because of this structure, a
high number of bits for strings are needed. Strings may be consecutive byte (8 bit),
word (16 bit), or longword (32 bit) units. The RX Family provides several string
manipulation instructions.
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6 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

Renesas RX63N Group User’s Manual: Software [1]. The manual also includes the
specifics on each addressing mode. In this section, we learn how to use four of the most
common addressing modes.

Immediate

The immediate addressing mode includes the instruction, immediately available data in an
operand, and a destination location, and has the general form:

INSTRUCTION OPERAND, DESTINATION

Let’s say we would like to store a value to a register, and this value is known to the pro-
grammer. For example, the value could be the start of a loop counter, 0x255, and we would
like to store this value in the register R5. The value is called immediate, since it will be
stored immediately into R5 and does not require retrieving the value from another memory
location. Following is an example of the format for this instruction:

MOV.B #255H, R5

In this case, MOV.B is the instruction, #225H is the operand, and R5 is the destination.
This same format can be used with other instructions, such as:

� ADD
� AND
� BCLR
� BNOT
� BSET
� BTST
� CMP
� MOV
� MUL
� OR
� SUB

Register Direct

The register direct addressing mode moves data from one memory location to another. We
can again use an example in which we are trying to load a value into register R5. This time,
let’s assume that the value is located in register R1. If we don’t know what the value of R1
is, then we can’t use an immediate addressing mode. Instead, we can say:

MOV.B R1, R5
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which is of the general form:

INSTRUCTION SOURCE, DESTINATION

While this is most often used with a MOV instruction, it is also the addressing mode for
JMP and JSR instructions in which the value of Rn (the source) is transferred to the pro-
gram counter (PC). Also note that the source can be a memory location specified in hexa-
decimal format, not just a register.

Register Indirect

The register indirect addressing mode is similar to register direct, except that the operand
contains the address of the data that will be stored in the destination. For example, if we
know that the memory location of 08C00Dh is stored in R1, then at any time we can move
the data from 08C00Dh to a new location:

MOV [R1], R5

The value located at 08C00Dh is now stored in R5. Note that the form for this addressing
mode is as follows:

INSTRUCTION [SOURCE ADDRESS], DESTINATION

Register Relative

Register Relative addressing is similar to register indirect addressing. This addressing
mode uses a familiar format:

INSTRUCTION offset[SOURCE ADDRESS], DESTINATION

The source here, however, is a relative address. A relative address is a memory location that
is specified by its proximity relation to another address. This addressing mode uses the fol-
lowing format:

offset[SOURCE ADDRESS]

The source address for offset can be a positive or negative number. The address can be any
valid register. For example, if the source for data is memory address 0x000005, and the
memory address 0x000000 is already stored in register R1 from an earlier instruction
("MOV #000000H, R1"), then we can read from memory location 0x000005 using:

1. MOV 5[R1], R5
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8 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

After executing this instruction, R5 now holds the data copied from memory location
0x000005.

1.3.2 RX63N Instruction Set

The Renesas RX63N has 90 instructions available to the programmer, consisting of 73 ba-
sic instructions, eight floating point instructions, and nine digital signal processing instruc-
tions. All programs, even if written in a higher level language like C, are composed of a
specific combination of these 90 assembly language instructions. A detailed description of
each instruction can be found be found in the Renesas RX63N Group User’s Manual: Soft-
ware [1]. This chapter explores some basic instructions. These basic instructions are simi-
lar in construct to others not described here.

The five essential instruction types are:

1. Data Transfer
2. Arithmetic and Logic
3. Floating-Point Operations
4. Control Transfer
5. Specialty and Other

Data Transfer

Following are some common data transfer instructions:

� MOV: Transfer data
� MOVU: Transfer unsigned data
� POP: Restore data from the stack
� PUSH: Save data on the stack
� POPM: Restore multiple registers from the stack
� PUSHM: Saving multiple registers
� STZ: Transfer with condition
� STNZ: Transfer with condition

The most common instruction in most programs is MOV and MOVU (unsigned). These in-
structions are used to store immediate data, and to copy data from one memory location to
another. It is used with a length modifier of .B, .W, or .L, as discussed in Section 1.2.4.
When the programmer wants to store a known value, the immediate addressing can be used
as follows:

MOV #255H, R5
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Following is an example of moving data from one register to another using the register di-
rect addressing mode:

MOV R1, R2

In the following example data is moved from one memory location into a register (R5) us-
ing Register Indirect addressing mode. Note that in this example that the memory address
where the data is read is 0x000001H.

MOV #000001H, R1
MOV [R1], R5

Arithmetic and Logic

Following are common arithmetic instructions:

� ADD: Addition without carry
� ADC: Addition with carry
� SUB: Subtract without borrow
� SBB: Subtract with borrow
� MUL: Multiplication
� DIV: Signed division
� DIVU: Unsigned division
� ABS: Absolute value
� INC: Increment
� DEC: Decrement
� CMP: Comparison

Simple arithmetic instructions share a common addressing mode. The following examples
demonstrate arithmetic instructions.

Add R5 to R1 and store result in R1:

ADD R5, R1

Subtract R2 from R3 and place the result in R3:

SUB R2, R3

Multiply R6 from R4 and place the result in R4:

MUL R6, R4
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10 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

Divide R1 from R2 and place result in R1:

DIV R2, R1

Compare the values of R3 and R4. Note that the result will be stored by a change in a flag
state in the PSW register:

CMP R3, R4

The following are some common logic and bit manipulation instructions:

� AND: Logical AND
� NOT: Logical complementation
� OR: Logical OR
� XOR: Logical exclusive OR
� SHLL: Logical and arithmetic shift to the left
� SHLR: Logical shift to the right
� NEG: 2’s compliment

Examples:

Perform the bitwise AND operation on R1 and R2 and store the result in R2 (overwriting).
If R1 contains 0x00FF00FF andR2 contains 0x0000FFFF, the result of 0x000000FF would
be stored in R2.

AND R1, R2

Perform the same operation, but now store the result in R3, leaving R1 and R2 unchanged:

AND R1, R2, R3

Perform an exclusive OR operation on R1 and R2 and place the result in R2:

XOR R1, R2

Shift R4 to the right by 3 positions and store the result in R4 (overwriting):

MOV #0003H, R1 ;store the value "3" in R1
SHLR R1, R4 ;shift R4 by value in R1 (3)
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Perform the same operation, but store result in R5, leaving R4 unchanged:

MOV #0003H, R1 ;store the value "3" in R1
SHLR R1, R4, R5

Take the 2’s Compliment of the value of R5, storing the result in R5:

NEG R5

Take the 2’s Compliment of R5, but store the result in R6, leaving R5 unchanged:

NEG R5, R6

Floating-Point Operations

Floating-point operation instructions are available for facilitating a program with more pre-
cise arithmetic operations. Note, however, that it is sometimes better to perform these func-
tions with a combination of simple arithmetic and logic instructions, or simply an approxi-
mate with integers, in order to save processor time. This is especially true with floating-point
division. The following are the RX63N’s floating-point instructions:

� FADD: Floating-point addition
� FCMP: Floating-point comparison
� FDIV: Floating-point division
� FMUL: Floating-point multiplication
� FSUB: Floating-point subtraction
� FTOI: Floating-point to integer conversion
� ITOF: Integer to floating-point conversion
� ROUND: Conversion from floating-point to integer

The usage of floating-point operation instructions is similar to arithmetic instructions, us-
ing the following familiar format:

INSTRUCTION SOURCE, SOURCE/DESTINATION

Control Transfer

The following are some common Control Transfer instructions:

� BRA: Unconditional relative branch
� BCnd: Relative conditional branch (many types of Cnd)
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12 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

� BSR: Relative subroutine branch
� JMP: Unconditional jump
� JSR: Jump to a subroutine
� RTS: Return from a subroutine
� RTSD: Return from a subroutine and release stack frame

Examples:

Branch to a destination address specified by PC � PC � R1:

BRA R1

Branch to a destination address specified by PC = R1:

JMP R1

Return from a subroutine:

RTS

Specialty Instructions

No Operation: No Operation (NOP) is a unique instruction available for assembly lan-
guage. It wastes one clock cycle without doing any useful work, but can be very useful for
timing. For example, one use is looping a 50 MHz clock continuously every 0.00004 sec-
onds (or at a rate of 25 kHz). This means that the loop needs to execute in exactly 2000
clock cycles. If the current loop takes only 1997 clock cycles, then add three wasted cycles
with three NOP instructions at the end. This cycle would look like:

1. NOP
2. NOP
3. NOP

Another case where NOP can be useful is when waiting for another event to happen before
continuing. For example, waiting for a signal to arrive from a peripheral, or waiting for an
operation to finish exiting the processor’s pipeline (some instructions take more than one
clock cycle to execute).

String Manipulations: The following is a list of some common string manipulation
instructions:
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� SSTR: Store a string
� SCMPU: Compare a string
� SMOVB: Transfer a string backwards
� SMOVF: Transfer a string forwards

DSP: The Renesas RX63N has specialty DSP instructions, which are covered in Chapter 11.
These instructions are:

� MACHI: Multiply-Accumulate the high-order word
� MACLO: Multiply-Accumulate the low-order word
� MULHI: Multiply the high-order word
� MULLO: Multiply the low-order word
� MVFACHI: Move the high-order longword from accumulator
� MVFACMI: Move the middle-order longword from accumulator
� MVTACHI: Move the high-order longword to accumulator
� MVTACLO: Move the low-order longword to accumulator
� RACW: Round the accumulator word

1.3.3 Important Addresses in Memory

High-level languages such as C do not often require the programmer to know specific
memory addresses, since the compiler and header files can take care of that automatically.
For example, a local variable in memory is automatically assigned an address in RAM by
the compiler, while malloc() and calloc() are functions used to dynamically manipulate
heap space during runtime. In assembly, however, the programmer has the opportunity to
choose which registers and memory addresses are used. In this section, we cover the ba-
sic memory addresses for RAM/Flash, special function registers, and general purpose
registers. The RX63N memory map is summarized on the following page.

Only a portion of the 4-GByte memory address range is useable for general purpose
storage. Areas that are designated “reserved,” “read only,” or “write only” are not avail-
able for programmer use (except “write only,” which is ultimately used to store machine
code generated by the assembler). Variables must be stored in either RAM or on-chip
ROM (also known as flash), depending on the type of variable. In general, constants are
stored in ROM while data that is likely to change, including all local variables, are
stored in RAM. Global variables can be stored in either RAM or ROM, depending
on the application. Heap memory, allocated using malloc() and calloc() in C, is stored
in RAM.
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0000 0000h

0001 8000h

0008 0000h

0010 0000h

0010 8000h

007F A000h

007F 8000h

007F C000h
007F C500h

007F FC00h

0080 0000h

00F8 0000h

0100 0000h

FEFF E000h

FF00 0000h

FF00 C000h

FF80 0000h

FFF8 0000h

Single-chip mode*2

On-chip RAM

Reserved area*1

Peripheral I/O registers

On-chip ROM
(E2 DataFlash)

Reserved area*1

FCU-RAM3

Peripheral I/O registers

Reserved area*1

Reserved area*1

On-chip ROM (program ROM)
(write only)

Reserved area*1

Peripheral I/O registers

On-chip ROM (user boot)
(read only)

Reserved area*1

Reserved area*1

On-chip ROM (program ROM)
(read only)

On-chip ROM (FCU firmware)*3

(read only)

Reserved area*1

FFFF FFFFh

< <

0000 0000h 0000 0000h

0001 8000h 0001 8000h

0008 0000h 0008 0000h

0010 0000h 0010 0000h

0010 8000h

007F A000h

007F 8000h

007F C000h
007F C500h

007F FC00h

0080 0000h

00F8 0000h

0100 0000h 0100 0000h

0800 0000h 0800 0000h

1000 0000h 1000 0000h

FEFF E000h

FF00 0000h FF00 0000h

FF7F C000h

FF80 0000h

FFF8 0000h

On-chip ROM enabled
extended mode

On-chip ROM disabled
extended mode

On-chip RAM On-chip RAM

Reserved area*1 Reserved area*1

Peripheral I/O registers Peripheral I/O registers

On-chip ROM
(E2 DataFlash)

Reserved area*1

FCU-RAM*3

Peripheral I/O registers

Reserved area*1

Reserved area*1

On-chip ROM (program ROM)
(write only)

External address space
(CS area)

External address space
(CS area)

External address space
(SDRAM)

External address space
(SDRAM)

Reserved area*1

Reserved area*1

Peripheral I/O registers

On-chip ROM (user boot)
(read only)

Reserved area*1

Reserved area*1
External address space

On-chip ROM (program ROM)
(read only)

On-chip ROM (FCU firmware)*3

(read only)

Reserved area*1

Reserved area*1

FFFF FFFFh FFFF FFFFh

<
<

< <

<
<

< <

Notes:
1. Reserved areas should not be accessed, since the correct operation of LSI is not guaranteed if they are accessed.
2. The address space in boot mode and user boot mode is the same as the address space in single-chip mode.
3. For details on the FCU, see [2].

Figure 1.7 RX63N Memory Map [2], page 151.
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1.3.4 Basic Rules and Process for Writing Source Code

To write effective assembly language, it is necessary to understand the mnemonics and no-
tation used by the assembler. This notation includes the names of addresses in memory, ref-
erence points like the stack pointer frame base FB, size specifiers like .W, and register
names like R1. The following figure lists relevant RX Family notations.

Size modifiers are used often with both data transfer instructions and branch instruc-
tions. If the programmer wants to specify a single byte, the .B modifier is used, as shown in
the following example:

MOV.B R1, R2

If a 16-bit branch is desired, then the .W modifier is used as shown in the following
example:

BRA.W R1

A 32-bit modifier of .L can be used to signify a longword, as shown in the following
example:

MOV.L R1, R2

Writing an entire source program from scratch is not necessary, as setting up the
processor, memory, and peripherals is an extensive task. Instead, inserting assembly
subroutines into existing .src files is the easiest and most effective way to use assembly
with the RX63N, assuming that the system has already been set up. As an example of
how to set up and use assembly, follow the step-by-step process to create a function that

Automatic
variable

Static
variable

With initial value

Without initial value

To stack area

To RAM and ROM areas

To RAM area

Variable data

Constant,
character string

Program

To ROM area

To ROM area

Fixed data

Figure 1.8 Variable Types and Their Storage Destination.
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Table 1.1 RX Family Notations [1], page 3.

CLASSIFICATION NOTATION MEANING

Symbols IMM Immediate value

SIMM Immediate value for sign extension according to the processing size

UIMM Immediate value for zero extension according to the processing size

src Source of an instruction operand

dest Destination of an instruction operand

dsp Displacement of relative addressing

pcdsp Displacement of relative addressing of the program counter

[ ] Represents indirect addressing

Rn General-purpose register. R0 to R15 are specifiable unless stated
otherwise.

Rs General-purpose register as a source. R0 to R15 are specifiable unless
stated otherwise.

Rs2 Used in the description for the ADD, AND, CMP, MUL, OR, PUSHM, SUB,
and TST instructions. In these instructions, since two general-purpose
registers can be specified for an operand, the first general-purpose
register specified as a source is described as Rs and the second
general-purpose register specified as a source is described as Rs2.

Rd General-purpose register as a destination. R0 to R15 are specifiable
unless stated otherwise.

Rd2 Used in the description for the POPM and RTSD instructions. In these
instructions, since two general-purpose registers can be specified for an
operand, the first general-purpose register specified as a destination is
described as Rd and the second general-purpose register specified as a
destination is described as Rd2.

Rb General-purpose register specified as a base register. R0 to R15 are
specifiable unless stated otherwise.

Ri General-purpose register as an index register. R0 to R15 are specifiable
unless stated otherwise.

Rx Represents a control register. The PC, ISP, USP, INTB, PSW, BPC, BPSW,
FINTV, and FPSW are selectable, although the PC is only selectable as the
src operand of MVFC and PUSHC instructions.

flag Represents a bit (U or I) or flag (O, S, Z, or C) in the PSW.

Values 000b Binary number

0000h Hexadecimal number

01.ES_Conrad_RX63N_Advanced_CH01.qxd:RX63N Advanced  3/4/14  12:04 PM  Page 16



CHAPTER 1 / RENESAS ASSEMBLY LANGUAGE 17

Table 1.1 RX Family Notations [1], page 3.—Continued

CLASSIFICATION NOTATION MEANING

Bit length #IMM:8 etc. Represents the effective bit length for the operand symbol.

:1 Indicates an effective length of 1 bit.

:2 Indicates an effective length of 2 bits.

:3 Indicates an effective length of 3 bits.

:4 Indicates an effective length of 4 bits.

:5 Indicates an effective length of 5 bits.

:8 Indicates an effective length of 8 bits.

:16 Indicates an effective length of 16 bits.

:24 Indicates an effective length of 24 bits.

:32 Indicates an effective length of 32 bits.

Size specifiers MOV.W etc. Indicates the size that an instruction handles.

.B Byte (8 bits) is specified.

.W Word (16 bits) is specified.

.L Longword (32 bits) is specified.

Branch distance
specifiers

BRA.A etc. Indicates the length of the valid bits to represent the distance to the
branch relative destination.

.S 3-bit PC forward relative is specified. The range of valid values is 3 to 10.

.B 8-bit PC relative is specified. The range of valid values is
�128 to 127.

.W 16-bit PC relative is specified. The range of valid values is �32768 to
32767.

.A 24-bit PC relative is specified. The range of valid values is �8388608 to
8388607.

.L 32-bit PC relative is specified. The range of valid values is �2147483648
to 2147483647.

Size extension
specifiers added to
memory operands

dsp:16[Rs].UB
etc.

Indicates the size of a memory operand and the type of extension. If the
specifier is omitted, the memory operand is handled as longword.

.B Byte (8 bits) is specified. The extension is sign extension.

.UB Byte (8 bits) is specified. The extension is zero extension.

.W Word (16 bits) is specified. The extension is sign extension.

.UW Word (16 bits) is specified. The extension is zero extension.

.L Longword (32 bits) is specified.

01.ES_Conrad_RX63N_Advanced_CH01.qxd:RX63N Advanced  3/4/14  12:04 PM  Page 17



18 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

returns the square of its input. In C, this function and the calling function would look
like the following:

1. int squared(int r) {
2. return (r*r);
3. }
4.
5. int main(void) {
6. int squared_var, squaring_var;
.
.

10. squared_var = squared(squaring_var);
.
.
.

To create the assembly language function, in the assembly file (file extension .src), de-
clare the function as global. Note that the previous example should be placed at the top
of the source file, along with the other declarations. Next, declare the section of mem-
ory in which to work. The value in register R1 contains squaring_var, which will be r
in the function squared, according to the rules of the Renesas C�� compiler [3]. R1
has the value of int r so multiplying it by itself will result in r2, as desired. Notice that
the result is now stored in R1, where is can be retrieved by the calling function. All that
is left to do is close the function and return using RTS. If this is the end of the source
file, then add .END.

1. .GLB _squared
2. .SECTION P,CODE
3. _squared:
4. MUL.W R1,R1
5. RTS
6. .END

1.3.5 Inline Assembly

Many compilers support the integration of assembly instructions into C code. This imple-
mentation is called inline assembly. The most common syntax is of the following form, in
which asm() is a built-in function (“assembly instruction”); or for more than one instruc-

01.ES_Conrad_RX63N_Advanced_CH01.qxd:RX63N Advanced  3/4/14  12:04 PM  Page 18



CHAPTER 1 / RENESAS ASSEMBLY LANGUAGE 19

tion, encapsulate each instruction in quotation marks and append \n\t to each instruction
except the last, as in the following example:

1. asm("MOV.W #000aH,R1\n\t"
2. "MOV.W #0010H,R2\n\t"
3. "MOV.W R2,R3\n\t"
4. "MOV.W -2[R12],R4 \n\t"
5. "JSR $function1");

Alternatively, some compilers use the form:

1. #pragma asm
2. ;assembly instructions are inserted here
3. #pragma endasm

The RX toolchain that accompanies the RX63N Evaluation Board supports inline assem-
bly. The “#pragma inline_asm” macro performs inline expansion of an assembly language
function. This macro has the advantage that it provides a C-type look to the code. The
compiler even includes special options and functions that allow users to control the assem-
bly instructions that are generated by the compiler, such as options to prevent DIV, DIVU,
and DIVX instructions, which can be a program bottleneck. The GNURX toolchain, which
is compatible with HEW, has the asm() function built in, but it’s functionality is very lim-
ited. In general, writing programs in C will provide highly efficient machine code.

If inline assembly must be used, there are numerous third party compilers and tool-
chains that support the Renesas RX Family of microcontrollers and fully support the asm()
function or #pragma asm declaration.

1.4 BASIC EXAMPLES

1.4.1 Set Up Ports and Turn on LEDs

For this example, assume that the function LEDfunc() is called from main().

C Function

1. void LEDfunc(void) {
2. PORTD.PDR.BYTE = 0x20; //set PORTD to output
3. PORTE.PDR.BYTE = 0x0f; //set PORTE Pins 0-3 as output
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4. PORTD.PODR.BYTE = 0x00; //turn on LEDs tied to PORTD
5. PORTE.PODR.BYTE = 0x00; //turn on LEDs tied to PORTE
6. }

Assembly Function

1. .GLB _LEDfunc
2. _LEDfunc:
3. MOV.L #08C00DH,R5 ;store address of PORTD Data Direction

Register
4. MOV.B #FFH,[R5] ;set PORTD DDR to output
5. MOV.B #0FH,01H[R5] ;set PORTE DDR Pins 0 to 3 to output
6. MOV.B #00H,20H[R5] ;turn on LEDs tied to PORTD
7. MOV.B #00H,21H[R5] ;turn on LEDs tied to PORTE
8. RTS

Explanation:

;Declare the LEDfunc() function as global
.GLB _LEDfunc
;Begin the function
_LEDfunc:
MOV.L #08C00DH,R5
;Move the memory address 0x8c00d into register R5
MOV.B #FFH,[R5]
;Move the value 0xff into the memory location that R5 points to
MOV.B #0FH,01H[R5]
;Move the value 0x0f into the memory address located at *R5 + 0x01
MOV.B #00H,20H[R5]
;Move the value 0x00 into the memory address located at *R5 + 0x20
MOV.B #00H,21H[R5]
;Move the value 0x00 into the memory address located at *R5 + 0x21
RTS
;Return from the subroutine

1.5 RECAP

Assembly language is a low-level, 1:1 equivalent of machine code that can be used to im-
prove program speed and efficiency. Usually a compiler converts C code into assembly, but
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in the case that our compiler is not sufficiently optimized, we can program our own .src
files. The RX63N has 10 addressing modes which must be followed for proper assembly,
and numerous other modifiers and syntaxes which are highlighted in Section 1.2.4. The ex-
amples provided, along with the RX Family software and hardware manuals, are a guide to
getting started with this powerful tool.

1.6 REFERENCES

[1] Renesas Electronics, Inc. (April, 2013). RX63N Group, RX631 Group User’s Manual: Software, Rev 1.20.

[2] Renesas Electronics, Inc. (February, 2013). RX63N Group, RX631 Group User’s Manual: Hardware, Rev 1.60.

[3] Renesas Electronics Inc. (2011). RX Family C/C�� Compiler, Assembler Optimizing Linkage Editor,

User’s Manual, Rev. 1.0.

1.7 EXERCISES

1. How does MOV.L differ from MOV.B and MOV.W?
2. Given the following information, write code to transfer the 16-bit contents of

memory at location A to location B:
� Memory A is located in memory at an offset of 20h from memory location C
� Memory location C is located at an offset of—1h from memory location

083000h
� Memory location B is located at an offset of 12 from the stack pointer
� Register R1 is available, and can store 16 bits
� Register R5 is available, and can store 24 bits

3. Multiply R1 by R2, and store the result in R3.
4. Multiply the data in memory locations 0x00000a and 0x00000b, and store the re-

sult in 0x00000c. Use relative register addressing mode.
5. What is the difference between a JMP instruction and a BRA instruction?
6. How can we use inline assembly with the RX63N?
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2.1 LEARNING OBJECTIVES

This chapter discusses how the microcontroller manipulates and moves data in memory us-
ing the concepts of function calls, stacks, and registers. In this chapter the reader will learn:

� The concept of a function calling interface
� Rules concerning the registers—how to use registers in a function call, parameter

passing, and return data types
� Memory mapping of the RX63N microcontroller
� The concept of the stack and stack pointer

2.2 BASIC CONCEPTS

2.2.1 Introduction to Function Calls and Stacks

Functions, stacks, and registers work together to send and obtain data at the right time and
without error from the correct memory address. In general, the registers store data
processed by the CPU. Blocks of memory are sectioned off in a “stack” of data and mem-
ory addresses, and are available for use by functions and their associated variables. A stack
is a data structure used to hold and move data to and from registers at the programmer’s
discretion. In this process, data is transferred by the CPU from a register to the stack. The
data is held in the stack until the register reads the data again to return values. When a func-
tion is called in the program, the data associated with that function is stored to the stack
memory for later use.

2.2.2 Rules for Passing Arguments and Variable Declaration

Function calls are necessary, especially in complex algorithms. Since a function may have
one or more declared variables (pieces of data) that can be used for various purposes; these

Function Calls and Stacks
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values must be applied to different parts in the program when the function is called to im-
plement an equation or an instruction. When a function is called, it can pass through argu-
ments which represent the variable(s) that are needed by the function in order to perform
arithmetic or an instruction. This structure is referred to as “passing by value.” As seen in
the following example, the parameters for this instruction are declared within the function
definition:

1. #include <stdio.h>
2. void main() {
3. int num1, num2, sum;
4. num1 = 10;
5. num2 = 16;
6. sum = add(num1,num2);
7. }
8.
9. int add(int a, int b) {

10. ..................
11. ...................
12. }

In the example, add and main are functions. The programmer called the add function in the
main function to obtain the sum of two defined integers num1 and num2. The arguments in
the main function are num1 and num2 and the parameters of add are a and b. Here the val-
ues of num1 and num2 are passed instead of their address values. The purpose of this line of
code is to be able to modify the arguments without changing the value inside of the origi-
nal variables in main. Including arguments within a function is not always necessary.

Each time a function is activated (run), space is needed to store data; this is called an
activation record that stores the following:

� arguments—data passed to a function (if a large number of arguments are passed)
� local variables
� return value
� other bookkeeping information

Calling a function B from function A involves:

1. Possibly placing arguments in a mutually-agreed location (registers and/or the stack)
2. Transferring control from function A to function B
3. Allocating space for B’s local data
4. Executing the function B
5. Possibly placing return value in a mutually-agreed location
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6. Deallocating space for B’s
7. Returning control to the function A

This list describes the most basic concept of arguments within function calls. Arguments
and parameters must be stored in memory when passed and/or declared. Two methods are
available for passing an argument to a function (two memory locations): through a register
or on the stack. The microcontroller uses four registers (R1 to R4) to pass arguments from
the calling to the called function. These arguments are stored first, starting with the small-
est numbered register. When the registers are full, they are pushed to the stack. Refer to
Figure 2.1 for the rules on register usage when a function is called and when it returns. Re-
member the terminology of functions: arguments are values passed; once passed, they be-
come parameters of the called function.

Figure 2.1 Rules to use registers [1], page 231.

REGISTER

REGISTER VALUE DOES
NOT CHANGE DURING

FUNCTION CALL
FUNCTION
ENTRY

FUNCTION
EXIT

R0 Guaranteed Stack pointer Stack pointer

R1 Not guaranteed Parameter 1 Return value 1

R2 Not guaranteed Parameter 2 Return value 2

R3 Not guaranteed Parameter 3 Return value 3

R4 Not guaranteed Parameter 4 Return value 4

R5 Not guaranteed — (Undefined)

R6 Guaranteed — (Value at function entry is held)

R7 Guaranteed — (Value at function entry is held)

R8 Guaranteed — (Value at function entry is held)

R9 Guaranteed — (Value at function entry is held)

R10 Guaranteed — (Value at function entry is held)

R11 Guaranteed — (Value at function entry is held)

R12 Guaranteed — (Value at function entry is held)

R13 Guaranteed — (Value at function entry is held)

R14 Not guaranteed — (Undefined)

R15 Not guaranteed Pointer to return
value of structure

(Undefined)
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The following example illustrates a detailed version of the previous example. The argu-
ments passed to the function add will be stored in registers R1, R2, and R3.

1. #include <stdio.h>
2. // The function add is prototyped in the beginning of the code
3. // before the main function, allowing the compiler to "see" the
4. // functions that will be executed in the program.
5.
6. int add(int a, int b);
7. void main() {
8. int num1, num2, sum; //These variables are local to main and
9. //will be stored in main’s stack.

10. num1 = 10;
11. num2 = 16;
12. sum = add(num1, num2);
13.
14. }
15.
16. int add(int a, int b) {
17. int c;
18.
19. c = a + b;
20. return c;
21. }
22. //Here, a = num1 and b = num2.

A function call is similar to an Interrupt Service Routine (ISR) in that a new routine initi-
ates somewhere during a current routine. The key difference is that interrupts cannot pro-
vide a return value, whereas function calls can provide a return value. The other key differ-
ence is the function is initiated in sequence as coded within main where as an ISR is
initiated asynchronously.

2.2.3 Concept of Type Conversion in Function Calls

A frequently used conversion technique is type casting. When a data type variable needs to
be converted to another data type, the programmer can use type casting. Changing data
types results in a size change of the variable and, in turn, what data it can hold. Change is
appropriate when the programmer wishes to leave the variable as its original type, but use
it as another data type in an equation or require a different data size for other reasons, such
as truncation.
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...............
int a; \\ a is a signed 16 bit integer
int b = 1; \\ we have declared and initialized b
char c = 2; \\ c is a signed 8 bit integer

a = ((int)c*10) + b;
...............

In the previous example, c has been converted from char to int. Since the a variable is an
integer, c must also be an integer. Casting a variable is the safest and most efficient way of
converting variable data types. For example, if c was a number much greater than 16 bits
as an int, then the result of a would have been truncated because the data size of a char is
smaller than that of an int.

Data types of return values can be easily converted in the same fashion. At the function
call, the programmer includes syntax similar to the syntax used for converting a single
variable. The following example demonstrates a converted function call.

1. #include <stdio.h>
2.
3. float compute(float x, float y);
4. void main() {
5. int a, b;
6. float c;
7. a = 70;
8. b = 20;
9. c = compute(a, b);

10. printf ("%3.1f\n", c);
11.
12. c = (int)compute(a, b); //The return value of compute is
casted.
13. printf ("%3.1f\n", c);
14. }
15.
16. float compute(float x, float y) {
17. float z;
18. z = x / y;
19. return z;
20.}
21.

In the function compute (line 16), the division of x and y result in a floating point number z.
The return value z is then converted to an integer when compute is called in the main
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function. The solution should be 2.5, but the returned value prints as 3 at the second call, be-
cause it has been type casted as an integer. Keep in mind that converting data types also
means converting sizes of values.

2.2.4 Stack Usage, Allocating, and Deallocating Stack Frames

Before the start of any program, a block of memory is sectioned off for the program’s local
and global variables, arguments of called functions, return values, and addresses of the
stored data in memory. This memory consists of the data, heap, and stack.

Stacks are located in the RAM available in the MCU. The RX63N has a RAM space of
up to 256 KB and an address space of up to 4 Gbytes. The following is a representation of
the memory stack from the hardware manual. The top stack address represents address 0 in
hex and the bottom represents 4 Gbytes in hex. Much more on memory is covered in other
sections of this book, but for now we are focused on how data is located in memory.

0000 0000h

FFFF FFFFh

Data regions/
Program regions
(4 Gbytes, linear)

Figure 2.2 RX63N Address Space.

A stack can be thought of as a block of memory, as mentioned earlier. Each block has data
stored in a particular order, depending on when variables are declared, initialized, and
passed through, called functions. The term “SP” in the following figure stands for stack
pointer. The SP is a register containing the smallest address located on the top of the stack.
The stack pointer moves as data is allocated and deallocated to and from the stack; that is,
the value of SP decreases when data is allocated (“pushed”) onto the stack and the value of
SP increases when data is deallocated (“popped”) from the stack.
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The size of the stack is limited, and care must be taken to ensure it is large enough for
holding all of the pushed data and PCs needed during execution of programs. Since the
smallest address value is at the very top, any attempt to push data onto the stack beyond the
top of the stack causes a stack overflow.

At a function call and immediately
after control returns from a function

SP

Lower address

: Area deallocated by the callee

: Area deallocated by the caller

Upper address

Return PC

Parameter area

: Area allocated and deallocated by the callee

Figure 2.3 Allocation and Deallocation of a Stack Frame [1], page 230.

A program counter (PC) is a processor register that holds the address of the next executable
instruction. The PC is pushed on the stack when a subroutine is called. That way the sys-
tem knows where to “return” to regular processing when the Return from Subroutine in-
struction is executed and the PC is popped off of the stack.

Sometimes a called subroutine needs additional memory space for variable storage; an
example could be a counting variable used for "for" loops (for (i = 1; i < 10; i++)).
These temporary, or automatic variables, use space in a lower address from the PC. In
Figure 2.3, this would be the stack space identified in dark grey. Once the subroutine is
called, the called subroutine further decrements the SP to account for temporary variables.
For example, if int i; is defined in the subroutine, then the SP would be decremented by
2 bytes to account for this 2-byte variable.

2.3 BASIC EXAMPLE

Consider the following simple C code:

int main2() {
int a, b, c;
a = 10;
b = 16;
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c = compute(a,b);
}
int compute(int x, int y) {

int z;
z = x + y;
return(z);

}

The equivalent assembly language listing (with the inline C code) is shown as follows:

;int main2 () {
1 .glb _main2
2 _main2: ; function: main2
3 .STACK _main = 16

;int a, b, c;
4 SUB #0CH,R0

;a = 10;
5 MOV.L #0000000AH,R14
6 MOV.L R14,[R0]

;b = 16;
7 MOV.L #00000010H,R14
8 MOV.L R14,04H[R0]

;c = compute (a,b);
9 MOV.L [R0],R1

10 MOV.L 04H[R0],R2
11 BSR _compute
12 MOV.L R1,R14
13 MOV.L R14,08H[R0]
;return(c);
14 MOV.L 08H[R0],R14
15 MOV.L R14,R1
;}
16 ADD #0CH,R0
17 RTS
;int compute(int x, int y) {
18 .glb _compute
19 _compute: ; function: compute
20 .STACK _compute = 16
;int z;
21 SUB #0CH,R0
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22 MOV.L R2,08H[R0]
23 MOV.L R1,04H[R0]
;z = x + y;
24 MOV.L 04H[R0],R14
25 MOV.L 08H[R0],R1
26 ADD R14,R1,R2
27 MOV.L R2,[R0]
;return(z)
28 MOV.L [R0],R14
29 MOV.L R14,R1
;}
30 ADD #0CH,R0
31 RTS

In the equivalent assembly code, line 1 sets up the main function as global, line 2 labels the
main function, and line 3 defines the stack element size. Line 4 subtracts 0x0C from R0.
Since R0 is the stack pointer, we have allocated 12 bytes, or 3 longwords, to the stack. Line
5 puts the value of a (0x0A) into register R14, which is then put on the stack with line 6.
Lines 7 and 8 perform a similar task with storing the value of variable b. Note that b is
stored 4 bytes ahead of a (using register indirect addressing: 04H[R0]), since each variable
is a longword. Next, the program must prepare for a function call, so the values of a and b
are stored in registers R1 and R2 in lines 9 and 10. The BSR command branches to the
compute subroutine, and the program jumps to line 18.

Lines 18, 19, and 20 define and declare the function similarly to lines 1, 2, and 3 in the
main subroutine. Again, we allocate space on the stack (another 12 bytes) with the SUB
command in line 21. The values of a and b, which were stored in R1 and R2 for the purpose
of transferring data to the compute function, are then stored at 04H[R0] and 08H[R0], re-
spectively. Lines 24 and 25 then move the data from the stack to registers R14 and R1 to
perform the addition instruction. Note that the move instructions can sometimes be redun-
dant, but ensure that data is exactly in the right location at the right time. Line 26 performs
the addition of R14 and R1, and stores the result in R2. The result in R2 is then stored on
the stack at [R0]. Line 28 transfers this data to a general purpose register, and line 29 then
moves this data to a register that is suitable to passing from this subroutine back to main.
The ADD instruction at line 30 serves the purpose of deallocating 12 bytes from the stack
in preparation for the return to main, and line 31 actually performs the return.

After returning from compute, the program counter points to line 12, which moves the
data returned from the function (at R1) to a general purpose register (R14). That data is
then stored on the stack at 08H[R0] in line 13. The main function then prepares to return
the value of c by moving the data at 08H[R0] to R14 (line 14), then from R14 to R1, a reg-
ister designed for passing arguments (line 15). Finally, the stack space allocated for main is
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deallocated by subtracting 0x0C from the stack pointer R0 in line 16, and the main func-
tion returns with line 17.

2.4 ADVANCED CONCEPTS

2.4.1 Memory Mapping

A memory map shows the data allocation of addresses to ROM, RAM, or flash memory in
a system. The following example shows where the variables and executable program are
stored in memory. The compiler determines where the data is stored.

int a = 1;

char b;

const short c = 0;

void main () {

. . .

}

Program area (main(){. . .})

Initialized data area (a)

Constant area (c)

Uninitialized data area (b)

P

C_2

D

B_1

Section nameAreas generated by the
compiler and stored data

C program

Figure 2.4 Mapping data into sections by type [1], page 222.

The following figure shows a memory map in various operating modes. The accessible ar-
eas differ according to the operating mode and the states of control bits. As mentioned ear-
lier, this microcontroller has a 4 Gbyte address space ranging from 0000 0000h to FFFF
FFFFh. The reserved areas shown in all three operating modes are not accessible by
users/programmers. In general, the figure in the previous example depicts a high level view
of what is happening between the executed code and the stack.

The simplest way to map to memory is to use a pointer. A pointer variable holds the
address of the data, rather than the data itself. To store the address of a variable into a
pointer, use the reference operator “&” in front of the variable. A pointer is declared by us-
ing the indirection operator “*” and specifying the data type (and size) which the address
will hold. The following example shows where two variables and their pointers are moved
around in a stack.
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0000 0000h 0000 0000h 0000 0000h

0002 0000h 0002 0000h 0002 0000h

0008 0000h 0008 0000h 0008 0000h

0010 0000h 0010 0000h 0010 0000h

0010 8000h 0010 8000h

007F A000h 007F A000h
007F 8000h 007F 8000h

007F C000h 007F C000h
007F C500h 007F C500h

007F FC00h 007F FC00h

0080 0000h 0080 0000h

00E0 0000h 00E0 0000h

0100 0000h 0100 0000h 0100 0000h

0800 0000h 0800 0000h

1000 0000h 1000 0000h

FEFF E000h FEFF E000h

FF00 0000h FF00 0000h FF00 0000h

FF7F C000h FF7F C000h

FF80 0000h FF80 0000h

FFE0 0000h FFE0 0000h

Single-chip mode*1
On-chip ROM enabled

extended mode
On-chip ROM disabled

extended mode

RAM*2 RAM*2 RAM*2

Reserved area*1 Reserved area*1 Reserved area*1

Peripheral I/O registers Peripheral I/O registers Peripheral I/O registers

On-chip ROM (E2 DataFlash) On-chip ROM (E2 DataFlash)

Reserved area*1 Reserved area*1

Reserved area*1

FCU-RAM4 FCU-RAM4

Peripheral I/O registers Peripheral I/O registers

Reserved area*2 Reserved area*2

Reserved area*3 Reserved area*3

On-chip ROM (program ROM)
(write only)

On-chip ROM (program ROM)
(write only)

Reserved area*2

Reserved area*2

Reserved area*2

External address space
(SDRAM area)

External address space
(SDRAM area)

External address space
(CS area)

External address space
(CS area)

Peripheral I/O registers Peripheral I/O registers

On-chip ROM (user boot)
(read only)

On-chip ROM (user boot)
(read only)

Reserved area*2 Reserved area*2

Reserved area*2 Reserved area*2 External address space

On-chip ROM (program ROM)
(read only)*2

On-chip ROM (program ROM)
(read only)*2

On-chip ROM (FCU firmware)
(read only)*4 On-chip ROM (FCU firmware)

(read only)*4

Reserved area*2 Reserved area*2

FFFF FFFFh FFFF FFFFh FFFF FFFFh

<

<
<

< <

<

<
<

< <

Figure 2.5 Memory map in each operating mode [2], page 151.—Continued
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ROM (bytes) RAM (bytes)

CAPACITY
ADDRESS

(FOR READING ONLY)
ADDRESS

(FOR PROGRAMMING ONLY) CAPACITY ADDRESS

2 M FFE0 0000h to FFFF FFFFh 00E0 0000h to 00FF FFFFh 256 K 0000 0000h to 0003 FFFFh

192 K 0000 0000h to 0002 FFFFh

128 K 0000 0000h to 0001 FFFFh

1.5 M FFE8 0000h to FFFF FFFFh 00E8 0000h to 00FF FFFFh 256 K 0000 0000h to 0003 FFFFh

192 K 0000 0000h to 0002 FFFFh

128 K 0000 0000h to 0001 FFFFh

1 M FFF0 0000h to FFFF FFFFh 00F0 0000h to 00FF FFFFh 256 K 0000 0000h to 0003 FFFFh

192 K 0000 0000h to 0002 FFFFh

128 K 0000 0000h to 0001 FFFFh

768 K FFF4 0000h to FFFF FFFFh 00F4 0000h to 00FF FFFFh

512 K FFF8 0000h to FFFF FFFFh 00F8 0000h to 00FF FFFFh

384 K FFFA 0000h to FFFF FFFFh 00FA 0000h to 00FF FFFFh

256 K FFFC 0000h to FFFF FFFFh 00FC 0000h to 00FF FFFFh

512 K FFF8 0000h to FFFF FFFFh 00F8 0000h to 00FF FFFFh 64 K 0000 0000h to 0000 FFFFh

384 K FFFA 0000h to FFFF FFFFh 00FA 0000h to 00FF FFFFh

256 K FFFC 0000h to FFFF FFFFh 00FC 0000h to 00FF FFFFh

Note 1. The address space in boot mode and user boot mode/USB boot mode is the same as the address space in
single-chip mode.

Note 2. The capacity of ROM/RAM differs depending on the products.
Note 3. Reserved areas should not be accessed.
Note 4. For details on the FCU, see section 46 of [2], Flash Memory.

Figure 2.5 Continued.

2.5 ADVANCED EXAMPLE

Consider the following simple C code:

const int globalD = 6;
int compute(int x, int y);
int squared(int r);
void main() {

int a, b, c;
a = 10;
b = 16;
c = compute(a,b);

}
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int compute(int x, int y) {
int z;
z = squared(x);
z = z + squared(y) + globalD;
return(z);

}
int squared(int r) {

return (r*r);
}

The equivalent assembly language listing (with the inline C code) is shown as follows:

;Optimization level = 0
const int globalD = 6;
;void main() {
1. .glb _main
2. _main: ; function: main
3. .STACK _main=16

;int a, b, c
4. SUB #0CH,R0

;a = 10;
5. MOV.L #0000000AH,R14
6. MOV.L R14,[R0]

;b = 16;
7. MOV.L #00000010H,R14
8. MOV.L R14,04H[R0]

;c = compute(a,b)
9. MOV.L [R0],R1

10. MOV.L 04H[R0],R2
11. BSR _compute
12. MOV.L R1,R14
13. MOV.L R14,08H[R0]
;}
14. ADD #0CH,R0
15. RTS
;int compute(int x, int y) {
16. .glb _compute
17. _compute: ; function: compute
18. .STACK _compute=16
;int z;
19. SUB #0CH,R0
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20. MOV.L R2,08H[R0]
21. MOV.L R1,04H[R0]
;z = squared(x);
22. MOV.L 04H[R0],R1
23. BSR _squared
24. MOV.L R1,R14
25. MOV.L R14,[R0]
;z = z + squared(y) + globalD;
26. MOV.L 08H[R0],R1
27. BSR _squared
28. MOV.L [R0],R14
29. ADD R14,R1,R5
30. MOV.L #_globalD,R14
31. MOV.L [R14],R2
32. ADD R5,R2,R14
33. MOV.L R14,[R0]
;return(z);
34. MOV.L [R0],R14
35. MOV.L R14,R1
;}
36. ADD #0CH,R0
37. RTS
;int squared(int r) {
38. .glb _squared
39. _squared: ; function: squared
40. .STACK _squared=8
41. SUB #04H,R0
42. MOV.L R1,[R0]
;return (r*r);
43. MOV.L [R0],R14
44. MOV.L [R0],R2
45. MUL R14,R2,R5
46. MOV.L R5,R1
;}
47. ADD #04H,R0
48. RTS

Lines 1 to 11: The main subroutine is first declared as global in line 1, and labeled
in line 2. The stack is then declared in line 3. To allocate space on
the stack, we subtract the necessary amount of bytes from the stack
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pointer, R0. This happens in line 4, where 12 bytes are allocated.
The immediate value 0x0A (the value of variable a) is then moved
into register 14 in line 5, and then R14 is moved onto the stack at
location [R0] in line 6. A similar sequence happens with lines 7 and
8, where the value of variable b is ultimately stored on the stack at
location 04H[R0]. The subroutine then prepares for a function call
by storing the data from variables a and b in registers R1 and R2 in
lines 9 and 10. Note that these registers are designed for passing
arguments to and from functions. Line 11 calls the “compute”
function.

Lines 16 to 23: The compute subroutine declarations with lines 16, 17, and 18 are
similar to lines 1, 2, and 3 for the main subroutine. Another 0x0C
bytes are allocated to the stack in line 19, and the contents of the
passed arguments from R1 and R2 (variables x and y) are stored in
this new allocated space at locations 04H[R0] and 08H[R0],
respectively. Then, the program prepares for another branch by
passing the argument stored at 04H[R0] (the variable x) into R1 in
line 22. Line 23 branches to the squared function.

Lines 38 to 48: The squared subroutine again starts off with declarations in lines
38, 39, and 40. Next, line 41 allocates 4 bytes to the stack, and line
42 stores the data from R1 (the x variable passed from the
compute function) on the stack at location [R0]. The next two lines
replicate this data in registers R14 and R2, and line 45 performs a
multiplication of these two registers, storing the result in R5. The
function then prepares to return this value back to compute by
storing it in R1 (line 46). Next, 4 bytes are deallocated from the
stack by adding 0x04 to the stack pointer, R0, in line 47. Finally, the
function returns to compute with line 48.

Lines 24 to 27: The value that was returned from squared is moved out of R1 into
a general purpose register, R14, in line 24. This data is then moved
onto the compute stack at location [R0] in line 25. This stores the
variable z. Line 26 prepares another function call by storing the
value located at 08H[R0] in R1. This is the value of variable y,
which will be passed to squared by branching at line 27.

Lines 38 to 48: The squared subroutine performs the same as described earlier. The
only difference is that this time the value of y is passed into this
function, and the returned result will be y2.

Lines 28 to 37: The value of the z variable, stored on the stack at [R0], is now
moved into R14 with line 28. Line 29 adds R14 to R1, and stores
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this result in R5. Thus, R5 contains: z � y2. To get the desired final
result of z � z � y2 � globalD, we still need to add the value of
globalD to the data in R5. The location of variable globalD is stored
in R14 with line 30. Note that we are assuming globalD is declared
earlier in the program, at the header. The contents at the memory
location pointed to by R14 is then stored directly in R2 with line 31.
The contents of R5 and R2 are then summed with line 32, and the
result stored in R14. This desired value is then stored on the stack at
[R0] with line 33. Although it is redundant, [R0] is then moved into
R14, which is them moved into R1, where it will be ready to be
returned to another subroutine. This redundancy is not always
necessary, but without time constraints, we can make sure that our
value is not lost or overwritten by precisely moving it from the
stack to a general purpose register, and from a general purpose
register into a register designed to pass arguments. Line 36
deallocates the 12 bytes that were allocated to the stack in line 19.
Line 37 returns to the main subroutine.

Lines 12 to 15: The argument from compute is stored in a general purpose register,
R14, with line 12. Then, line 13 stores this result on the main stack
at location 08H[R0]. Since the data is ultimately not used, the
subroutine deallocates its stack with line 14 and returns with line
15. If the data were used by another function, then it would have
been stored in R1, R2, R3, or R4 before returning.

As an example of the value of optimization, compare the previous assembly language code
with the following code:

;Optimization level = 1
;const int globalD = 6;
;void main() {
1. .glb _main

_main: ; function: main
2. .STACK _main=16

;int a, b, c
3. SUB #0CH,R0

;a = 10;
4. MOV.L #0000000AH,R1

;b = 16;
5. MOV.L #00000010H,R2

;c = compute(a,b)
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6. BSR _compute
7. MOV.L R1,R5
8. MOV.L R5,R1

;}
9. RTSD #0CH

;int compute(int x, int y) {
10. .glb _compute
_compute: ; function: compute
11. .STACK _compute=12
;int z;
12. PUSH.L R6
13. SUB #04H,R0
;z = squared(x);
14. MOV.L R2,R6
15. BSR _squared
16. MOV.L R1,R4
17. MOV.L R4,[R0]
;z = z + squared(y) + globalD;
18. MOV.L R6,R1
19. BSR _squared
20. MOV.L [R0],R4
21. ADD R4,R1,R5
22. MOV.L #_globalD,R14
23. MOV.L [R14],R2
24. ADD R5,R2,R4
;return(z)
25. MOV.L R4,R1
;}
26. RTSD #08H,R6-R6

;int squared(int r) {
27. .glb _squared
_squared: ; function: squared
28. .STACK _squared=4

;return (r*r);
29. MUL R1,R1,R5
30. MOV.L R5,R1
;}
31. RTS
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In the optimized code, the compiler has removed extra data movement instructions. For ex-
ample, in the squared function, the compiler generated instructions that do not even store
the passed value r onto the stack. This optimization reduced the number of assembly lan-
guage instructions in squared from eight to three. The optimized version has only 24 exe-
cutable instructions versus 39 in the non-optimized version.

2.6 RECAP

This chapter discussed the fundamental concepts of data control in memory. Significant er-
rors in embedded systems are often caused by inaccurate data type assignment and register
addressing. Microcontrollers, especially the RX63N, rely exclusively on accurate register
assignment to allow control and communications of data across peripherals on the board.
For this reason, it is crucial to understand where data is stored in registers.

Data types handled by the RX63N include integer, floating point, bitwise, and strings.
They can be converted to other data types using type casting. A function may have one to
several variables used to execute some algorithm. When a function is called, it passes
through arguments, which are copies of these variables to use.

The lifetime of a variable is tracked in memory by a block of memory called the stack.
The stack represents memory where temporary variables are held. It is also the location
which holds the return addresses of the program instruction that called a functional to exe-
cuted. The RX63N has a 4 Gbyte memory address, allowing for large program spaces and
large data sizes for complex algorithms.

Assembly language can be user created and modified. However, a programmer must be
cautious not to overwrite memory spaces with unwanted data. Only a few assembly in-
structions are used frequently in the RX63N compiler. If a programmer wants to replace
data in a specific memory address or obtain the address of data, a pointer could be used;
therefore, modifying assembly code is not always necessary. For more information specific
to the RX63N microcontroller, visit section 8.2 of the RX Family C/C�� Compiler,
Assembler, Optimizing Linkage Editor document [5].

2.7 REFERENCES
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2.8 EXERCISES

1. For our processor and compiler, does the stack grow toward larger or smaller ad-
dresses?

2. What is the total address space for a RX63N microcontroller?
3. What causes a stack overflow?
4. What moves on the stack as data and is allocated/deallocated?
5. Why would you want to use a pointer in your function?
6. What is the easiest way to pass variables of the following type to another function:

a. char
b. long
c. 4 integers

7. What are the stack contents after the following program executes? Assume the
stack before this executes is empty, with 2 bytes allocated.

1. jsr $newfunc1
2. jsr $newfunc2
3. $newfunc1
4. rts
5. $newfunc2
6. Rts
7.

8. How can we efficiently pass an integer from one subroutine to another?
9. How would we pass a string from one subroutine to another?
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Chapter 3
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3.1 LEARNING OBJECTIVES

All microprocessors can store and operate on integers. However, often we wish to operate
on real numbers. We can represent these values with fixed-point or floating-point ap-
proaches. Fixed-point math is nearly as fast as integer math. Its main drawback is that the
designer must understand the sizes of the smallest and largest data values in order to deter-
mine the appropriate fixed-point representation. Floating-point math automatically adjusts
the scaling to account for large and small values.

Generally floating-point math is emulated in software, but some microprocessors have
special hardware called a Floating Point Unit (FPU) for executing these operations natively,
greatly increasing the speed. Though the FPU varies with the microcontroller, or with dif-
ferent families of microcontrollers, we will be discussing the FPU in the RX63N microcon-
troller and comparing it with the software emulation of a FPU on the QSK62P board.

In this chapter the reader will learn:

� The Instruction Set Architecture (ISA) of the RX63N Floating Point Unit
� Differences between a fixed point and a floating point operation
� Handling floating point exceptions

3.2 BASIC CONCEPTS

3.2.1 Floating Point Basics

Floating Point Representation

Before taking a look at the FPU in the RX63N, let’s look at the basics of floating point
representation.

Consider a floating point number, say 241.3247810. It denotes the following.

Floating Point Unit and Operations

Figure 3.1 Decimal floating point representation.

2 4 1 � 3 2 4 7 8

102 101 100 10�1 10�2 10�3 10�4 10�5
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The number in the box is the significand, 10 is the base and the power to which 10 is raised
is the exponent.

We can represent the above number in exponential form as 2.4132478 � 102.
Consider a binary number, say 1011.01102. The number can be represented as:

Figure 3.2 Binary floating point representation.

1 0 1 1 � 0 1 1 0

23 22 21 20 2�1 2�2 2�3 2�4

We can represent the above binary number in exponential form as 1.0110110 � 23.
From the above notations, we can generalize the floating point expression as:

(�1)sign � Significand � BaseExponent

Though the decimal floating point representation is simple, it cannot be used by microcon-
trollers to work on floating point numbers. Since they work on binary digits, the
IEEE 754 Floating Point Standard was introduced to represent decimal numbers as binary
numbers.

IEEE 754 Floating Point Standard

In order to standardize floating point arithmetic, the IEEE 754 floating point standard was
first introduced in 1985. Though the current version of IEEE 754 is IEEE 754–2008, it in-
cludes the original information in IEEE 754–1985 as well.

The binary floating point numbers represented by IEEE 754 are in sign magnitude
form where the most significant bit (MSB) is the sign bit followed by the biased exponent
and significand without the MSB. The field representation of IEEE 754 is as follows.

Figure 3.3 IEEE 754 floating point representation.

Sign Exponent Significand

The IEEE 754 defines four formats for representing floating point values.

� Single precision (32 bits)
� Double precision (64 bits)
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� Single extended precision (� 43 bits, not commonly used)
� Double extended precision (� 79 bits, not commonly used)

The IEEE 754 Floating Point Standard

Though the number of bits varies in each precision, the format for representing the floating
point number is the same. The format for representing a floating point number according to
IEEE 754 is as follows.

(�1)sign � (1 � Significand) � 2Exponent-Bias

Since we will not be using single extended precision and double extended precision, we
will look at single precision and double precision in detail.

Single Precision (32 bits)

Single precision consists of 4 bytes (or) 32 bits, where the 32 bits are divided into the fol-
lowing fields.

Sign Exponent Significand

1 bit 8 bits 23 bits

Figure 3.4 IEEE 754 single precision floating point representation.

In order to obtain the single precision representation, a few general steps are to be
followed.

� Convert the decimal into a binary number.
� Express the binary number in normalized exponential notation. Since we are rep-

resenting binary numbers, the power will be raised to 2, which is the base.
� Since we need to represent the exponent as an 8 bit binary number, we add 127 to

the exponent in the normalized notation if the number we need to represent is
positive.

� If the number we need to represent is negative, we subtract the exponent in the nor-
malized notation from 127.

� Having done that, we add the significand bits by extending it to 23 bits.
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0 10000010 0100 0000 0000 0000 0000 000

1 bit 8 bits 23 bits

Figure 3.5 Example 1; single precision conversion.

46 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

EXAMPLE 1

A decimal number can be represented as a single precision number as follows. Consider a
number, say 10.010

10.010 � 1010 � 20 or 1.010 � 23

In the above number 1.010 � 23, the significand is 010 as the number before the decimal
point will always be 1. Since the significand here does not have a specific pattern of repeti-
tion, the 23 bit significand field will be the significand appended with zeroes at the end.
From the above number:

Sign Bit: 0 (Since the number is positive).
Exponent: 127 � 3 � 130. For simplification, let’s split 130 as 128 � 2. As 128 is

nothing but 8-bit or 100000002

12810 � 210 � 100000002 � 000102 � 100000102

Significand: 0100 0000 0000 0000 0000 000 (010 appended with zeroes)
From the single precision field representation, we can represent this number as:

EXAMPLE 2

Consider a negative floating point number, say �0.110.

�0.110 � 0.000110011 � 20 or 1.10011 � 2�4

In the binary number 1.10011, the 0011 pattern is repeated. Since the number has a pattern
which gets repeated, the significand is 1 followed by a pattern of 0011.

Therefore, from the above number:

Sign bit: 1 (Since the number is negative)

Exponent: 127 � 4 � 123
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Since 123 is less than 128, we cannot adopt the technique used in Example 3.1.

We know 12310 � 0111 10112

Significand: 1001 1001 1001 1001 1001 100

From the single precision field representation, we can represent this number as,

1 0111 1011 1001 1001 1001 1001 1001 100

1 bit 8 bits 23 bits

Figure 3.6 Example 2; single precision conversion.

Double Precision (64 bits)

Double precision consists of 8 bytes (or) 64 bits, where the 64 bits are divided into the fol-
lowing fields.

Sign Exponent Significand

1 bit 11 bits 52 bits

Figure 3.7 IEEE 754 double precision floating point representation.

Obtaining the double precision numbers, follow the same steps we adopted for single pre-
cision numbers but with different bits.

In order to obtain the double precision representation, the following steps are adopted:

� Convert the decimal into a binary number.
� Express the binary number in normalized exponential notation. Since we are rep-

resenting binary numbers, the power will be raised to 2, which is the base.
� Since we need to represent the exponent as an 11 bit binary number, we add

1023 to the exponent in the normalized notation if the number we need to repre-
sent is positive.

� If the number we need to represent is negative, we subtract the exponent in the nor-
malized notation from 1023.

� Having done that, we add the significand bits which is 52 bits wide.

Note that the Renesas RX63N does not have 64-bit floating point registers, so double preci-
sion operations are handled by library calls. Note that single precision operations are suffi-
cient for the precision of many applications. Some compilers have option switches to con-
vert double precision variables and operations into single precision variables and operations.
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0 10000000010 0100 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

0000

1 bit 11 bits 52 bits

Figure 3.8 Example 3; double precision conversion.

EXAMPLE 4

Consider Example 3.2. To represent the number �0.110 to a double precision number, we
do the following:

�0.1 � 0.00011 � 20 or 1.10011 � 2�4

Therefore, from the above number,

Sign Bit: 1 (Since the number is negative)

Exponent: 1023 � 4 � 1019
101910 � 011111110112

EXAMPLE 3

Consider Example 3.1. To represent the number 1010 to a double precision number, we do
the following.

10 � 1010 � 20 or 1.010 � 23

In the above number 1.010 � 23, the significand is 010 as the number before the decimal
point will always be 1. Since the significand here does not have a specific pattern of repeti-
tion, the 52 bit significand field will be the significand appended with zeroes at the end.

From the above number,

Sign Bit: 0 (Since the number is positive).

Exponent: 1023 � 3 � 102610 � 100000000102

Significand: 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
(010 appended with zeroes)

From the double precision field representation, we can represent this number as:
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Significand: 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010

From the double precision field representation, we can represent this number as:

1 01111111011 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001

1010

1 bit 11 bits 52 bits

Figure 3.9 Example 4; double precision conversion.

3.2.2 Pipelining Basics

In order to understand the floating point operations in microcontrollers and the difference
between fixed point and floating point operations, it is necessary to take a look at the some
of the basics of pipelining.

Pipelining is the technique adopted for increasing the instruction throughout and reduc-
ing the number of clock cycles required to execute an instruction by microprocessors. It is a
method of realizing temporal parallelism, an assembly line processing technique. The in-
struction is broken down into a sequence of sub-tasks, each of which can be executed con-
currently with other stages in the pipeline. The basic instruction cycle consists of five stages:

� Instruction Fetch
� Instruction Decode
� Execute
� Memory Access
� Write Back

IF ID EX MEM WB

Figure 3.10 A basic pipeline.

Instruction Fetch

� The Instruction Fetch (IF) cycle fetches the current instruction from the memory
into the program counter (PC).

� It updates the PC to the next sequential instruction.
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Instruction Decode

� The Instruction Decode cycle (ID) decodes the instruction and reads the registers
corresponding to the specified register source.

� It performs an equality test of registers for a possible branch.
� The decoding is done in parallel with reading registers.

Execution

The Execution (EX) cycle does the following:

� Memory Reference—Calculates effective address.
� Register—Register Operation—ALU performs the operation specified by the

ALU opcode on the values read from the register file.
� Register-Immediate Operation—Operation specified by theALU on the value read

from the register and the sign-extended immediate.

Memory Access

The Memory Access (MEM) cycle does the following operations:

� Load—A read operation performed by the memory using the calculated effective
address.

� Store—A write operation performed by the memory from the register read from
the register file using the effective address.

Write-Back

� The Write-Back (WB) cycle writes the result into the register file, whether it
comes from the memory system (load) or from the ALU (ALU instruction).

3.2.3 Floating Point in RX63N

In order to handle floating point operations, RX63N has the following:

� A Floating Point Unit
� Floating Point Instructions
� Floating Point Registers
� Floating Point Exceptions
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Floating Point Unit

The Floating Point Unit (FPU) in RX63N operates on single precision floating point operands
(32-bit) and the data-types and floating point exceptions conform to the IEEE 754 standard.
This implementation facilitates the FPU to operate directly on the CPU registers rather than
the dedicated register sets, thereby avoiding extra load/store operations and improving the per-
formance. Figure 3.11 shows the floating point unit architecture in RX63N.

General register

Floating-
point unit

RX operation
using general
registers

General
register

Dedicated
data register

Load/store

Floating-
point unit

Traditional
FPU operation
using
dedicated
data registers

No load/store
instruction
needed

Figure 3.11 Architecture used by RX63N with dedicated registers for floating point
operations.

Floating Point Registers

The RX63N uses a single floating point register, Floating-Point Status Word (FPSW) to in-
dicate the results of the floating-point operations. It is a 32-bit register consisting of flags,
bits representing modes for rounding off floating point numbers, exception enable/disable
bits and reserved bits. Figure 3.12 shows the FPSW bits and Table 3.1 shows the bit defini-
tions for the FPSW.

FS FX FU FZ FO FV — — — — — — — — — —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

— EX EU EZ EO EV — DN CE CX CU CZ CO CV

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0Value after reset:

Figure 3.12 Floating-point status word [2], Page 24.

RM[1:0]
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TABLE 3.1 Floating-Point Status Word Bit Definition [2], Page 24.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b1, b0 RM[1�0] Floating-point
rounding-mode
setting bits

b1 b0 R/W

0 0: Round to the nearest value

0 1: Round towards 0

1 0: Round towards ��

1 1: Round towards ��

b2 CV Invalid operation
cause flag

0: No invalid operation has been
encountered.

R/(W)*1

1: Invalid operation has been encountered.

b3 CO Overflow cause
flag

0: No overflow has occurred. R/(W)*1

1: Overflow has occurred.

b4 CZ Division-by-zero
cause flag

0: No division-by-zero has occurred. R/(W)*1

1: Division-by-zero has occurred.

b5 CU Underflow cause
flag

0: No underflow has occurred. R/(W)*1

1: Underflow has occurred.

b6 CX Inexact cause flag 0: No inexact exception has been generated. R/(W)*1

1: Inexact exception has been generated.

b7 CE Unimplemented
processing cause
flag

0: No unimplemented processing has been
encountered.

R/(W)*1

1: Unimplemented processing has been
encountered.

b8 DN 0 flush bit of
denormalized
number

0: A denormalized number is handled as a
denormalized number.

R/W

1: A denormalized number is handled as 0.*2 R/W

b9 — Reserved When writing, write 0 to this bit. The value
read is always 0.

R/W

b10 EV Invalid operation
exception enable
bit

0: Invalid operation exception is masked. R/W

1: Invalid operation exception is enabled.

b11 EO Overflow excep-
tion enable bit

0: Overflow exception is masked. R/W

1: Overflow exception is enabled.
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TABLE 3.1 Floating-Point Status Word Bit Definition [2], Page 24.—Continued

BIT SYMBOL BIT NAME DESCRIPTION R/W

b12 EZ Division-by-zero
exception enable
bit

0: Division-by-zero exception is masked. R/W

1: Division-by-zero exception is enabled.

b13 EU Underflow excep-
tion enable bit

0: Underflow exception is masked. R/W

1: Underflow exception is enabled.

b14 EX Inexact exception
enable bit

0: Inexact exception is masked. R/W

1: Inexact exception is enabled.

b25 to
b15

— Reserved When writing, write 0 to these bits. The
value read is always 0.

R/W

b26 FV*3 Invalid operation
flag

0: No invalid operation has been
encountered.

1: Invalid operation has been
encountered.*8

b27 FO*4 Overflow flag 0: No overflow has occurred. R/W

1: Overflow has occurred.*8

b28 FZ*5 Division-by-zero
flag

0: No division-by-zero has occurred. R/W

1: Division-by-zero has occurred.*8

b29 FU*6 Underflow flag 0: No underflow has occurred. R/W

1: Underflow has occurred.*8

b30 FX*7 Inexact flag 0: No inexact exception has been generated. R/W

1: Inexact exception has been generated.*8

b31 FS Floating-point
error summary
flag

This bit reflects the logical OR of the FU, FZ,
FO, and FV flags.

R

Notes: 1. When 0 is written to the bit, the bit is set to 0; the bit remains the previous value when 1 is written.
2. Positive denormalized numbers are treated as +0, negative denormalized numbers as –0.
3. When the EV bit is set to 0, the FV flag is enabled.
4. When the EO bit is set to 0, the FO flag is enabled.
5. When the EZ bit is set to 0, the FZ flag is enabled.
6. When the EU bit is set to 0, the FU flag is enabled.
7. When the EX bit is set to 0, the FX flag is enabled.
8. Once the bit has been set to 1, this value is retained until it is cleared to 0 by software.
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Floating Point Instructions

The RX63N uses eight floating point instructions to perform floating point operations. All
floating point instructions work on single precision floating point operands conforming to
IEEE754 standard. The floating point instructions are as follows:

FADD

Function: Adds two floating point operands and stores the result in the register file.
Operations performed: Immediate-Register and Register-Register.
Number of cycles taken: Four.

FADD Operation:

FADD R2, R4 (mop) fadd-1

(mop) fadd-2

(mop) fadd-3

(mop) fadd-4

Write to R4

IF D E

D E

D E

D E WB

Figure 3.13 FADD Operation (Register-Register, Immediate-Register) [1], Page 138.

FSUB

Function: Subtracts the second floating point operand from the first floating point
operand and stores the result in the register file.

Operation performed: Immediate-Register, Register-Register.
Number of cycles taken: Four.

FSUB Operation:

FSUB R2, R3 (mop) fsub-1

(mop) fsub-2

(mop) fsub-3

(mop) fsub-4

Write to R3

IF D E

D E

D E

D E WB

Figure 3.14 FSUB Operation (Register-Register, Immediate-Register) [1], Page 138.
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FCMP

Function: Compares the floating point operands and updates the status register based on
the results. The difference between FSUB and FCMP is that, FCMP does not store the re-
sult anywhere.

Operation performed: Immediate-Register, Register-Register.
Number of cycles taken: Four.

FSUB Operation:

FSUB R2, R3 (mop) fsub-1

(mop) fsub-2

(mop) fsub-3

(mop) fsub-4

Write to R3

IF D E

D E

D E

D E WB

Figure 3.15 FSUB Operation (Register-Register, Immediate-Register) [1], Page 138.

Floating Point Exceptions

The floating point exceptions are basically exceptions which arise due to inappropriate
floating point operations. According to IEEE 754 standard, there are five floating-point ex-
ceptions as follows:

� Overflow
� Underflow
� Inexact
� Division-by-zero
� Invalid Operation

Overflow

This exception occurs when the result of a floating-point operation is too large. Under such
circumstances, the result cannot be represented as a single precision floating point number
(32 bit) or a double precision floating point number (64 bit).

� The limits for signed single precision floating point numbers are 3.4E � 38 to
3.4E � 38.
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� The limits for unsigned single precision floating point numbers are 0 to 6.8E38.
� The limits for signed double precision floating point numbers are 1.7E � 308 to

1.7E � 308.
� The limits for unsigned double precision floating point numbers are 0 to

3.4E � 308.

If the result exceeds these limits, an overflow exception is raised.

Underflow

This exception occurs when the result is too small to be represented as a normalized
floating-point number.

Inexact

This exception occurs when the result is not a single precision floating point number.
Rounding off the result and using it as a single precision floating point number may cause
this exception.

Divide-By-Zero

This exception occurs when a floating point number is divided by zero.

Invalid Operation

This exception occurs when the result is ill-defined. For example, an operation leading to a
result which is �� (Infinty) or NaN (Not a number) could cause this exception.

For example, 1.0 / 0.0 � ��, 0.0 / 0.0 � NaN.
Floating point operations could result in a signaling NaN (SNan) or a quiet Nan

(QNaN). Each of these types of NaN and a description of when they generate exceptions
are described in the software user’s manual [2].

3.3 BASIC EXAMPLES

3.3.1 Operations Explaining Floating Point Exceptions

Before working on the RX63N’s FPU, it is important to take a look at the operations caus-
ing Floating Point Exceptions, so that they can be handled efficiently. The Floating-point
error summary flag (FS) notifies the programmer that an error (overflow, underflow, invalid
operation, inexact, or division-by-zero) has occurred.
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EXAMPLE 1

Overflow Exception

Consider the following example:

1. float a, c;
2. a = 999999969999999923.235;
3. c = a * 9999999999999969999999923.235;

The above operation causes an Overflow exception. To observe this exception, the contents
of the FPSW can be viewed using the Renesas HEW Integrated Development Environment
(IDE) tool.

Open up the HEW IDE tool, and in the debugging tool, click on the (Registers icon)
in the CPU Toolbox.

Figure 3.16 CPU toolbox.

For the above example, the FPSW was C8000100, where the Radix is Hexadecimal.

C 8 0 0 0 1 0 0

0000

0000

0001

0000

0000

0000

1000

1100

DN 5 1

FO 5 1

FX 5 1

FS 5 1

Figure 3.17 Example 1; FPSW.
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From the above example:

� DN � 1, where a denormalized number is handled as 0.
� FO � 1, where an overflow exception has occurred.
� FX � 1, where an inexact exception has been generated.
� FS � 1, where the logical OR of the exception flags, except inexact exception, is 1;

meaning an overflow/underflow/divide-by-zero/invalid operation exception flag
has been set.

EXAMPLE 2

Underflow Exception
Consider the following example:

1. float a, c;
2. a = 0.00000000000000000000000000000005623;
3. c = a * 0.00000000000000000000000001235431435234;

The above operation causes an Underflow Exception. The FPSW has the following value.

A 0 0 0 0 1 2 0

0000

0010

0001

0000

0000

0000

0000

1010

CU 5 1

DN 5 1

FU 5 1

FS 5 1

Figure 3.18 Example 2; FPSW.

From the above example:

� CU � 1, where an underflow operation has occurred.
� DN � 1, where a denormalized number is handled as 0.
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� FU � 1, where an underflow exception has occurred and the underflow flag has
been set.

� FS � 1, where the logical OR of the exception flags, except inexact exception, is 1;
meaning an overflow/underflow/divide-by-zero/invalid operation exception flag
has been set.

EXAMPLE 3

Divide-by-Zero Exception
Consider the following example:

1. float a, c;
2. a = 1.2;
3. c = a / 0;

The above code returns a divide-by-zero exception and the FPSW has the following value.

9 0 0 0 0 1 0 0

0000

0000

0001

0000

0000

0000

0000

1001

DN 5 1

FZ 5 1

FS 5 1

Figure 3.19 Example 3; FPSW.

From the above example:

� DN � 1, where a denormalized number is handled as 0.
� FZ � 1, where Division-by-zero flag has been set.
� FS � 1, where the Floating-point error summary flag has been set.
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EXAMPLE 4

Invalid Operation
Consider the following example:

1. float c;
2. c = 0.0 / 0.0;

The above code returns an Invalid Operation and the FPSW has the following value.

8 4 0 0 0 1 0 4

0100

0000

0001

0000

0000

0000

0100

1000

CV 5 1

DN 5 1

FV 5 1

FS 5 1

Figure 3.20 Example 4; FPSW.

From the above example:

� CV � 1, where an invalid operation has occurred.
� DN � 1, where a denormalized number is handled as 0.
� FV � 1, where an invalid operation exception has occurred and the invalid opera-

tion flag has been set.
� FS � 1, where the the floating-point error summary flag has been set.

3.4 ADVANCED CONCEPTS OF RX63N FLOATING POINT UNIT

3.4.1 FPSW in Detail

In order to perform complex floating point operations and handle floating point exceptions,
a detailed knowledge about the FPSW is important. The bits in the FPSW can be catego-
rized as follows:
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Rounding-Modes

By setting the FPSW.RM[1:0] bits, the floating point value or the result can be rounded to
0, ��, �� or the nearest value. The RM[1:0] bits represent the rounding-mode. By de-
fault, the values are rounded towards the nearest absolute value. Consider Table 3.2, for
RM[1:0] bit definitions.

TABLE 3.2 RM[1:0] Bit Definitions in FPSW [2], Page 27.

BIT SYMBOL BIT NAME DESCRIPTION

b1, b0 RM[1�0] Floating-point rounding-mode
setting bits

b1 b0

0 0: Round to the nearest value

0 1: Round towards 0

1 0: Round towards ��

1 1: Round towards ��

� Round to the nearest value: With this rounding-mode, the inexact value or the in-
exact result is rounded to the nearest absolute value. If two absolute values are
equally close, the result is the one with the even alternative.

� Round towards 0: With this rounding mode, the inexact value or the inexact result
is rounded to the smallest available absolute value in the direction of 0.

� Round towards ��: The inexact value is rounded to the nearest available value in
the direction of ��.

� Round towards ��: The inexact value is rounded to the nearest available value in
the direction of ��.

Cause Flags

In order to handle the floating point exceptions and floating point exceptions that are gen-
erated upon detection of unimplemented processing, the cause flags are used. When a
cause flag is set to 1, it means a corresponding exception has occurred. The bit that has
been set to 1 is cleared to 0 when an FPU instruction is executed.

The Cause Flags in the FPSW are:

� Invalid Operation Exception Cause Flag (CV)
� Overflow Exception Cause Flag (CO)
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� Underflow Exception Cause Flag (CU)
� Divide-By-Zero Exception Cause Flag (CZ)
� Inexact Exception Cause Flag (CX)
� Unimplemented Processing Cause Flag (CE)

Exception Flags

The Exception Flags are used to indicate the occurrence of exceptions. If the exception flag
is set to 1, it means the corresponding error has occurred. The exception flags available in
the FPSW are:

� Invalid Operation Flag (FV)
� Overflow Flag (FO)
� Underflow Flag (FU)
� Division-by-zero flag (FZ)
� Inexact Flag (FX)

Exception Handling Enable Bits

When any of the five floating point exceptions occur, the bit decides whether the CPU will
start handling the exception. When the bit is set to 0, the exception handling is masked.
When the bit is set to 1, exception handling is enabled.

The Exception Handling bits in the FPSW are:

� Invalid Operation Exception Enable bit (EV)
� Overflow Exception Enable bit (EO)
� Underflow Exception Enable bit (EU)
� Divide-by-zero Exception Enable bit (EZ)
� Inexact Exception Enable bit (EX)

Denormalized Number Bit

A denormalized number is a number of the form 1 � a�n, where a is the base of the num-
ber (2 for decimal numbers and 10 for binary numbers) and n is the exponent.

When the denormalized number bit (DN) is set to 1, a denormalized number is handled
as 0. When the DN bit is set to 0, the denormalized number is handled as a denormalized
number.

From the basic examples, it can be seen that the DN bit is set to 1 when an Overflow,
Underflow, Invalid Operation, or a Divide-by-zero exception occurs. This denotes that the
result of the operation cannot be handled as a denormalized number.

03.ES_Conrad_RX63N_Advanced_CH03.qxd:RX63N Advanced  3/4/14  12:03 PM  Page 62



CHAPTER 3 / FLOATING POINT UNIT AND OPERATIONS 63

Floating Point Error Summary Flag

The Floating Point Error Summary flag (FS) bit represents the logical OR of the following
Exception Enable bits:

� Invalid Operation Exception
� Overflow Exception
� Underflow Exception
� Divide-by-Zero Exception

Since the occurrence of inexact operation is common and is taken care of by the RM[1:0]
bits under certain circumstances, the FS bit does not reflect the occurrence of an inexact
operation.

Reserved Bits

The reserved bits are restricted for the programmer, as they are used by the microcontroller
itself. The reserved bits have a value of 0.

3.4.2 Floating Point Exception Handling Procedure

Though the floating-point exceptions appear similar to other exceptions, the handling rou-
tine for the floating-point exceptions vary slightly from that of other instructions. Floating-
point exceptions are of the lowest priority and handling the exceptions can be classified as
follows:

� Acceptance of the exception
� Hardware pre-processing
� Processing of the user-written code
� Hardware post-processing

Acceptance of the Exception

When a floating-point exception occurs, the CPU suspends the execution of the current
instruction and stores the PC value of the instruction that is generated by the exception
on the Stack. It is for this reason; the floating-point instruction is of instruction cancel-
ing type.
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Hardware Pre-Processing

The following steps take place during hardware pre-processing:

� Preserving the PSW
The value of the PSW is stored in the stack.
PSW V Stack

� Updating the PSW
The following bits are updated:
▫ I V 0
▫ U V 0
▫ PM V 0

� Preserving the PC
The value of the PC is stored in the stack.
PC V Stack

� Updating the PC
The PC is updated with branch-destination address fetched from the vector address
FFFFFFE4h in the fixed vector table. The processing is then shifted to the excep-
tion handling routine.

Processing of User-Written Program Code

The following steps take place while processing user-written code.

� Preserving general purpose registers
The contents of the general purpose registers are stored in the stack.
General purpose registers V Stack

� User code execution
Corresponding user code is executed. In general, the code is inserted in the
Excep_FloatingPoint() interrupt/function.

� General Purpose registers restoration
The contents of the general purpose registers are stored in the stack.
Stack V General purpose registers

� RTE Execution
After restoring the contents of the general-purpose registers, the Return from
Exception (RTE) is executed. This marks the end of exception handling. Following
this step will be hardware post-processing.
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Gereation of an exception event request

Exception request

The program is suspended
and the exception
is accepted

Instruction
A

Instruction
B

Instruction
C

Instruction
C

Instruction
D

Restarting of the program

• Instruction canceling type
(UND, PIE, ACE, and FPE)

• Instruction suspending type
(Reception of an EI during execution of the RMPA
instruction or a string manipulation instruction)

• Instruction completion type
(EI and TRAP)

Transition to the user mode when the
PM bit in the PSW is 1

Switch to the
supervisor mode

Hardware pre-processing

Processing of user-written program code

(For the fast interrupt)
BPC V PC
BPSW V PSW

(For exceptions other than the fast interrupt)
Stack V PC
Stack V PSW

. . . . .

(For the fast interrupt)
PC V BPC
PSW V BPSW
U 5 0
I 5 0
PM 5 0

(For exceptions other than the fast interrupt)
PC V Preserved on the stack (ISP)
PSW V Preserved on the stack (ISP)
U 5 0
I 5 0
PM 5 0

Read the
vector.

Branch to the
start of the

handler.

Exception handling
routine other than
the non-maskable
interrupt

Non-maskable
interrupt

Non-maskable
interrupt processing

End of the program or resetting of the system

General-
purpose
registers

preserved on
the stack

Restoration
of general-

purpose
registers

Handler
processing

(For the fast interrupt)
RTFI instruction

(For exceptions other than
the fast interrupt)
RTE instruction

Hardware post-processing

[Legend]
UND: Undefined instruction exception
PIE: Privileged instuction exception
ACE: Access exception
FPE: Floating-point exception
EI: Interrupt
TRAP: Unconditional trap

Figure 3.21 Exception handling procedure [1], Page 328.
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Hardware Post-Processing

The following steps take place during hardware post-processing:

� Restoring PC
The contents of the PC are restored from the Stack.
Stack V PC.

� Restoring PSW
The contents of the PC are restored from the Stack.
Stack V PC.

Following the exception handling routine, the program is restarted. Figure 3.21 explains
the exception handling procedure.

3.5 ADVANCED EXAMPLES

3.5.1 Fixed-Point and Floating-Point Operation Time Calculation

This example calculates the time taken for a single fixed-point operation and the time taken
for a single floating point operation based on switch presses. For example, if Switch 1 is
pressed, an Integer operation is carried out and the time taken for the operation is
displayed.

In order to calculate the operation time, we need a timer. Let’s say we are using timer 0
(TMR0), with a clock source of PCLK/2 (to be more precise). In order to calculate the time
taken, we initialize the timer and reset the Timer Counter (TCNT). The following would be
the function to initialize the timer.

1. void Init_Timer() {
2. MSTP(TMR0) = 0;
3. TMR0.TCR.BYTE = 0x40;
4. TMR1.TCR.BYTE = 0x00;
5. TMR01.TCCR = 0x180E;
6. TMR0.TCSR.BYTE = 0xE0;
7. TMR1.TCSR.BYTE = 0xE0;
8. TMR01.TCORA = 48000000 / 8192;
9. TMR01.TCNT = 0;

10. IR (TMR0, CMIA0) = 0;
11. IPR(TMR0, CMIA0) = 4;
12. IEN(TMR0, CMIA0) = 1;
13. }
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In Line 2 we are powering up the TMR unit using the appropriate Module Stop Control
Register. In lines 3 through 7 various timer control registers are set to cascade TMR 0 and
TMR 1, count at PCLK � 8192. In line 8 Timer Constant Register A (TCORA) is set. If
PCLK � 48 MHz and we are using PCLK � 8192 to increment the timer then one count �
8,192 � 48 � 170.667 us. One second � 48,000,000 � 8,192 � 5,859.375 counts. In
line 9 the Timer Counter register is cleared. In lines 10 through 12 the interrupt is reset, the
interrupt priority is set and the interrupt is enabled.

We will also need a function to reset the timer, which will deactivate the timer unit and
reset the timer counter.

1. void Reset_Timer(void) {
2. MSTP(TMR0) = 1; //Deactivate TMR0
3. TMR0.TCNT = 0x00; //Reset TCNT
4. }

The following code would be the main function:

1. void main(void) {
2.
3. char str [30];
4. int i;
5. long int int1, int2, int3;
6. float float1, float2, float3;
7. double double1, double2, double3;
8. int1 = 2; int2 = 3;
9. float1 = 2.0; float2 = 3.0;

10. double1 = 2.0; double2 = 3.0;
11. lcd_initialize();
12. lcd_clear();
13. lcd_display(LCD_LINE1, "RENESAS");
14. lcd_display(LCD_LINE2, "YRDKRX63N");
15. R_SWITCHES_Init();
16.
17. while (1) {
18.
19. if(SW1 == 0) { //If SW1 pressed
20. Init_Timer();
21. for(i = 0; i < 10; i++)
22. int3 = (int1 * int2);
23. sprintf((char*)str, "C:%d", TMR01.TCNT);
24. Reset_Timer();
25. lcd_display(LCD_LINE3, str);
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26. }
27.
28. else if(SW2 == 0) {
29. Init_Timer();
30. for(i = 0; i < 10; i++)
31. float3 = (float1 * float2);
32. sprintf((char*)str, "C:%d", TMR01.TCNT);
33. Reset_Timer();
34. lcd_display(LCD_LINE3, str);
35. }
36.
37. else if(SW3 == 0) {
38. Init_Timer();
39. for(i = 0; i < 10; i++)
40. double3 = (double1 * double2);
41. sprintf((char*)str, "C:%d", TMR01.TCNT);
42. Reset_Timer();
43. lcd_display(LCD_LINE3, str);
44. }
45.
46. else {
47. sprintf((char *)str, "Press any Switch");
48. lcd_display(LCD_LINE1, str);
49. }
50 }
51. }

In the previous code, consider the snippet from Line 19 to Line 26:

19. if(SW1 == 0) { //If SW1 pressed
20. Init_Timer();
21. for(i = 0; i < 10; i++)
22. int3 = (int1 * int2);
23. sprintf((char*)str, "C:%d", TMR01.TCNT);
24. Reset_Timer();
25. lcd_display(LCD_LINE3, str);
26. }

Line 20 initiates the timer and starts counting. Line 21 and line 22 perform integer multi-
plication for ten iterations. Since the time taken for iteration would be less, we consider ten
iterations and divide the result by 10. Similar to the above code snippet, the multiplication
operation is performed for float and double, and the value of the counter is found.
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From the above code, it was found that the operations performed take the following
time:

Int

Timer Count � 80

Time Taken �

Since we use clock and we perform ten iterations, we divide the timer count by

10 and (PCLK � 16.5 MHz here).

Therefore,

Time Taken � � 0.9696 	s

Float

Timer Count � 90

Therefore,

Time Taken � � 1.0909 	s

Double

Timer Count � 90

Therefore,

Time Taken � � 1.0909 	s
90

a10 �
16.5

2
b

90

a10 �
16.5

2
b

80

a10 �
16.5

2
b

PCLK

2

PCLK

2

Timer Count

a10 �
PCLK

2
b

03.ES_Conrad_RX63N_Advanced_CH03.qxd:RX63N Advanced  3/4/14  12:03 PM  Page 69



70 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

From the above example, the time taken for a floating point operation in the RX63N proces-
sor was found to be 1.0909 	s.

To observe the floating point instructions, one could follow the Source Address and
view the corresponding Disassembly by clicking the (View Disassembly) icon in the
HEW IDE debugger.

For example, consider the following figure.

266 FFFFCFFA f(i – 0; i < 10; i++)
227 FFFFD006 float3 = (float1 * float2);

Figure 3.22 Code snippet in view source tab.

FFFFD006 ED0E0C MOV.L 30H [R0],R14
FFFFD009 AB0D MOV.L 34H [R0],R5
FFFFD00B FC8FF5E FMUL R5,R14
FFFFD00E E70E0E MOV.L R14,38H [R0]
FFFFD011 ED0E08 MOV.L 20H [RO],R14
FFFFD014 621E ADD #1H,R14
FFFFD016 E70E08 MOV.L R14,20H [R0]
FFFFD019 ED0E08 MOV.L 20H [R0],R14
FFFFD01C 61AE CMP #0AH,R14
FFFFD01E 29E8 BLT.B 0FFFFD006H

Figure 3.23 Assembly code in view disassembly tab.

The above code generates the following assembly code after building/compilation:

3.5.2 Matrix Multiplication Time Calculation

Similar to the above example, let’s examine the time taken to calculate a simple 3 � 3 matrix.
In order to choose between int, float, and double, let’s use the following code for user-

friendliness:

1. void Init_Display() {
2.
3. char str [30];
4. sprintf((char *)str, "Matrix Mult");
5. lcd_display(LCD_LINE1, str);
6. sprintf((char *)str, "SW1: Int");
7. lcd_display(LCD_LINE2,str);
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8. sprintf((char *)str, "SW2: Float");
9. lcd_display(LCD_LINE3,str);

10. sprintf((char *)str, "SW3: Double");
11. lcd_display(LCD_LINE4,str);
12. }

The previous code above asks the user to choose the operation to perform. Pressing SW1
performs matrix multiplication with integer variables, whereas pressing SW2 and SW3
performs matrix multiplication using single precision and double precision floating point
variables. The multiply operations are defined below:

1. void int_Multiply(int matA[3][3], int matB[3][3], int matC[3][3]) {
2. int i, j, k;
3. for(i = 0; i < 3; i++)
4. for(j = 0; j < 3; j++)
5. for(k = 0; k < 3; k++)
6. matC [i][j] += matA [i][k] * matB [k][j];
7. }
8.
9. void float_Multiply(float matA[3][3], float matB[3][3], float

matC[3][3]) {
10. int i, j, k;
11. for(i = 0; i < 3; i++)
12. for(j = 0; j < 3; j++)
13. for(k = 0; k < 3; k++)
14. matC [i][j] += matA [i][k] * matB [k][j];
15. }
16.
17. void dbl_Multiply(double matA[3][3], double matB[3][3], double

matC[3][3]) {
18. int i, j, k;
19. for(i = 0; i < 3; i++)
21. for(j = 0; j < 3; j++)
22. for(k = 0; k < 3; k++)
23. matC [i][j] += matA [i][k] * matB [k][j];
24.}

In the previous code, lines 1 through 7 perform matrix multiplication using integers, lines
9 through 15 perform matrix multiplication using single precision floating-point numbers,
and lines 17 through 24 perform matrix multiplication using double precision floating-
point numbers.
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We use the Init_Timer() and Reset_Timer() functions discussed in the previous exam-
ple to activate and deactivate the timer unit.

The main function would be as follows:

1. void main(void) {
2.
3. char str [30];
4. int i, j;
5. int Timer_Count;
6. float time;
7. int int_matA [3][3],int_matB [3][3];
8. int int_matC [3][3];
9. float float_matA [3][3],float_matB [3][3];

10. float float_matC [3][3];
11. double dbl_matA [3][3], dbl_matB [3][3];
12. double dbl_matC [3][3];
13. for(i = 0; i < 3; i++)
14. for(j = 0; j < 3; j++)
15. int_matA [i][j] = j * 2;
16. for(i = 0; i < 3; i++)
17. for(j = 0; j < 3; j++)
18. int_matB [i][j] = (9 - j) * 2;
19. for(i = 0; i < 3; i++)
20. for(j = 0; j < 3; j++)
21. float_matA [i][j] = j * 1.1;
22. for(i = 0; i < 3; i++)
23. for(j = 0; j < 3; j++)
24. float_matB [i][j] = (9 - j) * 1.1;
25. for(i = 0; i < 3; i++)
26. for(j = 0; j < 3; j++)
27. dbl_matA [i][j] = j * 1.1;
28. for(i = 0; i < 3; i++)
29. for(j = 0; j < 3; j++)
30. dbl_matB [i][j] = (9 - j) * 1.1;
31. lcd_initialize();
32. lcd_clear();
33. R_SWITCHES_Init();
34. Init_Display();
35.
36. while (1) {
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37.
38. if(SW1 == 0) {
39. lcd_clear();
40. Init_Timer();
41. int_Multiply(int_matA, int_matB, int_matC);
42. Timer_Count = TMR01.TCNT;
43. Reset_Timer();
44. sprintf((char *)str, "Count:%d", Timer_Count);
45. lcd_display(LCD_LINE3, str);
46. Timer_Count = 0;
47. }
48.
49. if(SW2 == 0) {
50. lcd_clear();
51. Init_Timer();
52. float_Multiply(float_matA, float_matB, float_matC);
53. Timer_Count = TMR01.TCNT;
54. Reset_Timer();
55. sprintf((char *)str, "Count:%d", Timer_Count);
56. lcd_display(LCD_LINE3,str);
57. Timer_Count = 0;
58. }
59.
60. if(SW3 == 0) {
61. lcd_clear();
62. Init_Timer();
63. dbl_Multiply(dbl_matA, dbl_matB, dbl_matC);
64. Timer_Count = TMR01.TCNT;
65. Reset_Timer();
66. sprintf((char *)str, "Count:%d", Timer_Count);
67. lcd_display(LCD_LINE3, str);
68. Timer_Count = 0;
69. }
70. }
71. }

In the above code lines 13 through 30 initialize the matrices in corresponding data-type.
When switch 1 is pressed, the code enters line 38. The integer matrix multiplication
is performed at line 41 and the corresponding count is measured as the previous
example.
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From the previous example, the following results were observed:

Int

Timer Count � 112

Time Taken � � 1.3454 	s

Float

Timer Count � 197

Time Taken � � 2.3878 	s

Double

Timer Count � 198

Time Taken � � 2.4 	s

From the example, time taken to perform matrix multiplication of two 3 � 3 matrices was
found. Also, a slight difference in time taken to perform single precision and double preci-
sion floating point matrix multiplication operation was observed.

3.6 RECAP

In this chapter, the Floating Point Unit (FPU) used in the Renesas RX63N was analyzed in
detail, where the floating point instructions, floating point exceptions and floating point
registers were discussed.

By applying this knowledge about the FPU, the RX63N board can be used in signal
processing, image processing applications, and applications that require precise round-off

198

a10 �
16.5

2
b

197

a10 �
16.5

2
b

111

a10 �
16.5

2
b
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(for example, in applications involving currency, floating-point rounding off errors should
be considered in order to value currency as $$.cc where “$$” denotes the dollar value and
“cc” denotes the cent value) with an understanding of the time-memory tradeoff between a
microcontroller with an FPU and one without an FPU.

3.7 REFERENCES

[1] Renesas Electronics, Inc., RX63N Group, RX631 Group User’s Manual: Hardware, Rev 1.60, February

2013.

[2] Renesas Electronics, Inc., RX Family User’s Manual: Software, Rev 1.20, April 2013.

3.8 EXERCISES

1. Write a C program to identify different Floating Point Exceptions.
2. Consider the following operations:

Addition: 2.0 � 3.0
Multiplication: 2.0 * 3.0
Division: 2.0/3.0

Do different operations involving floating-point (addition, multiplication, and divi-
sion) take the same time to complete? Justify your answer. Use single precision
floating point numbers for the operations. Use Switch 1 (SW1), Switch 2 (SW2),
and Switch 3 (SW3) to perform Addition, Multiplication, and Division respec-
tively and display the time taken as the result.

3. Write a C program on the RX63N to calculate the time taken to perform the oper-
ations stated in Exercise 2. Use single precision floating point numbers for the op-
erations.

4. Implement Exercise 3 using double precision floating point numbers. Does it take
the same time as single precision floating point numbers? Justify your answer.

5. Identify the floating point instructions involved in single precision and double pre-
cision operations in Exercises 3 and 4 from the disassembly. Do they look alike?
Explain your answer.
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6. Write a C program on the RX63N to calculate the time taken to perform the in-
verse of the given matrix A.

A �

7. Multiply the inverted A matrix with B matrix given below. Identify the floating
point exceptions involved.

B �

0.001 2.400 0.120

3.143 2.743 4.901

0.917 �0.008 �2.001

1 2 3

3 2 1

1 0 �2

03.ES_Conrad_RX63N_Advanced_CH03.qxd:RX63N Advanced  3/4/14  12:03 PM  Page 76



Chapter 4

77

4.1 LEARNING OBJECTIVES

In this chapter the reader will learn:

� Multitasking, re-entrant functions
� Semaphores
� Message passing and memory management

4.2 BASIC CONCEPTS OF OPERATING SYSTEMS

4.2.1 Multitasking, Re-entrant Functions

The capacity and performance of today’s embedded systems have been increasing to
match the expanding requirements assigned to them. For example, smartphones perform
tasks once reserved only for general purpose computers. Most tasks that embedded sys-
tems are expected to perform need to be done at the same time. For example, an embed-
ded computer that controls an autonomous robot is expected to read the sensor data, as
well as send control data to the servos at the same time. How is this achieved?

Multitasking

Multitasking has long been a common feature of general purpose computing systems. As
the speed and memory of embedded processors has increased, it has become common to
find multitasking in today’s embedded systems.

When an operating system can run multiple tasks concurrently then it is said to be mul-
titasking. Advanced operating systems like Micri�m's MicroC/OS-III or FreeRTOS pro-
vide the user the ability to multitask. The ability of an operating system to multitask pro-
vides the designer with numerous of benefits. Complex tasks can be broken down into a

Advanced Operating System Usage
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large number of small tasks which can be run in parallel. When multitasking is handled by
the operating system the designer is free of implementing various timing and synchroniza-
tion logic, and can concentrate more on the core application logic.

When tasks execute simultaneously, new types of problems arise. One major problem
is shared data. One way of addressing this problem is using reentrant functions. A reentrant
function has three major characteristics:

1. A reentrant function may not use variables in a non-atomic way, unless they are
stored on the stack of the calling task, or are the private variables of that task.

2. A reentrant function may not call other functions that are not reentrant.
3. A reentrant function may not use the hardware in a non-atomic way.

FreeRTOS [1, 2] ships with many reentrant functions and libraries (it even includes third
party versions of common functions such as printf/sprint that are very light and reentrant in
nature). When the user includes libraries or functions that are not reentrant in nature, care
must be taken such that protection is provided using mutexes and semaphores.

4.2.2 Semaphores

The FreeRTOS kernel uses semaphores to solve the problem of shared memory. Two types
of semaphores are available: binary and counting. Binary semaphores take two values, 0
and 1; whereas counting semaphores can take a value between 0 to 2N-1, where N is the
number of bits used to address the semaphore.

Semaphore API functions permit the block time to be specified. This block time indi-
cates the maximum number of ‘ticks’ that a task should wait before entering the blocked
state when the semaphore is not immediately available. If more than one task waits on the
same semaphore, then the task with the highest priority is the task that is unblocked the
next time the semaphore becomes available.

Think of a binary semaphore as a queue that can only hold one item. Therefore the
queue can only be empty or full (hence binary). Tasks and interrupts using the queue do not
care what the queue holds. They only want to know if the queue is empty or full. This
mechanism can be exploited to synchronize. For example, it can be used for a task with an
interrupt.

SeveralAPI’s are available to manage semaphores in the FreeRTOS’s kernel; they have
the following general format:

vSemaphoreCreateBinary( xSemaphoreHandle xSemaphore )

This macro creates a semaphore by using the existing queue mechanism. The queue length
is 1, as this is a binary semaphore. The data size is 0 since no data is stored.
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4.2.3 Task Communication, Synchronization, and Memory Management

When tasks are concurrently running in an operating system, synchronization and commu-
nication between them is very important. The FreeRTOS uses the concept of queues to
achieve synchronization.

Queues are the primary form of inter-task communication. They can be used to send
messages between tasks, and between interrupts and tasks. In most cases they are used as
thread safe FIFO (First In First Out) buffers, with new data being sent to the back of the
queue, although data can also be sent to the front of the queue.

The FreeRTOS queue usage model manages to combine simplicity with flexibility,
which are attributes that are normally mutually exclusive.

The RTOS kernel allocates RAM each time a task, queue, mutex, software timer, or
semaphore is created. The standard C library malloc() and free() functions can sometimes
be used for this purpose, but do have the following short comings:

� They are not always available on embedded systems.
� They take up valuable code space.
� They are not thread safe.
� They are not deterministic (the amount of time taken to execute the function will

differ from call to call).

Hence an alternative memory allocation implementation is required.
An embedded/real time system can have very different RAM and timing requirements.

A single RAM allocation algorithm is only appropriate for a subset of applications.
To avoid problems, FreeRTOS keeps the memory allocationAPI in its portable layer. The

portable layer is outside of the source files that implement the core RTOS functionality, thus
allowing an application that is specific and appropriate for the real time system being devel-
oped. When the RTOS kernel requires RAM, instead of calling malloc() it calls pvPortMal-
loc().When RAM is being freed, instead of calling free(), the RTOS kernel calls vPortFree().

4.3 BASIC EXAMPLES

4.3.1 Example 1

Task structure of a task in FreeRTOS is as follows:

1. void vATaskFunction( void *pvParameters ) {
2. for( ;; ) {

//Task application code here
3. }
4. }
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4.3.2 Example 2

1. xSemaphoreHandle xSemaphoreCreateCounting(
2. unsigned portBASE_TYPE uxMaxCount,
3. unsigned portBASE_TYPE uxInitialCount
4. );

The previous example shows a macro that creates a counting semaphore by using the ex-
isting queue mechanism.

4.4 ADVANCED CONCEPTS OF OPERATING SYSTEM USAGE

4.4.1 Getting Started

The RX600 Series of microcontrollers is ideally suited for several embedded system de-
signs. The increasing complexity of these designs provides a need for intelligently manag-
ing the resources available. An infinite while loop might seem feasible for an application
that is small, such as communicating between an accelerometer that is connected to the
board by way of the UART. But when a complex application is considered, such as imple-
menting a webserver on the RX63N, having an operating system to provide abstraction is
very useful.

When an application has real time requirements, the need for a real time kernel be-
comes apparent. Real time requirements can be divided into two types:

� Soft real time requirements: These requirements have a deadline, but missing
this deadline does not result in catastrophic results. For example, dropping a few
frames during a web conference would decrease the quality of the rendered video
but would not crash the application.

� Hard real time requirements: These requirements have a deadline and missing
this deadline would cause the application to fail. For example the hardware in
the cruise control of a missile should have accurate timing to avoid catastrophic
results.

Developing embedded software without the use of real time kernels is possible, and in
fact seems easier and fast. But having a real time kernel provides a layer of abstraction for
the programmer by handling various intricate details such as task handling, and maintain-
ing memory consistency and coherence. As with all systems where abstraction has been
provided, this kernel adds an additional overhead to the system. Hence the user should
carefully evaluate whether having a real time kernel would increase the performance of
the application.
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FreeRTOS is a real time kernel that can be built on top of the RX63N applications to
meet real time requirements. The applications can be organized with multiple indepen-
dent threads of execution. The user can assign a higher priority to threads that implement
hard real time requirements, and lower priorities to threads that implement soft real time
requirements.

The FreeRTOS kernel has been ported to the RX600 Series of microcontrollers. The
features of the port are as follows:

� Preemptive or Cooperative operation
� Flexible task priority assignment
� Binary semaphores
� Counting semaphores
� Recursive semaphores
� Mutexes
� Tick hook functions
� Idle hook functions
� Stack overflow checking
� Trace hook macros
� Optional commercial licensing and support

FreeRTOS uses the software interrupt available on the RX63N. This kernel is not usable by
the application. It also requires the exclusive use of a timer peripheral, which is capable of
generating a fast periodic interrupt. The timer to use can be defined in a user defined call-
back function. By default the sample applications use the compare match timer zero CMT0
to generate this interrupt.

void vApplicationSetupTimerInterrupt( void );

The above is a prototype for the callback function the kernel calls to setup the timer
interrupt.

The memory footprint of FreeRTOS is very small. It usually consumes only about
6.5 K of RAM and a few hundred bytes of extra RAM. Some tasks also use RAM as the
task stack. FreeRTOS is an excellent kernel for users to experiment with. One major reason
is that it is open source. Because it is open source, any modifications made to the kernel
should remain open source, although the components of the application that the user has
developed can be closed source and can remain intellectual property.

The example zip files showing how to execute a sample application on the RX600
Series can be found at: http://www.freertos.org/Documentation/code/

The application can be loaded onto the RX63N board using the Renesas compiler and
the HEW application.
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4.4.2 Task Management

Tasks in the FreeRTOS kernel are usually implemented as C functions. These tasks should
return void and must take a void pointer parameter. The prototype is usually as follows:

void task( void *pvparameters );

The task can be considered a small program. Once execution of the task begins, it executes
forever. The following is an example of how a typical task structure would look:

1. void task(void *pvparameters) {
2. // The variables of a task can be declared as any
3. // normal variables each time the task is called the
4. // function will have its own copy of variables
5. int a,b;
6. while(1) {
7. //C ode to specify the functionality of the task goes here.
8. // The tasks are usually implemented as an infinite loop
9. }

10. // If the task manages to come out of the loop it should be
11. // deleted. The null parameter passed indicates that the
12. //particular task which has to be deleted has called this

function
13. vTaskDelete( NULL);
14. }

Task States

A task can be in several states. In the case of processers that have a single core in order
to execute tasks, the task being executed by the system is said to be in active state, while
the other tasks are said to be in dormant state. A task that is waiting to change from a dor-
mant state to an active state can be considered a ready task. When a task changes state to
active, it starts execution from the next instruction it was about to execute before it
switched states.

Task Creation

Tasks are Created in FreeRTOS using the xTaskCreate()API. This is the most complexAPI
in FreeRTOS and it is used extensively. The function prototype is as follows:

1. portBASE_TYPE xTaskCreate( pdTASK_CODE pvTaskCode,
2. const signed char* const pcName,

04.ES_Conrad_RX63N_Advanced_CH04.qxd:RX63N Advanced  3/4/14  8:19 PM  Page 82



CHAPTER 4 / ADVANCED OPERATING SYSTEM USAGE 83

3. unsigned short usStackDepth,
4. void *pvParameters,
5. unsigned portBASE_TYPE uxPriority,
6. xTaskHandle *pxCreatedTask
7. );

Every task is created in a ready state. The parameters within the function prototype provide
information about the task being created. For example the pvTaskCode is a pointer to the
code that defines the functionality of the task. A detailed explanation of all the parameters
can be found in the FreeRTOS reference manual.

Task Priorities

The uxPriority parameter of the xTaskCreate() API assigns an initial priority to the task be-
ing created. The priority can be changed after the FreeRTOS scheduler has been started us-
ing the vTaskPrioritySet() API. The maximum number of priorities available is user defined
and can be set in the FreeRTOSconfig. h.Any number of tasks can be assigned the same pri-
ority. Lower priority values denote a lower priority, with 0 being the lowest priority.

The periodic interrupt called the Tick Interrupt is used by the scheduler to assign time
slices to the tasks. The scheduler makes sure that the task with the highest priority gets the
time slice. The function of API prototype is to change the task priorities is as follows:

void vTaskPrioritySet( xTaskHandle pxTask, unsigned portBASE_TYPE
uxNewPriority);

pxTask � The handle of the task whose priority is being modified.
uxNewPriority � The priority to which the subject task is set.
The priority of the task can be queried by using the uxTaskPriorityGet() API.

Deleting a Task

A task can be deleted using the vTaskDelete() API. An interesting point to note here is that a
task can delete itself using thisAPI. Deleted tasks no longer exist and cannot enter the running
state. When a task is deleted, it is the responsibility of the task to free memory. The memory
allocated to the task by the kernel is freed automatically by the kernel; however, any resources
allocated to the task by the task implementation code must be explicitly freed by the task.

The function prototype for the API to delete tasks is as follows.

1. void vTaskDelete( xTaskHandle pxTaskToDelete )

pxTaskToDelete = The handle of the task to be deleted.
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Task Scheduling

FreeRTOS provides prioritized pre-emptive scheduling as well as co-operative scheduling.
The features of fixed prioritized preemptive scheduling are as follows:

� Each task is assigned a priority.
� Each task can exist in one of the several states.
� Only one task can exist in the running state.
� The scheduler always selects the task in the highest priority ready state to enter the

running state.

In this type of scheduling the kernel cannot change the priority of the tasks once they are
assigned. The tasks can change once the priorities are assigned to them.

4.4.3 Queue Management

Applications using the FreeRTOS kernel can be developed as independent tasks, which are
essentially small programs that run forever. For the application to be useful, these tasks
must communicate with each other. The main method of communication between these
tasks is the queue.

A Queue is a data storage mechanism that can hold a finite number of fixed size ele-
ments. The length of the queue defines the amount of data that can be stored. Usually
queues are FIFO in nature. The queues are entities in their own right and are not owned by
anyone. Multiple tasks can write to and read from the queue.

Queue Reads

Let us consider two tasks, A and B, which need to communicate with each other. This hap-
pens in FreeRTOS by the means of queues. Task A attempts to get data, which it requires
for its operation, by reading the data from the queue. The task specifies a block time; i.e.,
the maximum amount of time it will wait before it gets data from the queue (in case the
data is not available in the queue). The task waiting for data from the queue is put in
the blocked state by the scheduler and goes back to ready state when the data is available
in the queue.

Multiple tasks may attempt to read data from the queue; however, the scheduler un-
blocks only one task when data becomes available. The task that has the highest prior-
ity is unblocked. In scenarios where multiple tasks with the same priority are waiting
on the queue, the task that has been waiting for the longest amount of time is un-
blocked.
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If the data is not available by the end of the block time, the task is automatically set to
ready state by the scheduler.

Queue Writes

Writes to the queue are similar to the reads form the queue. Any task that attempts to write
to the queue specifies its own block time in case the queue is not empty. Multiple tasks may
attempt to write to the queue. The scheduler unblocks the task that has the highest priority
when there are multiple tasks with the same priority. The task that has been waiting for the
longest of time is unblocked first.

Creating a Queue

Queues in FreeRTOS must be created before they can be used. Queues can be created us-
ing the xQueueCreate() API command. This command creates queues with an xQueue-
Handle queue type and return value. RAM is allocated by FreeRTOS when a QUEUE is
created from the FreeRTOS heap. This RAM is used to store the queue data structures as
well as items in the queue. If no space is allocated, then the API will return null.

1. xQueueHandle xQueueCreate ( unsigned portBASE_TYPE uxQueueLength,
2. unsigned portBASE_TYPE uxItemSize
3. );

Where uxQueueLength = Maximumm number of items the queue can hold at ny time

uxitemSize � The size in bytes of each data item that can be stored in the queue

FreeRTOS provides API’s to move the data into the queue. The command xQueueSendTo-
Back() is used to send data to the back (tail) of a queue, and the command xQueue-
SendToFront()to send data to the front of a queue.

Other API’s that are useful when dealing with queues are as follows:

� xTicksToWait(): The maximum amount of time to wait in the blocked state can be
defined using this API.

� xQueueRecieve(): This API is used to receive an item from the queue and the item
received from the queue is deleted from the queue.

� xQueuePeek(): This API is used to remove an item from the queue without the
item being removed from the queue.

� uxQueueMessagesWaiting(): This API is used to query the number of items that
are currently in the queue.
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Compound Types

When working with queues, it is common for a task to receive data from multiple sources
on a single queue. For example, an embedded system may have a task that keeps track of
the health of the embedded system. This task has to receive data from various other tasks
that control various peripherals on the embedded system. Assuming all the tasks use a sin-
gle queue to communicate with each other in these cases, the receiver tasks must know
which queue items came from which task in order to determine the health of that particu-
lar peripheral. In order for the receiver to know which task it is receiving, the data struc-
ture of the queue contains the value of the data as well as the origin of the data.

The following example shows how a queue holds structures of type xData. The
structure in this example contains data values as well as a code indicating where the data
originated.

1. typedef struct {
2. int data;
3. int origincode;
4. } xData;

In the previous example, the variable data signifies the data the peripheral intends to trans-
fer, whereas the origin code specifies which peripheral is transferring the data.

When a huge amount of data needs to be transferred using queues, the pointers to the
data are transferred instead of the actual data. Care must be taken in this case so that that
the RAM the pointers point to is valid and consistent.

4.4.4 Interrupt Management

Interrupts form a crucial part of any non-trivial embedded system. Usually several periph-
erals are connected to the embedded system in order to transfer data to the main code; in
other words, the code that is running the primary application of the embedded system by
way of interrupts.

How much code should be placed in the ISR and how much should be placed in the
main code are two issues that should be considered while dealing with interrupts.
FreeRTOS provides API’s that can be used to implement the strategy chosen in a simple
and efficient manner.

The RX63N architecture and the FreeRTOS port allows the user to write ISR’s en-
tirely in C, even when the ISR wants a context switch. The exact syntax of the ISR de-
pends on the compiler being used. Another major issue is synchronization between the
tasks and ISR’s.
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Binary Semaphores for Synchronization

Binary semaphores can be used to unblock a task each time an interrupt related to that task
occurs. Thus, effective synchronization between the task and the interrupt is maintained.
The majority of the code handling the interrupt can be handled by the task, while only a
small portion of the code, which is fast, can be placed inside the ISR. One more advantage
of using this approach is that if the interrupt belongs to a critical operation, the priority of
the task that handles the interrupt code can be increased so that it is effectively serviced.
The context switch can be included inside the ISR so that the ISR returns directly to the
handler task once it completes execution.

Before a semaphore is used it must be created. The following API is used to create the
binary semaphore:

void vSemaphoreCreateBinary( xSemaphoreHandle xSemaphore)
xSemaphore � The semaphore actually being created.

Other important API’s while dealing with semaphores are the following:

xSemaphoreTake() : This semaphore can be used to take an available semaphore.
xTicksToWait(); This semaphore specifies the amount of time the semaphore
should be put in blocked state while waiting for the semaphore.

xSemaphoreGiveFromISR(): This API can be used to give back a semaphore.

One issue with using binary semaphores is that binary semaphores can latch, only one in-
terrupt event at a time. Any events that occurred before the latched event is processed are
lost. This problem can be avoided by using a counting semaphore instead of a binary sem-
aphore. When the event handler uses a semaphore each time an event occurs, the value of
the semaphore is incremented and the handler task takes a semaphore each time it
processes the event. This addition decrements the semaphore and each counting semaphore
has to be created with an initial value.

As shown by the following example, counting semaphores should be created with an
initial value. The API can be used to create counting semaphores.

1. xSemaphoreHandle xSemaphoreCreateCounting(
2. unsigned portBASE_TYPE uxMaxCount,
3. unsigned powerbase_TYPE uxIinitialCount
4. );

uxMaxCount—The maximum value the semaphore will count to.
uxInitialCount—The initial count value of the semaphore after it has been created.
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4.5 COMPLEX EXAMPLES

4.5.1 Task Management

The following example illustrates how to define and create tasks in FreeRTOS.

1. void task1(void *pvParameters) {
2. for(; ;) //infinite loop {
3. const char *name = "This is task1\n";
4. int i;
5. vprintString(name)
6. for(i = 0;i < main_delay_loop_count; i ++)
7. {} //a simple delay implementation
8. }
9. }

The previous example shows the implementation of a task in FreeRTOS. The following ex-
ample shows an example of two tasks.

10. void task2(void *pvParameters) {
11. for(; ;) { //infinite loop.
12. const char *name = "This is task2\n";
13. int i;
14. vprintString(name)
15. for(i = 0; i < main_delay_loop_count;i ++)
16. {} //a simple delay implementation
17. }
18. }

A simple implementation of the second task is shown in the previous example. These tasks
can be created from the main code of the program as follows:

19. int main(void) {
20. xTaskCreate(task1, //pointer to the task
21. "Task1 being created", //text info about the task for

debugging
22. 120, //stack depth in words
23. NULL, //there are no task parameters
24. 1, //The priority of the task is 1
25. NULL //task handle is not being used.
26. );
27. xTaskCreate(task2, "Task2 being created", 120, NULL, 1, NULL);
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28. vTaskStartScheduler(); //start the task scheduler.
29. for( ; ;);
30. }

4.5.2 Queue Management

The following example demonstrates how to create a queue and then send and receive data
from the queue:

1. static void sender( void *para) {
2. int val;
3. portBASE_TYPE xStatus;
4. val = (int) para;
5. while(1) {
6. xStatus = xQueueSendToBack(xQueue,

//queue to which data is sent
7. &val, //Address of the data that is being sent.

10. 0); //A block time of zero is being specified as the queue
//does not contain more than one element.

11. if(xStatus ! = pdPASS) { //This means that the send operation
//could not be completed as the queue is full.

12. vPrintString ("send operation failed\n");
13. }
14. taskYIELD(); //allow other tasks to execute.
15. }
16. }
17. static void receiver ( void *para) {
18. int recval;
19. portBASE_TYPE xStatus;
20. const portTickType xTicksToWait = 150;

//block time for the task
21. while(1) {
22. if(uxQueueMessagesWaiting( xQueue)!=0) {

//check-is the queue empty?
23. vPrintString ("Queue not empty\n");
24. }
25. xStatus = xQueueRecieve( xQueue,

//The queue to send the data
26. &recval, // address to store the received value
27. xTicksToWait ); //block time
28. if(xStatus == pdPASS) {
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29. vPrintStringAndNumber ("Received data is", recvalue);
30. }
31. else {
32. vPrintString ("Reception error");
33. }
34. }
35. }
36. xQueueHandle xQueue;
37. int main(void) {
38. xQueue = xQueueCreate(10, sizeof(int)); //create queue w/max

of 10 vals
39. if(xQueue!= NULL) {
40. //create an instance of sender task that writes a value 30
41. //continuously to the queue.
42. xTaskCreate(sender, "sender task1",120, (void*) 30,1,NULL);
43. //create an instance of sender task that writes a value 60
44. //continuously to the queue.
45. xTaskCreate(sender, "sender task2",120, (void*) 60,1,NULL);
46. //create a receiver task.
47. xTaskCreate(Receiver, "receiver task",120,NULL,2,NULL);
48. vTaskStartScheduler();
49. }
50. while(1);
51. }

4.5.3 Interrupt Management

The following example illustrates how to create a binary semaphore and use it to handle an
interrupt using FreeRTOS. For simplicity a simple periodic task is used to generate a soft-
ware generated interrupt.

1. static void ptask( void *para) {
2. while(1) {
3. //manually simulating the interrupt periodically.
4. vTaskDelay( 500/portTICK_RATE_MS);
5. mainTRIGGER_INTERRUPT();
6. }
7. }
8. static void handler (void *para) {
9. //create the semaphore that’s been already defined.
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10. xSemaphoreTake( xBinarySemaphore,0);
11. while(1) {
12. //use the semaphore to wait for the event
13. xSemaphoreTake(xBinarySemaphore, portMAX_DELAY);
14. vPrintString ("Handling the interrupt"); //process the

event
15. }
16. }

The interrupt ISR is written using the #pragma method which is a directive to the compiler
instructing it to build interrupthandler() as an interrupt handler and install it in the relevant
position of the interrupt vector table.

14. #pragma interrupt (interrupthandler(vect = _VECT(_CMT_CMT1 ),
enable))

15. static void interrupthandler(void) {
16. port_BASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
17. //give the semaphore back to unblock the task.
18. xSemaphoreGiveFromISR(xBinarySemaphore,

&xHigherPriorityTaskWoken);
19. portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
20. }
21. int main(void) {
22. vSemaphoreCreateBinary( xBinarySemaphore);
23. if(xBinarySemaphore! = NULL) {
24. //enable the peripheral interrupt used by

mainTRIGGER_INTERRUPT();
25. rvSetupSoftwareInterrupt();
26. xTaskCreate(handler, "handler task", 120,NULL,3,NULL);
27. xTaskCreate(ptask, "periodic task", 120,NULL,1,NULL);
28. vTaskStartScheduler();
29. }
30. while(1);
31. }

4.6 REFERENCES
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4.7 EXERCISES

1. Describe the differences between co-operative scheduling and pre-emptive
scheduling.

2. What kind of embedded applications usually require an operating system? Give
an example.

3. Give one method that FreeRTOS provides by means of which tasks can commu-
nicate with each other.

4. Give one way of addressing the problem of shared memory.
5. Give two disadvantages of using the C library functions malloc() and free().
6. Define soft real time requirements
7. Give an example of a hard real time requirement.
8. Explain how the priority of a task can be modified in FreeRTOS.
9. Explain the concept of queues in FreeRTOS.
10. What is the main issue that needs to be addressed while dealing with interrupts in

embedded systems?
11. Give one method of synchronization that can be used to synchronize interrupts.
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5.1 LEARNING OBJECTIVES

In this chapter the reader will learn:

� how signal conditioning and signal processing play an important role in embedded
applications. The RX DSP library has been introduced to reduce the development
time for the users, as the user need not build the filter from scratch but instead
would use the library functions.

� the type of functions available, data types supported, and naming convention of the
functions.

� initializing the DSP type hardware features that are available and calling the RX DSP
library functions.

5.2 BASIC CONCEPTS OF DIGITAL SIGNAL PROCESSING

Signal conditioning and signal processing play an important role in most embedded applica-
tions where analog values from sensors, microphones, etc. are used. In these embedded ap-
plications, digital signal processing is used to measure, filter, and/or compress continuous
analog signals. The first step is usually to convert the signal from an analog to a digital form
by sampling and then digitizing it using an analog-to-digital converter (ADC). After the con-
version is completed, a stream of digital data is available. DSP algorithms are used to filter
and compress the digital values.When these values are required by an application, the digital
values are converted back to analog signals using a digital-to-analog converter (DAC).

5.3 BASIC CONCEPTS OF RX DSP LIBRARY

The RX DSP library [1] has used the word kernel to refer to the common DSP functions
such as FIR filter and Fast Fourier Transform. This naming convention has been used to
avoid confusion between the common DSP functions and the functions used within them.
For example, the FIR kernel is one of the common DSP functions and it would, in turn,
have a number of functions within it.

Digital Signal Processing
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The RX DSP Library version 3.0 (CCRX) for High-performance EmbeddedWorkshop
Application Note [2] has additional information on building projects and library use. A
similar Application Note is available for the E2 Studio toolset.

5.3.1 DSP Library Kernels

The RX DSP library consists of a total of 35 kernels. These kernels include hundreds of
functions. The kernels are categorized into five types, which are: Statistical kernel, Filter
kernel, Transform kernel, Complex number kernel, and Matrix kernel. The functions of
each kernel include:

� Statistical kernels
▫ Mean
▫ Max/Min value
▫ Max/Min value with index
▫ Mean and Max Absolute Value
▫ Variance
▫ Histogram
▫ Mean Absolute Deviation
▫ Median

� Filter kernels
▫ Generic FIR
▫ IIR Biquad
▫ Leaky LMSAdaptive
▫ Lattice FIR
▫ Lattice IIR
▫ Single-pole IIR
▫ Generic IIR

� Transform kernels
▫ Forward Complex DFT
▫ Inverse Complex DFT
▫ Forward Real DFT
▫ Inverse Complex-conjugate-symmetric DFT
▫ Forward Complex FFT
▫ Inverse Complex FFT
▫ Forward Real FFT
▫ Inverse Complex-conjugate-symmetric FFT

� Complex number kernels
▫ Complex Magnitude
▫ Complex Magnitude squared
▫ Complex Phase
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▫ Complex Add
▫ Complex Subtract
▫ Complex Multiply
▫ Complex Conjugate

� Matrix kernels
▫ Matrix Add
▫ Matrix Subtract
▫ Matrix Multiply
▫ Matrix Transpose
▫ Matrix Scale

There are eight variants of the DSP libraries based on the combinations of the following
thee execution attributes:

1. With or without a Floating Point Unit
2. Little or Big Endian
3. With or without error handling

5.3.2 Data Types Supported and Data Structure

Data Types

The RX DSP library supports three data types:

1. 16-bit fixed point,
2. 32-bit fixed point, and
3. 32-bit floating point.

The input data, output data, and coefficients for all types of kernels in the DSP library are
assumed to have signed numerical format, even if it is known in advance that the kernel is
limited to non-negative values.

Data Structures

The RX DSP library defines the following three types of data structures: complex numbers,
vector and matrices, and algorithm kernel handles.

Complex Data

Complex data, as the name suggests, contains a real part and an imaginary part. The data
structure of complex numbers pairs two data values to form a single complex data element.
Structures can be defined for 16-bit fixed point (cplxi16_t), 32-bit fixed point (cplxi32_t)
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and 32-bit floating point (cplxf32_t). An example of a 16-bit fixed point complex data
structure is as follows:

1. typedef struct {
2. int16_t re;
3. int16_t im;
4. } cplxi16_t;

When using the DSP library, if a 16-bit fixed point data structure is needed, we can use the
above structure and define it as follows:

cplxi16_t inputData;

Vector and Matrices

Vector and matrix data structures contain vector or matrix dimensions, and a pointer to the
actual array.

A vector data structure pairs data and a pointer to an actual array of data. The user is re-
sponsible for allocating buffer memory for the vector data. A vector structure is defined as:

1. typedef struct {
2. uint32_t n;
3. void *data;
4. } vector_t;

Matrix data structures include two data values (row and column size), and a pointer to the
actual array of data. Similar to vectors, the user is also responsible for allocating buffer
memory for the matrix data. A matrix structure is defined as:

1. typedef struct {
2. uint16_t nRows
3. uint16_t nCols;
4. void *data;
5. } matrix_t;

Kernel Handles

All the information that is needed by the kernel from the user for its operation is aggre-
gated in a data structure called a handle. When the user wants to use a kernel, they
should set up all the elements of the handle specific to that kernel. Once completed, the
user can call the kernel by passing the pointer to the handle, inputting the start address,
outputting the start address, and other information required that may vary for each ker-
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nel. Users must not change the handle parameters anywhere in the program, without re-
initializing the Kernel. Examples for setting up a handle for FIR filter are discussed
later in this chapter.

Floating Point Exceptions

Whenever floating point data is to be used, it is advisable to check for floating point er-
rors. The library does not use an implicit floating point error checking mechanism. The
user is required to provide a floating point exception handling mechanism using the
IEEE Floating Point Standard.

5.3.3 Function Naming Convention and Arguments

All the functions used in the RX DSP library have a fixed naming convention as illustrated
in the following:

R_DSP_�kernel�[_variant][_function]_�intype��outtype�(arguments)

Or

R_DSP_�kernel�[_variant][_function]_�intype�(arguments)

In the example template, the components of the function name have the following
meanings:

R_DSP_ a fixed prefix that identifies the function as a component of the DSP
library.

�kernel� the name of the DSP kernel; e.g., “FIR” for an FIR filter kernel.
[_variant] an optional variation of the kernel. For example, Complex Magnitude

kernel has a “_Fast” variant, indicating a faster implementation.
[_function] an option that indicates that the function performs a setup or

management task, rather than the DSP algorithm processing. For
example, the FIR filter has an “_Init” function that initializes the
filter state.

�intype� & indicate the input and output data formats, respectively.
�outtype�

Input and output types can be:

� i16—16-bit fixed point
� ci16—Complex 16-bit fixed point
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� i32—32-bit fixed point
� ci32—Complex 32-bit fixed point
� f32—32-bit floating point
� cf32—Complex 32-bit floating point

Function Arguments

Once the handle elements are set up then the user only needs to pass the handle along with
other parameters to the specific kernel. In this section the user can see the arguments that
are passed with the functions. Function arguments can be fixed point or floating point.
Appropriate conversion should be provided to make sure that fixed point arguments receive
fixed point variables.

�handle�: a pointer to kernel handle data structure containing
kernel-specific state, coefficient, parameters and
options.

�input1� . . . �inputN�: one or more input arguments passed as pointers for
most data types, except scalar data. Scalar data values
may be passed directly.

�output1� . . . �outputN�: one or more output pointers.
�additional options�: any kernel parameters or options that are not included

in the kernel handle data structure.

Functions which return the size that needs to be allocated during runtime, such as when using
the command “malloc”, sometimes may also return a negative value, to indicate an error con-
dition. The “malloc” command expects a “size_t” parameter, which is unsigned data type.
Since our platform is 32 bit, therefore, therefore this will return a 32 bit value. As a general
rule, it is better to keep all size-related variables as 32 bit unsigned integers for the RX63N.

5.4 BASIC EXAMPLES

The examples provided in these sections give a basic idea on how to use DSP library func-
tions. The examples include functions for using the Finite Impulse Response (FIR) filter
and Fast Fourier Transform (FFT).

5.4.1 Finite Impulse Response (FIR) Filter

The block Finite Impulse Response (FIR) filter kernel operates on a user selectable number
of input samples and produces the same number of output samples each time it is invoked.
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The function format of the FIR filter which should be used for the function call is:

int32_t R_DSP_FIR_<intype><outtype> (const r_dsp_firfilter_t * handle,
const vector_t * input, vector_t * output)

Description

The block FIR filter kernels implements a finite impulse response filter on each input sam-
ple. The following equation shows the general structure of a T-tap FIR filter where h rep-
resents the coefficients, x represents the input data, and y represents the output data.

Each output sample is the result of performing a FIR filter of n taps. The FIR filter kernel
supports a number of input and output data types as shown in the previous example (for ex-
ample, 16-bit fixed point, 32-bit fixed point, 32-bit floating point). This is shown graphi-
cally in Figure 5.1.

y(n) � a
T�1

i�0
h(i) * x(n � i)

Z21 Z21 Z21 Z21

h0 h3

1

h1

1

h2

1

hT21

1

X[n]
X[n21] X[n22]

X[n2(T21)]

Y[n]

X[n] 2 input filter samples, h[n] 2 filter coefficients

Figure 5.1 FIR filter [1], page 47.

FIR Data Structure

All variants of the FIR kernel use a handle to the filter of type r_dsp_firfilter_t. This handle
is passed as part of the call to the filter. The data structure for the handle type is as follows:

1. typedef struct {
2. uint32_t taps;
3. void * coefs;
4. void * state;
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5. int32_t scale;
6. uint32_t options;
7. } r_dsp_firfilter_t;

Each member of the data structure is as follows:

� taps � Number of filter taps.
� coefs � Pointer to the coefficient vector (must be the same data type as the input

vector). The content of this array is maintained by the user.
� state � Pointer to the internal state of the filter, including the delay line and any

other implementation-dependent state. The memory for the internal state is allo-
cated by the user and the content of the internal state is maintained by the kernel.

� scale � Scaling factor for the output data. Results are right-shifted by scale prior
to writing the output to memory. The scale must be equal to the number of fraction
bits of coefficient.

� options �A bit-mapped parameter controlling options. See “Rounding and Satura-
tion Support” in software overview section ([1], page 17), for the definition of avail-
able modes. Currently, only rounding mode and saturation are supported for this.

The following example shows the initialization and run-time usage for the FIR filter with
real 16-bit fixed-point input and output data. A similar mechanism is used for the other data
formats (32-bit real fixed point, 32-bit real floating point, 16-bit complex fixed point,
32-bit complex fixed point, and 32-bit complex floating point).

Declaration

1. #define NUM_TAPS 10
2. #define NUM_SAMPLES 10
3. #define FRACTION_BITS 15
4. #define CONVERSION_CONST ((1 << FRACTION_BITS)-1)
5. static cplxi16_t myCoeffs[NUM_TAPS] = {

{(int16_t)(0.0029024*CONVERSION_CONST),(int16_t)(0.0210426*CONVERSION_CONST)},
{(int16_t)(0.0100975*CONVERSION_CONST),(int16_t)(0.0460262*CONVERSION_CONST)},
{(int16_t)(0.0098667*CONVERSION_CONST),(int16_t)(0.0547532*CONVERSION_CONST)},
{(int16_t)(0.0010075*CONVERSION_CONST),(int16_t)(0.0490032*CONVERSION_CONST)},
{(int16_t)(0.0149086*CONVERSION_CONST),(int16_t)(0.0336059*CONVERSION_CONST)},
{(int16_t)(0.0336059*CONVERSION_CONST),(int16_t)(0.0149086*CONVERSION_CONST)},
{(int16_t)(0.0490032*CONVERSION_CONST),(int16_t)(0.0010075*CONVERSION_CONST)},
{(int16_t)(0.0547532*CONVERSION_CONST),(int16_t)(0.0098667*CONVERSION_CONST)},
{(int16_t)(0.0460262*CONVERSION_CONST),(int16_t)(0.0100975*CONVERSION_CONST)},
{(int16_t)(0.0210426*CONVERSION_CONST),(int16_t)(0.0029024*CONVERSION_CONST)}
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};
6. static cplxi16_t inputData[NUM_TAPS - 1 + NUM_SAMPLES*2] = {

{0, 0},//x(-9), start of delayline
{0, 0},//x(-8)
{0, 0},//x(-7)
{0, 0},//x(-6)
{0, 0},//x(-5)
{0, 0},//x(-4)
{0, 0},//x(-3)
{0, 0},//x(-2)
{0, 0},//x(-1)
//start of 1st block input
{(int16_t)( 1.0000*CONVERSION_CONST),(int16_t)( 0.0000*CONVERSION_CONST)},//x(0)
{(int16_t)( 0.0530*CONVERSION_CONST),(int16_t)( 0.2662*CONVERSION_CONST)},//x(1)
{(int16_t)( 0.7877*CONVERSION_CONST),(int16_t)(-0.3263*CONVERSION_CONST)},//x(2)
{(int16_t)( 0.4080*CONVERSION_CONST),(int16_t)( 0.6106*CONVERSION_CONST)},//x(3)
{(int16_t)( 0.3210*CONVERSION_CONST),(int16_t)(-0.3210*CONVERSION_CONST)},//x(4)
{(int16_t)( 0.8155*CONVERSION_CONST),(int16_t)( 0.5449*CONVERSION_CONST)},//x(5)
{(int16_t)(-0.0300*CONVERSION_CONST),(int16_t)( 0.0725*CONVERSION_CONST)},//x(6)
{(int16_t)( 0.9202*CONVERSION_CONST),(int16_t)( 0.1830*CONVERSION_CONST)},//x(7)
{(int16_t)( 0.0000*CONVERSION_CONST),(int16_t)( 0.5878*CONVERSION_CONST)},//x(8)
{(int16_t)( 0.6072*CONVERSION_CONST),(int16_t)(-0.1208*CONVERSION_CONST)},//x(9)
//start of 2nd block input
{(int16_t)( 0.3536*CONVERSION_CONST),(int16_t)( 0.8536*CONVERSION_CONST)},//x(10)
{(int16_t)( 0.0977*CONVERSION_CONST),(int16_t)(-0.0653*CONVERSION_CONST)},//x(11)
{(int16_t)( 0.6984*CONVERSION_CONST),(int16_t)( 0.6984*CONVERSION_CONST)},//x(12)
{(int16_t)(-0.2326*CONVERSION_CONST),(int16_t)( 0.3481*CONVERSION_CONST)},//x(13)
{(int16_t)( 0.7025*CONVERSION_CONST),(int16_t)( 0.2910*CONVERSION_CONST)},//x(14)
{(int16_t)(-0.1622*CONVERSION_CONST),(int16_t)( 0.8155*CONVERSION_CONST)},//x(15)
{(int16_t)( 0.3090*CONVERSION_CONST),(int16_t)( 0.0000*CONVERSION_CONST)},//x(16)
{(int16_t)( 0.1949*CONVERSION_CONST),(int16_t)( 0.9800*CONVERSION_CONST)},//x(17)
{(int16_t)(-0.2157*CONVERSION_CONST),(int16_t)( 0.0893*CONVERSION_CONST)},//x(18)
{(int16_t)( 0.4847*CONVERSION_CONST),(int16_t)( 0.7255*CONVERSION_CONST)},//x(19)
};

7. static cplxi16_t outputData[NUM_SAMPLES*2];
8. static int32_t myScale = FRACTION_BITS;

Main Function

9. void main(void) {
10. status = sample_dsp_fir();
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11. if(status < 0) return;
12. while(1);
13. }

Sample_dsp_fir()

14. int32_t sample_dsp_fir (void) {
15. r_dsp_firfilter_t myFilterHandle;
16. vector_t myInput;
17. vector_t myOutput;
18. int32_t myFIRFlags = R_DSP_STATUS_OK;
19. myFilterHandle.taps = NUM_TAPS;
20. myFilterHandle.scale = myScale;
21. myFilterHandle.options =(R_DSP_SATURATE | R_DSP_ROUNDING_

NEAREST);
22. myFilterHandle.state = (void *)&inputData[0];
23. myFilterHandle.coefs = (void *)myCoeffs;
24. myFIRFlags = R_DSP_FIR_Init_ci16ci16(&myFilterHandle);
25. if(myFIRFlags != R_DSP_STATUS_OK)
26. return myFIRFlags;
27. myInput.n = NUM_SAMPLES;
28. myInput.data = (void *)&inputData[NUM_TAPS - 1];
29. myOutput.data = (void *)outputData;
30. myFIRFlags = R_DSP_FIR_0063i16ci16(&myFilterHandle, &myInput,

&myOutput);
31. if(myFIRFlags != R_DSP_STATUS_OK)
32. return myFIRFlags;
33. myFilterHandle.state = (void *)&inputData[NUM_SAMPLES];
34. myInput.data= (void *)&inputData[NUM_TAPS - 1 + NUM_SAMPLES];
35. myOutput.data = (void *)&outputData[NUM_SAMPLES];
36. myFIRFlags = R_DSP_FIR_ci16ci16(&myFilterHandle, &myInput,

&myOutput);
37. if(myFIRFlags != R_DSP_STATUS_OK)
38. return myFIRFlags;
39. return myFIRFlags;
40. }

The explanations for the FIR code example are as follows:
Lines 1 to 4 define the macro for number of taps, sample, fraction bits, and conversion

constant. Line 5 stores the coefficient in time-reversed order. Line 6 stores the input in time-
sequential order with delay followed by first block input and second block input. Line 7
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declares an output array of size 2*number of samples (20), which could store two blocks of
output. Line 8 sets the scale number of fraction bits of the coefficient. Line 9 is the start
of the main function. Line 10 calls the sample_dsp_fir function storing the return value of
the function in a variable status. Line 11 determines if the value of status variable is less than
zero and if the condition is true returns the control.

In sample_dsp_fir function, line 15 declares a member to the structure r_dsp_firfilter_t.
Line 16 through 17 declare an input vector and output vector. Line 18 declares a variable
myFIRFlags which is used to store status of the process. Line 19 through 23 assign values
to the members of r_dsp_firfilter_t (refer to FIR data structure section in earlier part of
this chapter). Line 27 through 29 sets up the input and outputs block and waits for the
first block of inputs. Line 30 processes the first block of input by calling the function
R_DSP_FIR_ci16ci16 passing the address myfilterHandle, input and output. Line 34
through 35 sets up the input and outputs block and waits for the first block of inputs.
Line 36 processes the second block of input by calling the function R_DSP_FIR_ci16ci16
passing the address myfilterHandle, input and output. At this point myoutput.n holds the
number of output samples generated by library, where the data are written to the array
pointed to myOutput.data.

5.4.2 Matrix Multiplication

The RX DSP library provides built-in functions for matrix addition, subtraction, multipli-
cation, transpose and scale which the user can simply implement by calling these func-
tions. Using these functions directly instead of developing code for them saves time for the
user and at the same time implements the functionalities with fewer instructions, thereby
improving performance.

The example provided in this section is for matrix multiplication. By going through this
section, the reader should be able to use the other matrix kernel functions effectively. This
function performs the multiplication of two matrices, and generates a matrix product. The first
input matrix is the multiplicand; the second is the multiplier. The jth element in the ith row of
the matrix product is the dot product of the ith row of the multiplicand, and the jth column of
the multiplier. In general, a matrix multiply is not commutative; specifically the multiplicand
and multiplier cannot be exchanged. The number of columns of the multiplicand should be
identical to the number of rows of themultiplier. The output matrix should have the same num-
ber of rows as the multiplicand, and the same number of columns as the multiplier.

Function Call Format

int32_t R_DSP_MatrixMul_<intype><outtype>
(const matrix_t* inputA, const matrix_t* inputB, matrix_t* output,
scale_t shift, uint16_t options)
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where

<intype> input type of matrix elements
<outtype> output type of matrix elements
matrix_t* inputA Pointer to first input matrix
matrix_t* inputB Pointer to the second input matrix
matrix_t* output Pointer to the output matrix
scale_t shift Scaling factor for the output data (i.e. right shift answer)
uint16_t options A bit-mapped parameter controlling option, associated with

rounding mode and saturation.

Parameters used in matrix multiplication functions:

inputA Pointer to the multiplicand matrix. Neither the matrix structure nor
the actual data pointed to in the structure is altered by the function.

inputAVnRows Number of rows of the matrix. This value is read by the function.
inputAVnCols Number of columns of the matrix. This value is read by the

function.
inputAVdata Pointer to the first element of the matrix.
inputB Pointer to the multiplier matrix. Neither the matrix structure nor

the actual data pointed to in the structure is altered by the
function.

inputBVnRows Number of rows of the matrix. This value is read by the function.
inputBVnCols Number of columns of the matrix. This value is read by the

function.
inputBVdata Pointer to the first element of the matrix.
output Pointer to the output matrix. Both the matrix structure and the

actual output data are altered by the function.
outputVnRows Number of rows of the matrix. This value will be updated by the

function.
outputVnCols Number of columns of the matrix. This value will be updated by

the function.
outputVdata Points to the first element of the output matrix. The whole matrix

will be overwritten by the function.
shift This scaling factor depends on the particular implementation, but

usually means right-shifting the output number a specified number
of bits. A zero here means the output is not scaled.

options The controlling options determine rounding mode: truncated
(default) or nearest as well as saturate (default) or no-saturate. A
“NULL” in this field selects the defaults.
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Description

To explain how the matrix multiplication kernel function works we have used two input
matrixes A and B; the product of the input matrixes is stored in matrix C. The working op-
eration of the function is as follows:
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Figure 5.2 Matrix Multiply [1], page 138.

where N is A’s number of rows.M is A’s number of columns, and B’s number of rows. K is
B’s number of columns. The matrix product will have N rows and K columns.

The code example below explains setting up the handle and the parameters required to
call the R_DSP_MatrixMul() function. In this example, we simply fill a matrix with some
numbers as a demonstration; you, of course, would need to fill the matrices with your valid
data!

1. #define NUM_ROWS_A 4
2. #define NUM_COLUMNS_A 4
3. #define NUM_ROWS_B 4
4. #define NUM_COLUMNS_B 4
5. int32_t dataLeft[NUM_ROWS_A * NUM_COLUMNS_A];
6. int32_t dataRight[NUM_ROWS_B * NUM_COLUMNS_B];
7. int32_t dataOut[NUM_ROWS_A * NUM_COLUMNS_B];
8. matrix_t channLeft;
9. matrix_t channRight;

10. matrix_t channOut;
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11. scale_t shift; //scaling factor
12. r_dsp_status_t my_status; //holds status of multiply
13. int i; //used as a counter
14.
15. //fill the matrices
16. for (i = 0; i < (NUM_ROWS_A * NUM_COLUMNS_A); i++) {
17. channLeft[i] = 2;
18. channLeft[i] = 3;
19. }
20.
21. // set up the function parameters
22. shift.i32 = 0; //do not scale the result of the multiply
23. channLeft.data = (void *) dataLeft;
24. channRight.data = (void *) dataRight;
25. channLeft.nRows = NUM_ROWS_A;
26. channLeft.nCols = NUM_COLUMNS_A;
27. channRight.nRows = NUM_ROWS_B;
28. channRight.nCols = NUM_COLUMNS_B;
29. channOut.data = (void *) dataOut;
30. R_DSP_MatrixMul_i32i32 (&channLeft, &channRight, &channOut,shift,

NULL);
31. //if an error occurred, you should have a function to handle
32. if (my_status != R_DSP_STATUS_OK) error();

Explanation

Lines 1 to 4 are macro definitions for number of columns and rows. Lines 5 through 7 de-
clare two input and one output arrays of size, number of rows * number of columns.
Line 8 through 10 declare three variables channLeft(input), channRight(input), and chan-
nOut(output) with data type as a matrix which is a structure. Line 11 creates the scaling
variable that will later be used in the multiply function call. Line 12 allocates the variable
for the return status of the multiply operation. Lines 16 through 19 simply fill the matrices
with example data.

Line 22 assigns 0 as the scaling factor (no right-shift of the resultant multiply). Line 23
assigns the data variable of channLeft structure to one of the input arrays (dataLeft).
Line 24 assigns the data variable of channRight structure to another input array
(dataRight). Lines 25 and 26 assign the nRows and nCols variable of channLeft structure
to number of rows and columns of input A respectively. Lines 27 and 28 assign the nRows
and nCols variable of channRight structure to number of rows and columns of input B re-
spectively. Line 29 assigns the data variable of channOut to the output array.
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Line 30 calls the R_DSP_MatrixMul_i32i32 () function, passing the pointer to two
input matrixes and one output matrix. In the function parameters i32i32 denotes that in-
put and output are both 32-bit fixed point. If the input has to be changed to 16-bit fixed
then i16i32 should be used. Line 32 is needed to see if the multiply operation was suc-
cessful, otherwise your own error handling function should gracefully recover from this
error.

The DSP Library does not treat matrices like we conventionally treat them in C. Hence
matrices can be stored or accessed considering them as an array of size rows * columns.

5.4.3 Fast Fourier Transform (FFT)

The RX DSP library provides a built in Fourier Transform Kernel which helps in estimat-
ing and calculating the spectrum of the signal. This section describes how to use this API
and its functions using handles as described earlier. DSP library offers API for Discrete
Fourier Transform (DFT) as well as Fast Fourier Transform (FFT). In this section we pri-
marily discuss how to use the FFT kernel with a real time input signal given to the board.

The Fourier Transform converts a time domain signal to frequency domain. The In-
verse Fourier Transform does the opposite; it converts the frequency domain signal back to
time domain. The only difference between DFT and FFT is that FFT utilizes a much faster
algorithm, and hence is more efficient in terms of speed than DFT. FFT is most efficient
when the number of samples taken is a power of 2. The RX DSP library facilitates any
number of samples between 16 and 8192. The order of the FFT refers to the base-2 of the
logarithm of points in the transform.

Important header files needs to be included before we can use the transform kernel.

#include "r_dsp_transform.h"
#include "r_dsp_types.h"

R_dsp_transform.h provides, the kernel definitions for FFT, and r_dsp_types.h provides
the structure definitions for all data structures used in the library.

There is some preliminary setup involved before we can use FFT kernel. Since the FFT
algorithm requires twiddle factors and bit reverse LUT’s, we need to allocate memory for
these. It is advisable to allocate this memory dynamically. The number of twiddle factors
required is equal to the number of points in the transform. First we declare static variables
for holding the sizes of the twiddle array and the LUT’s.

static size_t ntwb;
static size_t nbrb;
static size_t nwkb;
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The handle for the kernel can be initialized with N being the points in the transform and us-
ing default options initially, which can be later overwritten.

//default options set, handle h defined.
static r_dsp_fft_t h = {N, 0};

Vector data needs to be defined to hold the time domain data and frequency domain
samples.

vector_t vtime = {N, (void *)buf_time};
vector_t vfreq = {N/2, (void *)buf_freq};

Time domain data can be filled up with values taken real time from an ADC.

vtime.data = (void *)adc_volts;

Notice that our output signal contains only N/2 elements, because the Fourier transform of
a real valued signal is a complex conjugate symmetric array. Hence only N/2 elements are
needed to completly define the Fourier transform as the remaining elements are redundant.

For allocating memory to twiddles, we first call a function to determine the size of the
array needed. This function is called in runtime, hence memory is allocated dynamically.

R_DSP_FFT_BufSize_i32ci32(&h, &ntwb, &nbrb, &nwkb);
h.twiddles = ntwb ? malloc(ntwb) : NULL; //
h.bitrev = nbrb ? malloc(nbrb) : NULL;
//we are not using any windowing. If windowing is used, then
//window size needs to be determined separately
h.window = NULL;

We can use options to scale the data at each stage, if the data is expected to be too large.
This is optional but not necessary.

h.options = R_DSP_FFT_OPT_SCALE;

After allocating the memory, we need to initialize the handle.

status = R_DSP_FFT_Init_i32ci32(&h);

status is the return type of the handle. It is used for debugging purpose and to check if the
function call is successful. If it is successful, it will return R_DSP_STATUS_OK. Hence
we can use this as an error checking condition as follows:
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if (status != R_DSP_STATUS_OK){ // check if everything is okay
error();

}

After the initialization is done, we just need to call the initialized handle using the function
call as follows:

// take the actual transform, data stored in vector vfreq
status=R_DSP_FFT_i32ci32(&h, &vtime, &vfreq);

This function calls, puts the transform coefficients in vector vfreq, which points to an array
buf_freq, which we initialized in the starting. This is called out-of-place normal order cal-
culation. It is referred to as out of place because a different vector is being used for storing
the output. If the same input vector, is used for storing the output result as well (in which
case the original vector will be overwritten) then, it is called in-place computation.

The Fourier coefficients stored in the output array may consist of complex values, es-
pecially if the input is a real valued signal, as mentioned above. In that case, the output
consists of interleaved real and complex data. For example, if one element of the array is a
32 bit unsigned integer then the most significant 16 bits consist of the real part and least
significant 16 bits consist of complex data.

It is necessary to take care of the data format being used. The Library implicitly treats all
data as signed integers, and hence care needs to be taken while dealing with unsigned integers.

5.5 RECAP

The RX_DSP library provides 36 kernel functions. The RX_DSP library uses kernel in
place of function to avoid the confusion between the major functions and the function used
inside the major functions. For example, the library uses the FIR kernel and all the functions
inside the FIR kernel as functions. All the function calls define the input type, output type
for all kernels and arguments of function which differ to each kernel. The handle is used to
set up the required values for a kernel and the pointer to the handle is passed along with the
function. The examples provide the explanation of FIR, matrix multiplication, and Fast
Fourier Transform kernels.

5.6 REFERENCES
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5.7 EXERCISE

1. What is the difference between a kernel and a function in the RX DSP library?
2. Provide the function call instruction used for FIR filter with input type as 16-bit

fixed point and output type as 32-bit fixed point. Also explain the function argu-
ments used in the function call.

3. All variants of the FIR kernel use a handle to the filter of type r_dsp_firfilter_t.
Provide the data structure of the handle and an explanation of the structure
member.

4. The RX DSP library consists of how many functions?
5. Is the following an example of a valid 16-bit floating-point complex data struc-

ture? Why or why not?

typedef struct{
int16_t re;
int16_t im;

} cplxf16_t;
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6.1 LEARNING OBJECTIVES

Direct Memory Access (DMA) is a feature of microcontrollers and microprocessors that
allows hardware subsystems to access system memory directly without depending on the
central processor. For example, large blocks of data can be directly transferred from the
RAM subsystem to a video memory subsystem.

In this chapter we will learn:

� Fundamentals of DMA.
� How it helps the efficiency and execution throughput of a microcontroller system.
� How to implement the DMAC hardware for transfers.

6.2 BASIC CONCEPTS

A DMA Controller (DMAC) is a device that controls the system bus and directly transfers
information from one part of the system to another. This transfer task is often necessary be-
cause large blocks of data must be rapidly moved, sometimes at speeds that are faster than
is practical if the central processor is involved. The DMAC is a module used to transfer
data without the Central Processing Unit (CPU) processing each data byte directly. When
a DMA transfer request is generated, the DMAC transfers data stored at the transfer source
address to the transfer destination address.

There is a difference in performance when there is a processor involved between huge
memory transfers and when there is only a DMAC involved. When a processor is involved
in large memory transfers, the overall data transfer is slower since the data transfer rate is
largely dependent on the processor. This is because with every byte or word of data trans-
ferred, the processor must fetch the instruction, calculate the from/to addresses, fetch the
data, and write the data. When DMAC is used, data transfers are independent of the proces-
sor, are interrupt-based, use dedicated hardware for addressing, and are thus faster. DMA
based data transfers have considerably less overhead, making them very efficient. When
DMA is used, the processor is free to perform other important tasks while the data transfer
takes place independently (Figure 6.1).

Direct Memory Access Controller
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Displaying pictures on a video screen is one example. Displaying pictures on a typical
monitor requires a complete refresh scan (one frame) of the screen 60 times a second. If a
screen is 1280 by 800 pixels and each pixel requires 3 bytes to define its color, then over
184 million bytes need to be moved every second. For a computer to perform efficiently, it
needs additional circuitry to read and write these bytes. Quite a few methods are available
to accomplish this, but one solution is to store these bytes in a special display memory with
built-in scanning circuitry and an arbitration scheme between the memory accessed by the
CPU and the memory accessed by scanning the circuitry. A bus arbitration scheme is used
to manage the multiple devices that try to master the bus simultaneously. This solution is
used today by graphics RAM. This solution is commonly called a frame buffer.

Due to demanding repetitive timing constraints, DMA is not recommended for directly
scanning the regular memory for video displays. This method is, however, one of the most
preferred methods for quickly transferring information. For example, DMA is often used
when a picture or part of a picture needs to be moved quickly between memory and the
frame buffer. It is also widely used when the buffer contents for a hard disk or a flash drive
need to be quickly transferred to new locations.

Another example of using DMA is configuring the analog to digital converter (ADC)
to continuously sample data and transferring the data directly into RAM.

In general, the DMAC is used as follows:

1. The DMAC is instructed to make a transfer either by the CPU or a peripheral.
2. The DMA requests the controller to gain control of the bus from the CPU, other

processors, or controllers which might currently be using the bus.
3. The devices relinquish control of the bus and put their lines into a tri-state condition.
4. The DMAC takes over the bus, generating its own control signals and address for

the bus.
5. The DMAC executes the information transfer.
6. The DMAC relinquishes control of the bus, often informing the CPU it has com-

pleted the transfer via an interrupt.

DATA

CONTROL

CPU
COMPLEX

DMA
CONTROLLER

DEVICE BDEVICE A

ADDRESS

Figure 6.1 General DMAC block diagram.
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Table 6.1 contains the general specifications of the DMAC. The RX63N/RX631 Group
uses a four-channel direct memory access controller (DMAC). Of interest is the identifica-
tion of three modes of operation: Normal Transfer Mode, Repeat Transfer Mode, and
Block Transfer Mode.

TABLE 6.1 Specifications of DMAC [1], page 518.

ITEM DESCRIPTION

Number of channels 4 (DMACm (m � 0 to 3))

Transfer space 512 Mbytes
(0000 0000h to 0FFF FFFFh and F000 0000h to FFFF FFFFh excluding reserved
areas)

Maximum transfer volume 1 Mbyte
(Maximum number of transfers in block transfer mode: 1,024 data � 1,024
blocks)

DMA request source � Activation source selectable for each channel
Software trigger
Interrupt requests from peripheral modules or trigger input to external
interrupt input pins

Channel priority Channel 0 � Channel 1 � Channel 2 � Channel 3 (Channel 0: Highest)

Transfer data Single data Bit length: 8, 16, 32 bits

Block size Number of data: 1 to 1,024

Transfer mode Normal transfer
mode

� One data transfer by one DMA transfer request
� Free running mode (setting in which total number of data transfers is not
specified) settable

Repeat transfer
mode

� One data transfer by one DMA transfer request
� Program returns to the transfer start address on completion of the repeat
size of data transfer specified for the transfer source or destination

� Maximum settable repeat size: 1,024

Block transfer mode � One block data transfer by one DMA transfer request
� Maximum settable block size: 1,024 data

Selective functions Extended repeat
area function

� Function in which data can be transferred by repeating the address values
in the specified range with the upper bit values in the transfer address
register fixed

� Area of 2 bytes to 128 Mbytes separately settable as extended repeat area
for transfer source and destination

Interrupt request Transfer end
interrupt

Generated on completion of transferring data volume specified by the transfer
counter

Transfer escape end
interrupt

Generated when the repeat size of data transfer is completed or the extended
repeat area overflows

Power consumption reduction function Module-stop state can be set
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Important DMAC Registers

The block diagram of the Renesas RX63N DMAC is shown in Figure 6.2. The DMAC re-
ceives its control register settings from the Internal Main Bus 2 and uses Internal Periph-
eral Bus 1 to control the peripheral devices for a DMA transfer. The CPU must set several
control registers in order to start the transfers. The four DMACs are labeled DMAC0
through DMAC3. The important registers are listed as follows:

DMAC

4

4

4

Interrupt
controller

Activation control DMAC registers

DMA
transfer
request

arbitration

DMAC channels
(CH0 to CH3)

Register control

DMAC core

DMAC
control
circuit

Bus interface

Internal main bus 2

DMSAR

DMDAR

DMCRA

DMCRB

DMOFR

DMTMD

DMAMD

DMSTS

DMCNT

Source address

Destination address

Transfer counter

Block counter

Transfer mode

DMA start
request

DMAC
response
Interrupt
request

DMAC response
control

Internal peripheral bus 1
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Figure 6.2 Block Diagram of DMAC [1], page 519.

DMA Source Address Register (DMSAR): The 32-bit DMA Source Address Register
(DMSAR) specifies the transfer source start address. A user sets DMSAR while DMAC
activation is disabled (the DMST bit in DMAST � 0) or DMA transfer is disabled (the

06.ES_Conrad_RX63N_Advanced_CH06.qxd:RX63N Advanced  3/4/14  9:51 PM  Page 114



CHAPTER 6 / DIRECT MEMORY ACCESS CONTROLLER 115

DTE bit in DMCNT � 0). Setting bits 31 to 29 is invalid; a value of bit 28 is extended to
bits 31 to 29. Reading DMSAR returns the extended value. An example of setting an ad-
dress would be:

DMAC0.DMSAR = 0x15000;

DMA Destination Address Register (DMDAR): The 32-bit DMA Destination Address
Register (DMDAR) specifies the transfer destination start address. The user sets DMDAR
while DMAC activation is disabled (the DMST bit in DMAST � 0) or DMA transfer is
disabled (the DTE bit in DMCNT � 0). Setting bits 31 to 29 is invalid; a value of bit 28 is
extended to bits 31 to 29. Reading DMDAR returns the extended value. An example of set-
ting an address would be:

DMAC0.DMDAR = 0x17000;

DMA Transfer Count Register (DMCRA): The 32-bit DMA Transfer Count Register
(DMCRA) specifies the number of transfer operations. It has a high 16-bit word (DMCRAH)
and a low16-bit word (DMCRAL) that are used differently, depending on the mode of
operation. Reference Figure 6.3 for the bit positions. An example of setting a transfer count
would be:

DMAC0.DMCRA = 0x000a;

� Normal Transfer Mode (MD[1:0] Bits in DMACm.DMTMD � 00b)
The DMCRAL functions as a 16-bit transfer counter. The number of transfer oper-
ations is one when the setting is 0001h and 65535 when it is FFFFh. The value is
reduced in increments of one each time data is transferred. When the setting is
0000h, no specific number of transfer operations is set. The data transfer is per-
formed with the transfer counter stopped (free running mode). DMCRAH is not
used in Normal Transfer Mode. Write 0000h to DMCRAH.

� Repeat Transfer Mode (MD[1:0] Bits in DMACm.DMTMD � 01b)
The DMCRAH specifies the repeat size and DMCRAL functions as a 10-bit trans-
fer counter. The number of transfer operations is one when the setting is 001h,
1023 when it is 3FFh, and 1024 when it is 000h. In Repeat Transfer Mode, a value
in the range of 000h to 3FFh (1 to 1024) can be set for DMCRAH and DMCRAL.
Setting bits 15 to 10 in DMCRAL is invalid. Write 0 to these bits. The value in
DMCRAL is decremented by one each time data is transferred until it reaches
000h, at which point the value in DMCRAH is loaded into the DMCRAL.

� Block Transfer Mode (MD[1:0] Bits in DMACm.DMTMD � 10b)
The DMCRAH specifies the block size and DMCRAL functions as a 10-bit block
size counter. The block size is one when the setting is 001h, 1023 when it is 3FFh,
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and 1024 when it is 000h. In Block Transfer Mode, a value in the range of 000h to
3FFh can be set for the DMCRAH and the DMCRAL. Setting bits 15 to 10 in the
DMCRAL is invalid. Write 0 to these bits. The value in the DMCRAL is decre-
mented by one each time data is transferred until it reaches 000h, at which point
the value in the DMCRAH is loaded into the DMCRAL.

DMA Block Transfer Count Register (DMCRB): The 16-bit DMA Block Transfer
Count Register (DMCRB) specifies the number of block transfer operations or repeat
transfer operations in Block and Repeat Transfer Mode, respectively. Only the lowest
10 bits are used. The number of transfer operations is one when the setting is 001h,
1023 when it is 3FFh, and 1024 when it is 000h. In Repeat Transfer Mode, the value is
decremented by one when the final data of one repeat size is transferred. In Block Transfer
Mode, the value is decremented by one when the final data of one block size is transferred.
In Normal Transfer Mode, the DMCRB is not used—the setting is invalid. An example of
setting a block transfer count would be:

DMAC0.DMCRB = 0x09;

DMA Transfer Mode Register (DMTMD): The 16-bit DMA Transfer Mode Register
(DMTMD) specifies the DMA request source, the transfer data size, the repeat area, and
the mode of operation. These fields are shown in Figure 6.3. For the DTS[1:0] select bits,
either set the source or destination as the repeat area in Repeat or Block Transfer Mode. In
Normal Transfer Mode, setting these bits is invalid. An example of setting the transfer
mode to Normal would be:

DMAC0.DMTMD.BIT.MD = 0;

DMA Interrupt Setting Register (DMINT): The 8-bit DMA Interrupt Setting Register
(DMINT) enables or disables five different types of interrupts associated with DMA trans-
fers. These fields are shown in Figure 6.4. An example of setting the register to enable
Transfer End Interrupts would be:

DMAC0.DMINT.BYTE = 0x10;

DMA Transfer Enable Register (DMCNT): The 8-bit DMA Transfer Enable Register
(DMCNT) enables or disables DMA transfers. The register uses a single bit, bit 0 (DTE),
to enable transfer when set to 1 or disable transfer when set to 0.When the DMST bit in the
DMAST is set to 1 (DMAC activation is enabled) and this bit is set to 1 (DMA transfer is
enabled), the DMA transfer can be started for the corresponding channel. The DTE bit can
be read. A 0 is read from the bit when the user writes 0 to the bit, the specified total volume
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— — — — — — — —

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

DMA Transfer Mode Register (DMTMD)

Address(es): DMAC0.DMTMD 0008 2010h, DMAC1.DMTMD 0008 2050h
DMAC2.DMTMD 0008 2090h, DMAC3.DMTMD 0008 20D0h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b1, b0 DCTG[1:0] DMA
Request
Source
Select

b1 b0 R/W

0 0: Software

0 1: Interrupts*1 from peripheral modules or external interrupt input
pins

1 0: Setting prohibited

1 1: Setting prohibited

b7 to b2 — Reserved These bits are read as 0. The write value should be 0. R/W

b9, b8 SZ[1:0] Transfer
Data Size
Select

b9 b8

0 0: 8 bits

0 1: 16 bits

1 0: 32 bits

1 1: Setting prohibited

b11, b10 — Reserved These bits are read as 0. The write value should be 0. R/W

b13, b12 DTS[1:0] Repeat Area
Select

b13 b12 R/W

0 0: The destination is specified as the repeat area or block area.

0 1: The source is specified as the repeat area or block area.

1 0: The repeat area or block area is not specified.

1 1: Setting prohibited

b15, b14 MD[1:0] Transfer
Mode
Select

b15 b14 R/W

0 0: Normal transfer

0 1: Repeat transfer

1 0: Block transfer

1 1: Setting prohibited

Note 1. DMAC activation source is selected using the DMRSRm registers of the ICU. For details on DMAC activation sources, see Table
15.3, Interrupt Vector Table in section 15, Interrupt controller (ICUb).

MD[1:0] DTS[1:0] SZ[1:0] DCTG[1:0]

Figure 6.3 Transfer Mode Register [1], page 523.
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DMA Interrupt Setting Register (DMINT)

Address(es): DMAC0.DMINT 0008 2013h, DMAC1.DMINT 0008 2053h
DMAC2.DMINT 0008 2093h, DMAC3.DMINT 0008 20D3h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 DARIE Destination Address
Extended Repeat
Area Overflow
Interrupt Enable

0: Disables an interrupt request for an extended repeat area
overflow on the destination address

R/W

1: Enables an interrupt request for an extended repeat area
overflow on the destination address

b1 SARIE Source Address
Extended Repeat
Area Overflow
Interrupt Enable

0: Disables an interrupt request for an extended repeat area
overflow on the source address

R/W

1: Enables an interrupt request for an extended repeat area
overflow on the source address

b2 RPTIE Repeat Size End
Interrupt Enable

0: Disables the repeat size end interrupt request. R/W

1: Enables the repeat size end interrupt request.

b3 ESIE Transfer Escape End
Interrupt Enable

0: Disables the transfer escape end interrupt request. R/W

1: Enables the transfer escape end interrupt request.

b4 DTIE Transfer End
Interrupt Enable

0: Disables the transfer end interrupt request. R/W

1: Enables the transfer end interrupt request.

b7 to b5 — Reserved These bits are read as 0. The write value should be 0. R/W

— — — DTIE ESIE RPTIE SARIE DARIE

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0Value after reset:

of data transfer is completed, a DMA transfer is stopped by the repeat size end interrupt, or
a DMA transfer is stopped by the extended repeat area overflow interrupt. An example of
setting the register to enable Transfer End Interrupts would be:

DMAC0.DMCNT.BYTE = 0x1;

Additional DMAC registers are listed in the RX63N hardware manual [1]. Some of the
miscellaneous DMAC registers are:

� DMAAddress Mode Register (DMAMD)
� DMA Offset Register (DMOFR)

Figure 6.4 DMA Interrupt Setting Register [1], page 523.
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� DMA Transfer Enable Register (DMCNT)
� DMA Software Start Register (DMREQ)
� DMA Status Register (DMSTS)
� DMAActivation Source Flag Control Register (DMCSL)
� DMA Module Activation Register (DMAST)

Modes of Operation

The RX63N microcontroller has a 4-channel Direct Memory Access Controller
(DMAC) designed especially for internal bus transfer. The DMAC transfers data in
three common modes of operation: Normal Transfer Mode, Repeat Transfer Mode, and
Block Transfer Mode.

Normal Transfer Mode

In Normal Transfer Mode, one unit of data (i.e. byte, word) is transferred by one transfer
request. Using the DMCRAL of DMACm channel, a maximum of 65535 number of trans-
fer operations is possible. For free running mode, a number of transfer operations bits are
set to 0000h. In this situation, the data transfer count is stopped and transfers are made.

In Normal Transfer mode, setting the DMCRB of the DMACm is invalid. Excluding
the free running mode, a transfer end interrupt request can be generated after completion
of the specified number of transfer operations. Table 6.2 summarizes the register up-

TABLE 6.2 Register Update Operation in Normal Transfer Mode [1], page 534.

REGISTER FUNCTION
UPDATE OPERATION AFTER COMPLETION

OF A TRANSFER BY ONE TRANSFER REQUEST

DMACm.DMSAR Transfer source address Increment/decrement/fixed/offset addition*1

DMACm.DMDAR Transfer destination address Increment/decrement/fixed/offset addition*1

DMACm.DMCRAL Transfer count Decremented by one/not updated (in free
running mode)

DMACm.DMCRAH — Not updated (Not used in normal transfer
mode)

DMACm.DMCRB — Not updated (Not used in normal transfer
mode)

Note 1. Offset addition can be specified only for DMAC0.
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date operation in Normal Transfer Mode. Figure 6.5 shows the flow of data in Normal
Transfer Mode.

Repeat Transfer Mode

In Repeat Transfer Mode, one unit of data (i.e. byte, word) is transferred using one trans-
fer request. The total repeat transfer size has a maximum of 1 Kbyte of data that can be set
using the DMCRA of the DMACm. The number of repeat transfer operations can be set
to a maximum of 1 Kcount using the DMCRB of the the DMACm. Hence, a maximum of
1 Mbyte of data (1 Kbyte data � 1 Kcount of repeat transfer operations) can be set as a to-
tal data transfer size.

Either the transfer source or the transfer destination can be specified as a repeat
area. When transfer of the repeat size data is completed, the address of the specified re-
peat area (the DMSAR of the DMACm or the DMDAR of the DMACm) returns to the
transfer start address. When data of the specified repeat size has all been transferred in
Repeat Transfer Mode, the DMA transfer can be halted and the repeat size end interrupt
can be requested. The DTE bit in the DMCNT of the DMACm should be updated with
1 so that transfer can be resumed. A transfer end interrupt request can be generated once
a specified number of repeat transfer operations are completed. Table 6.3 summarizes
the register update operation in Repeat Transfer Mode. Figure 6.6 shows the flow of
data in Repeat Transfer Mode.

Transfer source data area Transfer destination data area

DMDAR

Transfer

DMSAR Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Figure 6.5 Operation in Normal Transfer Mode [1], page 534.
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TABLE 6.3 Register Update Operation in Repeat Transfer Mode [1], page 535.

REGISTER FUNCTION

UPDATE OPERATION AFTER COMPLETION
OF A TRANSFER BY ONE TRANSFER REQUEST

WHEN
DMACm.DMCRAL

IS NOT 1

WHEN DMACm.DMCRAL IS 1
(TRANSFER OF THE LAST
DATA IN REPEAT SIZE)

DMACm.DMSAR Transfer source
address

Increment/decrement/
fixed/offset addition*1

� DMACm.DMTMD.DTS[1:0] � 00b
Increment/decrement/fixed/offset addition*1

� DMACm.DMTMD.DTS[1:0] � 01b
Initial value of DMACm.DMSAR

� DMACm.DMTMD.DTS[1:0] � 10b
Increment/decrement/fixed/offset addition*1

DMACm.DMDAR Transfer destination
address

Increment/decrement/
fixed/offset addition*1

� DMACm.DMTMD.DTS[1:0] � 00b
Initial value of DMACm.DMDAR

� DMACm.DMTMD.DTS[1:0] � 01b
Increment/decrement/fixed/offset addition*1

� DMACm.DMTMD.DTS[1:0] � 10b
Increment/decrement/fixed/offset addition*1

DMACm.DMCRAH Repeat size Not updated Not updated

DMACm.DMCRAL Transfer count Decremented by one DMACm.DMCRAH

DMACm.DMCRB Count of repeat
transfer operations

Not updated Decremented by one

Note 1. Offset addition can be specified only for DMAC0.

Transfer source data area
(Specified as a repeat area)

Transfer destination data area

DMDAR

Transfer

DMSAR Data 1

Data 2

Data 3

Data 4

Data 1

Data 2

Data 3

Data 4

Data 1

Data 2

Data 3

Data 4

Figure 6.6 Operation in Repeat Transfer Mode [1], page 535.
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Block Transfer Mode

A single block of data is transferred by one transfer request, in Block Transfer Mode. Using
the DMCRA of the DMACm, a maximum of 1 Kbyte of data can be set as a total block
transfer size. Using the DMCRB of the DMACm, a maximum of 1 Kcount can be set as the
number of block transfer operations. Hence, a maximum of 1 Mbyte of data (1 Kbyte
data � 1 Kcount (no space between K and count_of block transfer operations) can be set as
a total data transfer size.

Either the transfer source or transfer destination can be specified as a block area.
The address of the specified block area (the DMSAR or the DMDAR of the DMACm)
returns to the transfer start address when a transfer of a single of block data has been
completed. A DMA transfer can be stopped and the repeat size end interrupt can be
requested when a single block of data has all been transferred in Block Transfer
Mode. A DMA transfer can be resumed by writing 1 to the DTE bit in the DMCNT
of the DMACm in the repeat size end interrupt handling. A transfer end interrupt
request can be generated after completion of the specified number of block transfer
operations.

Table 6.4 summarizes the register update operation in Block Transfer Mode, and
Figure 6.7 shows the flow of data in Block Transfer Mode.

TABLE 6.4 Register Update Operation in Block Transfer Mode [1], page 537.

REGISTER FUNCTION
UPDATE OPERATION AFTER COMPLETION

OF SINGLE-BLOCK TRANSFER BY ONE TRANSFER REQUEST

DMACm.DMSAR Transfer source address � DMACm.DMTMD.DTS[1:0] � 00b
Increment/decrement/fixed/offset addition*1

� DMACm.DMTMD.DTS[1:0] � 01b
Initial value of DMACm.DMSAR

� DMACm.DMTMD.DTS[1:0] � 10b
Increment/decrement/fixed/offset addition*1

DMACm.DMDAR Transfer destination address � DMACm.DMTMD.DTS[1:0] � 00b
Initial value of DMACm.DMDAR

� DMACm.DMTMD.DTS[1:0] � 01b
Increment/decrement/fixed/offset addition*1

� DMACm.DMTMD.DTS[1:0] � 10b
Increment/decrement/fixed/offset addition*1

DMACm.DMCRAH Block size Not updated

DMACm.DMCRAL Transfer count DMACm.DMCRAH

DMACm.DMCRB Count of block transfer
operations

Decremented by one

Note 1. Offset addition can be specified only for DMAC0.
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DMSAR

N-th block

......

Transfer source data area Transfer destination data area
(Specified as a block area)

Transfer
First block

Block area DMDAR

Figure 6.7 Operation in Block Transfer Mode [1], page 537.

6.3 BASIC EXAMPLES

The DMAC registers should be set in a consistent procedure. Renesas has suggested the
procedure shown in Figure 6.8 for setting these registers. The remainder of this section
shows examples of initiating an internal DMA transfer in each of the modes of operation.

Internal Data Transfer in Normal Transfer Mode

The following code listing is used for the implementation of a simple initialization pro-
gram for an internal DMA data transfer in Normal Transfer Mode. Explanations of each
line are included.

1. void DMA_Normal_Transfer_init() {
2. DMAC0.DMCNT.BYTE = 0x0;
3. DMAC0.DMTMD.BIT.MD = 0;
4. DMAC0.DMSAR = 0x15000;
5. DMAC0.DMDAR = 0x17000;
6. DMAC0.DMCRA = 0x00a;
7. DMAC0.DMINT.BYTE = 0x10;
8. DMAC0.DMCNT.BYTE = 0x1;
9. DMAC.DMAST.BIT.DMST = 0x1;

10. }
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<To use peripheral function
interrupts as DMA activation
sources>

<To use external pin interrupts as
DMA activation sources>

<To use on-chip peripheral
interrupts or external pin
interrupts as DMA activation
sources>

<To use peripheral function
interrupts as DMA activation
sources>

<To use external pin interrupts as
DMA activation sources>

<To use on-chip peripheral
interrupts or external pin
interrupts as DMA activation
sources>

Set the peripheral module as a DMACm request
source.

Set the IRQ pin function using the interrupt
controller unit (ICUb).

Set the interrupt request as a DMA request source
in the DMAC activation source select register
(ICU.DMRSRm) using the ICU.

Clear the DTE bit in DMACm.DMCNT to 0.

DM[1:0] bits in DMACm.DMAMD
SM[1:0] bits in DMACm.DMAMD
DARA[4:0] bits in DMACm.DMAMD
SARA[4:0] bits in DMACm.DMAMD

DCTG[1:0] bits in DMACm.DMTMD
SZ[1:0] bits in DMACm.DMTMD
DTS[1:0] bits in DMACm.DMTMD
MD[1:0] bits in DMACm.DMTMD

DMACm.DMSAR

DMACm.DMDAR

DMACm.DMCRA

Set DTE bit in DMACm.DMCNT to 1.

Start the peripheral function as a DMACm request
source.

Enable the IRQ pin as a DMACm request source.

Set IENj bit in ICU.IERn to 1.

Set DMST bit in DMAST to 1.

m: DMAC channel (m = 0 to 3)

Note 1. Setting of the DMAST.DMST bit doesn't necessarily have to follow the settings for the individual activation sources.

<For activation by software>
On completion of the initial settings, writing 1 to the DMA software
start bit (DMACm.DMREQ.SWREQ) starts DMA transfer.

Enable DMAC operation.*1

Enable the interrupt bit for
the activation source.

Enable DMA transfer.

Set the repeat size end interrupt
Set the transfer source address extended repeat area overflow interrupt
Set the transfer destination address extended repeat area overflow interrupt
Enable the DMA transfer escape end interrupt

Enable DMA transfer end interrupts.

Set the offset value.

Set the number of block transfer operations.

Set the transfer source start address.

Set the transfer destination start address.

Set the number of transfer operations.

Transfer request select bits
Data transfer size bits
Repeat area select bits
Transfer mode select bits

Transfer destination address update mode bits
Transfer source address update mode bits
Destination address extended repeat area bits
Source address extended repeat area bits

Disable DMA transfers.

Set the DMAC activation source.

Set the IRQ pin function without enabling it.

Set the control register for the peripheral function without
starting it.

<For activation other than by software>
Clear the interrupt enable bit (ICU.IERn.IENj) as an activation
source to 0, then perform the settings below.

Common settings
for DMAC

Settings required for
each activation source

Start of initial settings

End of initial settings

DMACm.DMCRB

DMACm.DMOFR

Set 1 to DTIE bit in DMACm.DMINT.

RPTIE bit in DMACm.DMINT
SARIE bit in DMACm.DMINT
DARIE bit in DMACm.DMINT
Set the ESIE bit in DMACm.DMINT to 1.

<To use block transfer mode or repeat transfer mode>

<To use the address update function with offset>

<To use DMA transfer end interrupts>

<To use DMA transfer escape interrupts>

Figure 6.8 Register Setting Procedure [1], page 547.
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Explanation of the Code: In line 1 the DMAC Normal Transfer Mode Initialization
Function initializes the code. Line 2, to disable the DMA transfer, the DTE bit in DMCNT
register is set to 0. Line 3 selects the Normal Data Transfer Mode ‘MD’ in the DMTMD reg-
ister, which are set to 00b. Line 4, the DMSAR register is set to source address 0x15000 in
the RAM addressing area. Line 5, the DMDAR register is set to destination address
0x17000 in the RAM addressing area. To allow 10 transfers, DMCRA sets the transfer
count to 10 (0x00a) in line 6. At line 7 the DTIE bit in the DMINT register is set to 1 to en-
able the transfer end interrupt request, and in line 8, to enable DMA transfer the DTE bit in
the DMCNT register is set to 1. To enable DMAC operation, the DMST bit is set in line 9.

Internal Data Transfer in Repeat Transfer Mode

The following code listing is used for the implementation of a simple initialization pro-
gram for an internal DMA data transfer in Repeat Transfer Mode. Explanations of each
line are included.

1. void DMA_Repeat_Transfer_init() {
2. DMAC0.DMCNT.BYTE = 0x0;
3. DMAC0.DMTMD.BIT.MD = 1;
4. DMAC0.DMSAR = 0x15000;
5. DMAC0.DMDAR = 0x17000;
6. DMAC0.DMCRA = 0x000a;
7. DMAC0.DMCRB = 0x09;
8. DMAC0.DMINT.BYTE = 0x10;
9. DMAC0.DMCNT.BYTE = 0x1;

10. DMAC.DMAST.BIT.DMST = 0x1;
11. }

Explanation of the Code: Line 1, the DMA Repeat Transfer Mode Initialization Func-
tion is initialized. In line 2 the DTE bit in the DMCNT register is set to 0 to disable the
DMA transfer. Line 3, the ‘MD’ bits in DMTMD register are set to 01b to select the
DMA Repeat Transfer Mode. Line 4, the DMSAR register is set to source address
0x15000 in the RAM addressing area. At line 5 the DMDAR register is set to the desti-
nation address 0x17000 in the RAM addressing area. Line 6, the DMCRA sets the re-
peat size and transfer count to 10 (0x00a), allowing 10 transfers. At line 7 the DMCRB
is set to 0x09, which is the total repeat transfer operations performed. Line 8, the DTIE
bit in the DMINT register is set to 1 to enable transfer end interrupt request. At line 9
the DTE bit in DMCNT register is set to 1 to enable the DMA transfer. To enable
DMAC operation, the DMST bit is set in line 10.
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Internal Data Transfer in Block Transfer Mode

The following code listing is used for the implementation of a simple initialization pro-
gram for an internal DMA data transfer in Block Transfer Mode. Explanations of each line
are included.

1. void DMA_Block_Transfer_init() {
2. DMAC0.DMCNT.BYTE = 0x0;
3. DMAC0.DMTMD.BIT.MD = 2;
4. DMAC0.DMSAR = 0x15000;
5. DMAC0.DMDAR = 0x17000;
6. DMAC0.DMCRA = 0x000a;
7. DMAC0.DMCRB = 0x09;
8. DMAC0.DMINT.BYTE = 0x10;
9. DMAC0.DMCNT.BYTE = 0x1;

10. DMAC.DMAST.BIT.DMST = 0x1;
11. }

Explanation of the Code: At line 1 is the DMA Block Transfer Mode Initialization func-
tion. Line 2 shows the DTE bit in the DMCNT register is set to 0 to disable the DMA trans-
fer. Line 3, the ‘MD’ bits in the DMTMD register are set to 10b to select the DMA Block
Transfer Mode. Line 4, the DMSAR register is set to source address 0x15000 in the RAM
addressing area. Line 5, the DMDAR register is set to destination address 0x17000 in the
RAM addressing area. Line 6, the DMCRA sets the block size and transfer count to
10 (0x00a), allowing 10 transfers. At line 7 the DMCRB is set to 0x09, which is the total
block transfer operations performed. Line 8, the DTIE bit in the DMINT register is set to
1 to enable the transfer end interrupt request. At line 9 the DTE bit in the DMCNT register
is set to 1 to enable the DMA transfer. To enable DMAC operation, the DMST bit is set in
line 10.

6.4 ADVANCED CONCEPTS

As discussed earlier, the RX63N microcontroller has a 4-channel Direct Memory Access
Controller (DMAC) designed especially for internal bus transfer. The RX63N also has a
2-channel External Direct MemoryAccess Controller (EXDMAC) used exclusively for ex-
ternal bus transfers. Though the basic functionality of both the DMAC and the EXDMAC
is the same, there are some specification-related differences. The EXDMAC deals with
memory access requested by peripheral modules to the RX63N.Also, external interrupt re-
quests are sent to RX63N requesting the use of EXDMAC.
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The operation of the DMAC and the EXDMAC in Normal Transfer Mode, Repeat
Transfer Mode, and Block Transfer Mode is similar. The EXDMAC has a special addi-
tional mode of data transfer named Cluster Transfer Mode. Figure 6.9 shows the block
diagram of the External DMAC for DMA transfers from external peripherals and
memory.
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DMA transfer
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Figure 6.9 Block Diagram of EXDMAC [1], page 556.
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The EXDMAC registers are similar in operation to DMAC Registers. The EXDMAC re-
quires some additional special function registers which are described in more detail in the
hardware manual [1]:

� Cluster Buffer Register y (CLSBRy) (y � 0 to 7)
� EXDMA Peripheral Request Flag Register (EDMPRF)
� EXDMA External Request Flag Register (EDMERF)
� EXDMA External Request Sense Mode Register (EDMRMD)

Cluster Transfer Mode

A single cluster of data is transferred by one transfer request, in cluster transfer mode. Us-
ing the EDMCRA of the EXDMACn, a maximum of 8 Kbytes of data can be set as a total
cluster transfer size. Using the EDMCRB of the EXDMACn, a maximum of 1 Kcount can
be set as the number of cluster transfer operation. Hence, a maximum of 8 Kbytes of
data � 1Kcount � 8 Mbytes can be set as a total data transfer size.

The cluster transfer mode can be selected from among cluster transfer dual address
mode, cluster transfer read address mode, and cluster transfer write address mode.

� Cluster transfer dual address mode
(EXDMACn.EDMTMD.MD[1:0] � 11b, EXDMACn.EDMAMD.AMS � 0)
A single cluster data is transferred by one transfer request from the transfer source
address to the cluster buffers. From the cluster buffers to the transfer destination
address, a single cluster data is then transferred.

� Cluster transfer read address mode
(EXDMACn.EDMTMD.MD[1:0] � 11b, EXDMACn.EDMAMD.AMS � 1,
EXDMACn.EDMAMD.DIR � 0)
By one transfer request from the transfer source address to the cluster buffers, a
single cluster data is transferred.

� Cluster transfer write address mode
(EXDMACn.EDMTMD.MD[1:0] � 11b, EXDMACn.EDMAMD.AMS � 1,
EXDMACn.EDMAMD.DIR � 1)
By one transfer request from the cluster buffers to the transfer destination address,
a single cluster data is transferred.

In the Cluster Transfer Mode, on completion of the transfer of each cluster of data, the
external DMA transfer stops and a repeat-size completed interrupt request can be
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generated. By writing 1 to the EXDMACn.EDMCNT.DTE bit during processing of the
repeat-size-completed interrupt, the external DMA transfer can be restarted. A repeat-
size-completed interrupt request can also be generated once transfer of clusters for
a specified number of times is completed. Table 6.5 shows the register update opera-
tion in Cluster Transfer Mode, and Figure 6.10 shows the general data flow of the
operations.

TABLE 6.5 Register Update Operation in Cluster Transfer Mode [1], page 582.

REGISTER FUNCTION

UPDATE OPERATION AFTER COMPLETION
OF SINGLE-CLUSTER TRANSFER
BY ONE TRANSFER REQUEST

EXDMACn.EDMSAR Transfer source
address

� EXDMACn.EDMTMD.DTS[1:0] � 00b
Increment/decrement/fixed/offset
addition*1

� EXDMACn.EDMTMD.DTS[1:0] � 01b
Initial value of EXDMACn.EDMSAR

� EXDMACn.EDMTMD.DTS[1:0] � 10b
Increment/decrement/fixed/offset
addition*1

EXDMACn.EDMDAR Transfer destination
address

� EXDMACn.EDMTMD.DTS[1:0] � 00b
Initial value of EXDMACn.EDMDAR

� EXDMACn.EDMTMD.DTS[1:0] � 01b
Increment/decrement/fixed/offset
addition*1

� EXDMACn.EDMTMD.DTS[1:0] � 10b
Increment/decrement/fixed/offset
addition*1

EXDMACn.EDMCRAH Cluster size Not updated

EXDMACn.EDMCRAL Transfer count EXDMACn.EDMCRAH

EXDMACn.EDMCRB Cluster count Decremented by one

Note 1. Offset addition can be specified only for EXDMAC0.
In read address mode, the transfer destination address EXDMACn.EDMADAR is fixed (invalid).
In write address mode, the transfer destination address EXDMACn.EDMASAR is fixed (invalid).
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Figure: 6.10 Operation in Cluster Transfer Mode [1], page 583.
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6.5 ADVANCED EXAMPLES

External Data Transfer in Normal Transfer Mode

The following code listing is used for the implementation of a simple initialization pro-
gram for an External DMA data transfer in Normal Transfer Mode. Explanations of each
line are included.

1. void EXDMA_Normal_Transfer_init() {
2. EXDMAC0.EDMCNT.BYTE = 0x0;
3. EXDMAC0.EDMTMD.BIT.MD = 0;
4. EXDMAC0.EDMSAR = 0x15000;
5. EXDMAC0.EDMDAR = 0x17000;
6. EXDMAC0.EDMCRA = 0x00a;
7. EXDMAC0.EDMINT.BYTE = 0x10;
8. EXDMAC0.EDMCNT.BYTE = 0x1;
9. EDMAC.DMAST.BIT.DMST = 0x1;

10. }

Explanation of the Code: Line 1 shows the EXDMAC Normal Transfer Mode Initializa-
tion Function. Line 2, the DTE bit in the EDMCNT register is set to 0 to disable the
EXDMA transfer. Line 3, the ‘MD’ bits in the EDMTMD register are set to 00b to select
the Normal Data Transfer Mode. At line 4, the EDMSAR register is set to source ad-
dress 0x15000 in the RAM addressing area. Line 5, the EDMDAR register is set to the des-
tination address 0x17000 in the RAM addressing area. Line 6, the EDMCRA sets the
transfer count to 10 (0x00a), allowing 10 transfers. At line 7, the DTIE bit in the EDMINT
register is set to 1 to enable the transfer end interrupt request. At line 8, the DTE bit in the
EDMCNT register is set to 1 to enable the EXDMA transfer. To enable EDMAC operation,
the DMST bit is set in line 9.

External Data Transfer in Repeat Transfer Mode

The following code listing is used for the implementation of a simple initialization pro-
gram for an External DMA data transfer in Repeat Transfer Mode. Explanations of each
line are included.

1. void EXDMA_Repeat_Transfer_init() {
2. EXDMAC0.EDMCNT.BYTE = 0x0;
3. EXDMAC0.EDMTMD.BIT.MD = 1;
4. EXDMAC0.EDMSAR = 0x15000;
5. EXDMAC0.EDMDAR = 0x17000;
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6. EXDMAC0.EDMCRA = 0x000a;
7. EXDMAC0.EDMCRB = 0x09;
8. EXDMAC0.EDMINT.BYTE = 0x10;
9. EXDMAC0.EDMCNT.BYTE = 0x1;

10. EDMAC.DMAST.BIT.DMST = 0x1;
11. }

Explanation of the Code: Line 1 shows the EXDMA Repeat Transfer Mode Initialization
Function. Line 2 shows the DTE bit in the EDMCNT register is set to 0 to disable the
EXDMA transfer. Line 3 shows the ‘MD’ bits in the EDMTMD register are set to 01b to
select the EXDMA Repeat Transfer Mode. At line 4 the EDMSAR register is set to
source address 0x15000 in the RAM addressing area. At line 5 the EDMDAR register is
set to destination address 0x17000 in the RAM addressing area. Line 6, the EDMCRA
sets the repeat size and transfer count to 10 (0x00a), allowing 10 transfers. Line 7, the
EDMCRB is set to 0x09 which is the total repeat transfer operations performed. At
line 8, the DTIE bit in EDMINT register is set to 1 to enable the transfer end interrupt re-
quest. Line 9 shows the DTE bit in the EDMCNT register is set to 1 to enable the
EXDMA transfer. To enable EDMAC operation, the DMST bit is set in line 10.

External Data Transfer in Block Transfer Mode

The following code listing is used for the implementation of a simple initialization pro-
gram for an External DMA data transfer in Block Transfer Mode. Explanations of each line
are included.

1. void EXDMA_Block_Transfer_init() {
2. EXDMAC0.EDMTMD.BIT.MD = 2;
3. EXDMAC0.EDMINT.BYTE = 0x10;
4. EXDMAC0.EDMCNT.BYTE = 0x0;
5. EXDMAC0.EDMSAR = 0x15000;
6. EXDMAC0.EDMDAR = 0x17000;
7. EXDMAC0.EDMCRA = 0x000a;
8. EXDMAC0.EDMCRB = 0x09;
9. EXDMAC0.EDMCNT.BYTE = 0x1;

10. EDMAC.DMAST.BIT.DMST = 0x1;
11. }

Explanation of the Code: Line 1 shows the EXDMA Block Transfer Mode Initialization
function. Line 2, the DTE bit in the EDMCNT register is set to 0 to disable the EXDMA
transfer. At line 3, the ‘MD’ bits in the EDMTMD register are set to 10b to select the
EXDMA Block Transfer Mode. Line 4, the EDMSAR register is set to source address
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0x15000 in the RAM addressing area. Line 5, the EDMDAR register is set to destination
address 0x17000 in the RAM addressing area. At line 6 the EDMCRA sets the block size
and transfer count to 10 (0x00a), allowing 10 transfers. Line 7, the EDMCRB is set to 0x09
which is the total block transfer operations performed. Line 8 shows the DTIE bit in the
EDMINT register is set to 1 to enable the transfer end interrupt request. Line 9, the DTE bit
in EDMCNT register is set to 1 to enable the EXDMA transfer. To enable EDMAC opera-
tion, the DMST bit is set in line 10.

External Data Transfer in Cluster Transfer Mode

The following code listings are used for the implementation of simple initialization pro-
grams for an External DMA data transfer in Cluster Transfer Mode. Explanations of each
line are included.

Code for Cluster Transfer Dual Address Mode:

1. void EXDMA_Cluster_Transfer1_init() {
2. EXDMAC0.EDMCNT.BYTE = 0x0;
3. EXDMAC0.EDMAMD.BIT.AMS = 0;
4. EXDMAC0.EDMTMD.BIT.MD = 3;
5. EXDMAC0.EDMSAR = 0x15000;
6. EXDMAC0.EDMDAR = 0x17000;
7. EXDMAC0.EDMCRA = 0x000a;
8. EXDMAC0.EDMCRB = 0x09;
9. EXDMAC0.EDMINT.BYTE = 0x10;

10. EXDMAC0.EDMCNT.BYTE = 0x1;
11. EDMAC.DMAST.BIT.DMST = 0x1;
12. }

Explanation of the Code: Line 1 shows the EXDMA Cluster Transfer Mode: Dual Ad-
dress Mode Initialization function. Line 2, the DTE bit in the EDMCNT register is set to
0 to disable the EXDMA transfer. At line 3, Bit 17: AMS in EDMAMD is set to 0, which is
the selection of Dual Address Mode. Line 4, the ‘MD’ bits in the EDMTMD register are
set to 11b (3) to select the EXDMA Cluster Transfer Mode. Line 5, the EDMSAR register
is set to source address 0x15000 in the RAM addressing area. At line 6 the EDMDAR
register is set to destination address 0x17000 in the RAM addressing area. Line 7, the
EDMCRA sets the cluster size and transfer count to 10 (0x00a), allowing 10 transfers.
Line 8, the EDMCRB is set to 0x09, which is the total cluster transfer operations performed.
Line 9, the DTIE bit in the EDMINT register is set to 1 to enable transfer end interrupt re-
quest. At line 10 the DTE bit in the EDMCNT register is set to 1 to enable the EXDMA
transfer. To enable EDMAC operation, the DMST bit is set in line 11.
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Code for Cluster Transfer Read Address Mode:

1. void EXDMA_Cluster_Transfer2_init() {
2. EXDMAC0.EDMCNT.BYTE = 0x0;
3. EXDMAC0.EDMAMD.BIT.AMS = 1;
4. EXDMAC0.EDMAMD.BIT.DIR = 0;
5. EXDMAC0.EDMTMD.BIT.MD = 3;
6. EXDMAC0.EDMSAR = 0x15000;
7. EXDMAC0.EDMDAR = 0x17000;
8. EXDMAC0.EDMCRA = 0x000a;
9. EXDMAC0.EDMCRB = 0x09;

10. EXDMAC0.EDMINT.BYTE = 0x10;
11. EXDMAC0.EDMCNT.BYTE = 0x1;
12. EDMAC.DMAST.BIT.DMST = 0x1;
13. }

Explanation of the Code: Line 1 shows the EXDMA Cluster Transfer Mode: Read Ad-
dress Mode Initialization function. Line 2, the DTE bit in the EDMCNT register is set to
0 to disable the EXDMA transfer. At line 3, the Bit 17: AMS in the EDMAMD is set to
1, which is the selection of Single Address Mode. Line 4, the DIR bit in the EDMAMD
is set to 0 to select the EDMSAR as the transfer source register to in turn select the Read
Address Mode. At line 5 the ‘MD’ bits in the EDMTMD register are set to 11b (3) to select
the EXDMA Cluster Transfer Mode. Line 6, the EDMSAR register is set to source address
0x15000 in the RAM addressing area. Line 7, the EDMDAR register is set to destination
address 0x17000 in the RAM addressing area. Line 8, the EDMCRA sets the cluster size
and transfer count to 10 (0x00a), allowing 10 transfers. Line 9, the EDMCRB is set to
0x09, which is the total cluster transfer operations performed. Line 10, the DTIE bit in the
EDMINT register is set to 1 to enable the transfer end interrupt request. At line 11 the DTE
bit in the EDMCNT register is set to 1 to enable the EXDMA transfer. To enable EDMAC
operation, the DMST bit is set in line 12.

Code listing for Cluster Transfer Write Address Mode:

1. void EXDMA_Cluster_Transfer3_init() {
2. EXDMAC0.EDMCNT.BYTE = 0x0;
3. EXDMAC0.EDMAMD.BIT.AMS = 1;
4. EXDMAC0.EDMAMD.BIT.DIR = 1;
5. EXDMAC0.EDMTMD.BIT.MD = 3;
6. EXDMAC0.EDMSAR = 0x15000;
7. EXDMAC0.EDMDAR = 0x17000;
8. EXDMAC0.EDMCRA = 0x000a;
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9. EXDMAC0.EDMCRB = 0x09;
10. EXDMAC0.EDMINT.BYTE = 0x10;
11. EXDMAC0.EDMCNT.BYTE = 0x1;
12. EDMAC.DMAST.BIT.DMST = 0x1;
13. }

Explanation of the Code: Line 1 shows EXDMA Cluster Transfer Mode: Write Address
Mode Initialization function. Line 2, the DTE bit in the EDMCNT register is set to 0 to dis-
able the EXDMA transfer. Line 3, Bit 17: AMS in the EDMAMD is set to 1, which is the
selection of the Single Address Mode. Line 4, the DIR bit in the EDMAMD is set to 1 to
select the EDMSAR as the transfer source register to, in turn, select the Write Address
Mode. At line 5 the ‘MD’ bits in the EDMTMD register are set to 11b (3) to select the
EXDMA Cluster Transfer Mode. At line 6 the EDMSAR register is set to source address
0x15000 in the RAM addressing area. Line 7, the EDMDAR register is set to destination
address 0x17000 in the RAM addressing area. Line 8, the EDMCRA sets the cluster size
and transfer count to 10 (0x00a), allowing 10 transfers. Line 9, the EDMCRB is set to
0x09, which is the total cluster transfer operations performed.At line 10 the DTIE bit in the
EDMINT register is set to 1 to enable the transfer end interrupt request. Line 11, the DTE
bit in the EDMCNT register is set to 1 to enable the EXDMA transfer. To enable EDMAC
operation, the DMST bit is set in line 12.

6.6 EXAMPLES WITH INTERRUPTS

The following example is available in the Renesas RX63N HEW sample code directories
for the DMAC. The Init_DMAC function configures DMAC channel 0 for a single block
software-triggered transfer. The transfer source address is set to fixed and defined to be that
of the variable gDMA_DataSource. In fact, the source address holds the character ‘X’. The
transfer destination address is set to be incremented after each transfer and defined to be
the address of buffer gDMA_DataBuff. Each location of this 1024 byte buffer will, at the
end of this DMA operation, be filled with the character ‘X’. A transfer interrupt request to
the CPU is set to occur after all data has transferred. The function Init_DMAC would need
to be called from your own code.

Many of the DMAC registers are used in similar ways to the earlier examples, like
DMCNT, DMTMD, DMSAR, DMDAR, DMCRA, DMCRB, and DMINT. Register
DMAMD is set so that a one-to-many transfer is made. DMREQ (Software Start Register)
is set to 1 to generate a DMA transfer request. The DMA Activation Source Flag Control
Register (DMCSL) is set so that at the end of transfer, the interrupt flag of the activation
source issues an interrupt to the CPU. See the Hardware manual [1] for more detail on the
use of these registers.

06.ES_Conrad_RX63N_Advanced_CH06.qxd:RX63N Advanced  3/4/14  9:51 PM  Page 135



1. #include <stdint.h> //standard integer type definitions
2. #include "iodefine.h" //Defines RX63N port registers
3. #include "rskrx63ndef.h" //Defines macros of RX63N user LEDs and switches
4. #include "vect.h" //Defines interrupt prototypes used in this file
5.
6. uint8_t gDMA_DataBuff[1024]; //DMAC Destination buffer
7. uint8_t gDMA_DataSource = 'X'; //DMAC transfer source variable
8. void Init_DMAC(void);
9.

10. void Init_DMAC(void) {
11. DMAC0.DMCNT.BIT.DTE = 0; //Disable DMA transfers
12.
13. //Transfer dest address is incremented, source address is fixed
14. DMAC0.DMAMD.WORD = 0x0080;
15.
16. //Configure Block transfer, the source is specified as the block area
17. //area 8-bit transfer data size, Software request source
18. DMAC0.DMTMD.WORD = 0x9000;
19.
20. DMAC0.DMSAR = &gDMA_DataSource; //Global variable source
21. DMAC0.DMDAR = gDMA_DataBuff; //Global variable dest
22. DMAC0.DMCRA = sizeof(gDMA_DataBuff); //Number of moves
23. DMAC0.DMCRB = 0x1; //Block transfer ops = 1
24.
25. //Set activation source's intrpt flag to issue an interrupt to CPU
26. DMAC0.DMCSL.BIT.DISEL = 0x1;
27. DMAC0.DMINT.BIT.DTIE = 0x1; //Enable DMA transfer end interrupts
28. IPR(DMAC,DMAC0I) = 0x5; //Set DMAC0 interrupt priority lvl to 5
29. IEN(DMAC,DMAC0I) = 0x1; //Enable DMAC0 interrupts
30. IR(DMAC,DMAC0I) = 0x0; //Clear DMAC0 interrupt flag
31. DMAC0.DMCNT.BIT.DTE = 0x1; //Enable DMA transfers
32. DMAC.DMAST.BIT.DMST = 0x1; //Enable DMAC operation
33. DMAC0.DMREQ.BIT.SWREQ = 0x1; //Enable and trigger the DMAC transfer
34. }
35.
36. //Interrupt function handler called on the completion of the block
37. //block transfer. The status of the DMAC is read and if
38. //the transfer was completed successfully, LED1 is turned on
39. void Excep_DMACA_DMAC0(void) {
40. if(DMAC0.DMSTS.BIT.DTIF) { //Read the status for channel 0
41. LED1 = LED_ON; //Turn on LED1 to indicate end of xfer
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42. DMAC0.DMSTS.BIT.DTIF = 0; //Clear the transfer end interrupt flag
43. }
44. }

Lines 28 to 30 set up the interrupt levels and activate interrupts for notifying the CPU when
the DMA transfer is complete. When complete, the interrupt service routine (lines 39 to 44)
will run and simply turn on an LED. The DMA Status Register (DMSTS), bit 4 (DTIF),
holds a value which is 1 when a transfer end interrupt has been generated. The bit needs to
be clears, which is done in line 42.

6.7 RECAP

In this chapter, we introduced the DMAC and the EXDMAC modules in the Renesas
RX63N. Direct Memory Access (DMA) is used to transfer data without the supervi-
sion of the processor. Several uses and advantages of using the DMA have been
identified. A better understanding of the DMAC is provided with respect to the
DMAC block diagram and the DMAC functionality list. The main data transfer modes
for the DMAC (Normal, Repeat, and Block Transfer Modes) have been explained with
the help of diagrams and illustrative code examples. We have discussed the need for hav-
ing an EXDMAC in the RX63N for DMA transfer in an external data bus. The
EXDMAC functionality list and several special function registers have also been intro-
duced. The EXDMAC’s four main data transfer modes (namely Normal, Repeat, Block,
and Cluster Transfer Modes) have been explained with the help of diagrams and code
examples.

6.8 REFERENCES

[1] Renesas Electronics, Inc. (February, 2013). RX63N Group, RX631 Group User’s Manual: Hardware,
Rev. 1.60.

6.8 EXERCISES

1. What are the main EXDMAC registers to be updated during a DMA transfer?
2. What are the primary DMACActivation Sources?
3. What are the main DMAC Registers to be updated during a DMA transfer?
4. List the main transfer modes for the DMAC and the EXDMAC.
5. What are the primary EXDMAC activation sources?
6. List the similarities between the DMAC and the EXDMAC.
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7. What are the three sub-modes of Cluster Transfer Mode in the EXDMAC?
8. List three advantages of using a DMAC transfer.
9. List major differences between the DMAC and the EXDMAC.
10. List three registers with functions unique to the EXMDAC.
11. Write code to initialize Cluster Transfer Mode in the EXDMAC in Dual Address

Mode.
12. Write code to initialize Cluster Transfer Mode in the EXDMAC in ReadAddress

Mode.
13. Write code to initialize Cluster Transfer Mode in the EXDMAC inWriteAddress

Mode.
14. Write code to set the following DMAC and EXDMAC Registers for different

functionality:
a. Select ‘Normal Transfer Mode’ for EXDMAC channel 0.
b. Disable the DMA transfer on DMAC channel 1.
c. Enable the DMA transfer on DMAC channel 2.
d. Enable the Transfer End Interrupt Request for EXDMAC channel 1.
e. Select the Cluster Transfer Mode: Read Address Mode on EXDMAC

channel 0.
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7.1 LEARNING OBJECTIVES

In this chapter, the reader will learn:

� a basic understanding of flash memory and EEPROM.
� about the block configuration of ROM and E2 DataFlash.
� about flash memory register descriptions.
� how to set up the Flash Control Unit (FCU) for flash and EEPROM programming.
� how to use the different operating modes of the FCU and the RX63N.
� how to write to the flash and EEPROM.
� about protection features of the RX63N.

7.2 BASIC CONCEPTS

Electrically Erasable Programmable Read-Only Memory (EEPROM) is a type of non-
volatile memory used in computers and other electronic devices to store small amounts of
data that must be saved when power is removed.

Flash memory refers to a particular type of EEPROM. The difference between flash
memory and regular EEPROM is that EEPROM erases its content 1 byte at a time. This
makes it slow to update. Flash memory can erase its data in entire blocks, making it a
preferable technology for applications that require frequent updating of large amounts of
data, as in the case of a memory stick for a digital electronic device.

Two ROMs are provided on the RX63N—Zero wait flash (for program storage) of up
to 2 MB, and E2 DataFlash (for data storage) of 32 KB.

7.2.1 Flash Memory Overview

Table 7.1 lists the specifications of the ROM and E2 DataFlash memory and Figure 7.1 is a
block diagram of the ROM, E2 DataFlash memory, and related modules.

Flash and EEPROM Programming
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TABLE 7.1 Specifications of ROM/E2 DataFlash [1], page 1729.

ITEM ROM E2 DATAFLASH

Memory space User area: 2 Mbytes max.
User boot area: 16 Kbytes

Data area: 32 Kbytes

Read cycle A read operation takes one cycle of ICLK. A read operation takes six cycles of FCLK in
words or bytes.

Programming/
erasing method

� The chip incorporates a dedicated sequencer (FCU) for programming of the ROM/E2 DataFlash.
� Programming and erasing the ROM/E2 DataFlash are handled by issuing commands to the FCU.

Value after erasure FFh Undefined

BGO (background
operation)

The CPU is able to execute program code from the ROM while the E2 DataFlash memory is being
programmed or erased.

Suspension and
resumption

� The CPU is able to execute program code from the ROM during suspension of programming or
erasure.

� Programming and erasure of the ROM/E2 DataFlash can be restarted (resumed) after
suspension.

Units of
programming and
erasure

� Units of programming for the user area or
user boot area: 128 bytes

� Units of erasure for the user area: In block
units

� Units of erasure for the user boot area:
16 Kbytes

� Unit of programming for the data area:
2 bytes

� Unit of erasure for the data area: 32 bytes

On-board
programming (four
types)

Programming in boot mode:
� The asynchronous serial interface (SCI1) is used.
� The transfer rate is adjusted automatically.
� The user boot area can also be programmed.

Programming in USB boot mode:
� USB0 is used.
� Dedicated hardware is not required, so direct connection to a PC is possible.

Programming in the user boot mode:
� Able to create original boot programs of the user’s making.

Programming by a routine for ROM/E2 DataFlash programming within the user program:
� This allows ROM/E2 DataFlash programming without resetting the system.

Off-board
programming
(for products with
100 pins or more)

A Flash programmer can be used to program
the user area and user boot area.

A Flash programmer cannot be used to
program the data area.

Protection—Software
controlled protection

The registers and lock bits can be set to
prevent unintentional programming.

� The registers can be used to prevent
unintentional programming or reading.

� Protection with the registers is performed
on a 2-Kbyte basis.

Protection—FCU
command—lock

When abnormal operations are detected during programming/erasure, this function disables any
further programming/erasure.
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Figure 7.1 shows the block diagram of the ROM and the E2 DataFlash. The commands is-
sued to the ROM and the E2 DataFlash are handled by the FCU, which is discussed in a
later section. A memory bus acts as an interface between the ROM, the E2 DataFlash, and
the CPU. An internal bus communicates with the ROM, the E2 DataFlash, and the FCU.
The FCU has its own RAM and storage area.

7.2.2 Operating Modes Associated with Flash Memory

The ROM and the E2 DataFlash can be read, programmed, and erased on the board in boot
mode, USB boot mode, user boot mode, single-chip mode (with on-chip ROM enabled), or
on-chip ROM enabled extended mode. The area where programming and erasure are per-
mitted, the area from which booting up proceeds, and areas erased at the time of booting up
differ with the mode. The differences between modes are indicated in Table 7.2.

Internal peripheral bus 6

M
od

ul
e

in
te

rn
al

bu
s

M
em

or
y

bu
s

2

CPU

FCU

E2 DataFlash
Data area: 32 Kbytes

ROM
User area: 2 Mbytes max.
User boot area: 16 Kbytes

FCU RAM
8 Kbytes

FCU firmware storage area:
8 Kbytes

Mode control

FIFERR

FRDYI

MD pin

Figure 7.1 Block Diagram of ROM/E2 DataFlash [1], page 1730.
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Important observations made from the table are:

� Programming and erasure of the user boot area are only possible in boot mode.
� In boot mode, a host is able to program, erase, or read the user area, user boot area,

or data area via a Serial Communications Interface (SCI).
� In boot mode, on-chip RAM is employed for the boot program. Therefore, the data

on the on-chip RAM is not retained.
� Booting-up in USB boot mode and user boot mode is from the user boot area. The

user boot area of the product as shipped holds the USB boot program, which is ca-
pable of reading from or writing to the user area and data area.

� Furthermore, rewriting of the user boot area in boot mode can enable reading from
or writing to the user area and data area via any desired interface.

7.2.3 Block Configuration of the ROM

The user area (area 0 to area 3) is divided into blocks with different sizes, and erasure
proceeds in block units. The configuration of the blocks of the user area is shown in the
Figure 7.2.

TABLE 7.2 Difference Between Modes.

ITEM
BOOT
MODE

USB BOOT
MODE

USER BOOT
MODE

SINGLE CHIP
MODE

Environment
for program-
ming and
erasure

On-board
programming

On-board
programming

On-board
programming

On-board
programming

Programming
and erasable
area

User area/user
boot area/data
area

User area/data
area

User area/data
area

User area/data
area

Division into
erasable blocks

Possible Possible Possible Possible

Boot program
at reset

Boot program USB boot
program

User boot
program

User program
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FFFF FFFFh

Area 3 Area 1

64 Kbytes 3 8 blocks

32 bytes 3 8 blocks

32 bytes 3 8 blocks

FFE7 FFFFh FFE7 FFFFh

Area 2 Area 0

16 bytes 3 8 blocks

16 bytes 3 22 blocks

4 bytes 3 8 blocks

FFEF FFFFh

64 Kbytes 3 8 blocks

Address

FFE0 0000h

62 to 69

Block no. Address

FFFF 0000h

FFE8 0000h

54 to 61

46 to 53

36 to 45

FFF3 FFFFh
FFF4 0000h

FFF9 FFFFh
FFFA 0000h

Block no.

FFF8 0000h

FFFF 7FFFh
FFFF 8000h

30 to 37

08 to 29

00 to 07

Figure 7.2 Block Configuration of the User Area [1], page 1732.
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7.2.4 Block Configuration of the E2 DataFlash

The data area is divided into 1024 blocks, and erasure is executed in block units. The rela-
tions between the blocks and addresses of the data area, and the corresponding bits to sup-
port permission of reading and of programming and erasure are listed in Table 7.3. The ad-
dress of block N (address where block N starts) is calculated from the following formula:

Address of block address where the data area starts (0010 0000h).N � (N � 32) �

TABLE 7.3 Block Configuration of the Data Area [1], page 1734.

BLOCK
NO

START
ADDRESS

READING AND
PROGRAMMING/

ERASURE
ENABLE BIT

BLOCK
NO

START
ADDRESS

READING AND
PROGRAMMING/

ERASURE
ENABLE BIT

0000– 0010 0000h- DFLRE0.DBRE00 0512– 0010 4000h- DFLRE1.DBRE08

0063 0010 07E0h DFLWE0.DBWE00 0575 0010 47E0h DFLWE1.DBWE08

0064– 0010 0800h- DFLRE0.DBRE01 0576– 0010 4800h- DFLRE1.DBRE09

0127 0010 0FE0h DFLWE0.DBWE01 0639 0010 4FE0h DFLWE1.DBWE09

0128– 0010 1000h- DFLRE0.DBRE02 0640– 0010 5000h- DFLRE1.DBRE10

0191 0010 17E0h DFLWE0.DBWE002 0703 0010 57E0h DFLWE1.DBWE10

0192– 0010 1800h- DFLRE0.DBRE03 0704– 0010 5800h- DFLRE1.DBRE11

0255 0010 1FE0h DFLWE0.DBWE03 0767 0010 5FE0h DFLWE1.DBWE11

0256– 0010 2000h- DFLRE0.DBRE04 0768– 0010 6000h- DFLRE1.DBRE12

0319 0010 27E0h DFLWE0.DBWE04 0831 0010 67E0h DFLWE1.DBWE12

0320– 0010 2800h- DFLRE0.DBRE05 0832– 0010 6800h- DFLRE1.DBRE13

0383 0010 2FE0h DFLWE0.DBWE05 0895 0010 6FE0h DFLWE1.DBWE13

0384– 0010 3000h- DFLRE0.DBRE06 0896– 0010 7000h- DFLRE1.DBRE14

0447 0010 37E0h DFLWE0.DBWE06 0959 0010 77E0h DFLWE1.DBWE14

0448– 0010 3800h- DFLRE0.DBRE07 0960– 0010 7800h- DFLRE1.DBRE15

0511 0010 3FE0h DFLWE0.DBWE07 1023 0010 7FE0h DFLWE1.DBWE15
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7.2.5 FCU

The ROM and the E2 DataFlash operations are performed by issuing commands to the
FCU, a dedicated sequencer. The mode transitions of the FCU and the system of com-
mands are described as follows. The descriptions apply in common to boot mode, USB
boot mode, user boot mode, single-chip mode (with on-chip ROM enabled), and on-chip
ROM enabled expansion mode.

FCU Modes

The FCU has eight modes. Transitions between modes are caused by modifying
FENTRYR or issuing FCU commands. Since the E2 DataFlash P/E mode is included in
ROM read mode, high-speed reading from the ROM is possible in E2 DataFlash P/E
mode.

1. ROM Read Modes: The ROM read modes are for high-speed reading of the
ROM. Reading from an address can be accomplished in one cycle of ICLK.

2. ROM/E2 DataFlash Read Mode: This mode is for reading the ROM and
E2 DataFlash memory. The FCU does not accept FCU commands. The FCU en-
ters this mode when the FENTRYR.FENTRYn bits (n � 0 to 3) are set to 0 with
the FENTRYR.FENTRYD bit set to 0.

3. ROM P/E Modes: The ROM P/E modes are for programming and erasure of the
ROM. High-speed reading of the ROM is not possible in these modes. Reading
from an address within the range for reading causes a ROM-access violation and
the FASTAT.CMDLK bit is set to 1. There are three ROM P/E modes:
a. ROM P/E Normal Mode: The transition to ROM P/E normal mode is the

first transition in the process of programming or erasing the ROM. The FCU
enters this mode when the FENTRYR.FENTRYD bit is set to 0, with any of
the FENTRYR.FENTRYn bits (n � 0 to 3) set to 1 in ROM read mode, or
when the normal mode transition command is received in ROM P/E modes.
Reading from an address within the range for programming and erasure
while any of the FENTRYR.FENTRYn bits (n � 0 to 3) are set to 1 causes a
ROM-access violation, and the FASTAT.CMDLK bit is set to 1 (command-
locked state).

b. ROM Status Read Mode: In the ROM status read mode, the state of the ROM
can be read. The FCU enters this mode when a status read mode transition
command is received, or when a command other than the normal mode
transition or lock-bit read mode transition command is received in ROM
P/E modes.ROM status read mode encompasses the states where the FSTATR0.
FRDY bit is 0 and the FASTAT.CMDLK bit is set to1 (command-locked state)
after an error has occurred. Reading from an address within the range for
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programming and erasure while any of the FENTRYR.FENTRYn bits (n � 0
to 3) are 1 allows the value of FSTATR0 to be read.

c. ROM Lock-Bit Read Mode: In the ROM lock-bit read mode, reading the
ROM allows the lock bits to be read. The FCU enters this mode when a lock-
bit read mode transition command is received in ROM P/E modes. Reading
from an address within the range for programming and erasure while any
of the FENTRYR.FENTRYn bits (n � 0 to 3) are 1 allows the value of the
lock bit of the block including the accessed address to be read from all
the read bits.

4. E2 DataFlash P/E Modes: These modes are for programming and erasure of the
E2 DataFlash memory. Although high-speed reading from the ROM is possible,
reading from the E2 DataFlash is not allowed. Although FCU commands for the
E2 flash memory are accepted in this mode, FCU commands for the ROM are not.
The FCU enters this mode when the FENTRYR.FENTRYn bits (n � 0 to 3) are all
set to 0 and the FENTRYR.FENTRYD bit is set to 1. There are three E2 DataFlash
P/E modes:
a. E2 DataFlash P/E Normal Mode: The transition to E2 DataFlash P/E normal

mode is the first transition in the process of programming or erasing the
E2 DataFlash. The FCU enters this mode when the FENTRYR.FENTRYD bit
is set to 1 and the FENTRYR.FENTRYn bits (n � 0 to 3) are all set to 0 in
ROM/E2 DataFlash read mode, or when the normal mode transition command
is received in E2 DataFlash P/E modes.

b. E2 DataFlash Status Read Mode: The E2 DataFlash status read mode is for
reading information on the state of the E2 DataFlash. The FCU enters this
mode when a status read mode transition command is received, or when a
command other than the normal mode transition and lock-bit read mode tran-
sition command is received in E2 DataFlash P/E modes. E2 DataFlash status
read mode encompasses the states where the FRDY bit in FSTATR0 is 0 and
the FASTAT.CMDLK bit is set to 1 (command-locked state) after an error has
occurred. Reading from an address within the E2 DataFlash area will actually
read the value of the FSTATR0 register. High-speed reading of the ROM is
possible.

c. E2 DataFlash Lock-Bit Read Mode: Since the E2 DataFlash memory does
not have lock bits, the lock bits are not read even if a transition to this mode is
made. If the E2 DataFlash memory area is read after a transition to this
mode, an E2 DataFlash access violation is not generated, but the values read
are undefined. High-speed reading of the ROM is possible. The FCU enters
this mode when a lock-bit read mode transition command is received in
E2 DataFlash P/E modes.
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FCU Commands

FCU commands consist of commands for mode transitions of the FCU and for program-
ming and erasure. Table 7.4 lists the FCU commands for use with the ROM and the
E2 DataFlash.

TABLE 7.4 FCU Commands [1], page 1762.

COMMAND ROM E2 DATAFLASH

P/E normal mode transition Shifts to normal mode Shifts to normal mode

Status-read mode transition Shifts to status-read mode Shifts to status-read mode

Lock-bit read mode
transition

Shifts to lock-bit read mode Shifts to lock-bit read mode

Peripheral clock notification Sets the FCLK

Programming ROM programming E2 DataFlash programming

Block Erase ROM erasure E2 DataFlash erasure

P/E suspend Suspends
programming/erasure

P/E resume Resumes
programming/erasure

Status register clear Clears the ILGERR and FCU
command-lock bit

Lock-bit read 2 Reads the lock bit of a
specified block

—

Lock-bit programming Programs the lock bit of a
specified block

—

Blank checking — Checks whether the E2
flash memory is blank

The lock-bit read 2 commands is for the ROM also used as the blank check command for
the E2 DataFlash memory. That is, when a lock-bit read 2 command is issued for the
E2 DataFlash, blank checking is executed for the E2 DataFlash memory. Commands for
the FCU are issued by writing an FCU command to addresses within the range for ROM
programming and erasure or an address in the E2 DataFlash.
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7.2.6 FCU Register Descriptions

Some registers are common to the ROM and the E2 DataFlash, while others are dedicated
to one or the other.

Flash Write Erase Protection Register (FWEPROR)

Programming and erasure of the ROM or the E2 DataFlash memory, programming and
erasure of lock bits, reading of lock bits, and blank checking by software are prohibited
when protected. FWEPROR is initialized by a reset due to the signal on the RES# pin, by
transitions to software standby and deep software standby, and by the power supply voltage
falling below the threshold for detection.

TABLE 7.5 FWEPROR Register, Address(es): 0008 C296h [1], page 1735.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b1, b0 FLW[1:0] Flash
Programming/
Erasure

b1:b0 R/W

0 0: Disables programming and erasure of
the ROM/E2 DataFlash, programming
and erasure of lock bits, reading of
lock bits, and blank checking

0 1: Enables programming and erasure of
the ROM/E2 DataFlash, programming
and erasure of lock bits, reading of
lock bits, and blank checking

1 0: Disables programming and erasure of
the ROM/E2 DataFlash, programming
and erasure of lock bits, reading of
lock bits, and blank checking

1 1: Disables programming and erasure of
the ROM/E2 DataFlash, programming
and erasure of lock bits, reading of
lock bits, and blank checking

b7 to b2 — Reserved These bits are read as 0. The write value
should be 0.

R/W
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Flash Mode Register (FMODR)

TABLE 7.6 FMODR Register Address(es): 007F C402h [1], page 1736.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b3 to b0 — Reserved These bits are read as 0. The write value should be 0. R/W

b4 FRDMD FCU Read
Method Select

This bit selects internal processing by the FCU when a 0x71
command is issued.

R/W

b7 to b5 — Reserved These bits are read as 0. The write value should be 0. R/W

Regarding the FMODR, when a 0x71 command is issued in relation to the FCU, this bit se-
lects internal processing by the FCU. Internal processing by the FCU differs according to
the address where the 0x71 command was issued. This register is common to the ROM and
the E2 DataFlash. When the on-chip ROM is disabled, the data read from this register is
00h and writing is disabled.

Flash Access Status Register (FASTAT)

TABLE 7.7 FASTAT Register, Address(es): 007f C410h [1], page 1737.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 DFLWPE E2 DataFlash Programming/
Erasure Protection Violation Flag

0: Programming/erasure protection violation R/W

1: No programming/erasure protection violation

b1 DFLRPE E2 DataFlash Read Protection
Violation Flag

0: Read protection violation R/W

1: No read protection violation

b2 — Reserved These bits are read as 0. The write value should
be 0.

R/W

b3 DFLAE E2 DataFlash Access
Violation Flag

0: No E2 DataFlash access violation R/W

1: E2 DataFlash access violation

b4 CMDLK FCU Command-Lock Flag 0: FCU accepts the command R

1: FCU does not accept the command

b6, b5 — Reserved These bits are read as 0. The write value should
be 0.

b7 ROMAE ROM Access Violation Flag 0: No ROM access violation R/W

1: ROM access violation

07.ES_Conrad_RX63N_Advanced_CH07.qxd:RX63N Advanced  3/4/14  12:01 PM  Page 149



150 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

This register is common to the ROM and the E2 DataFlash. When the on-chip ROM is dis-
abled, the data read from this register is 00h and writing is disabled. All the bits are de-
scribed as below:

DFLWPE Bit (E2 DataFlash Programming/Erasure Protection Violation): This bit is
used to indicate whether or not the programming/erasure protection set by DFLWEy
(y � 0, 1) is violated. When the DFLWPE bit is set to 1, the FSTATR0.ILGLERR bit is set
to 1, and the CMDLK bit becomes 1 (command-locked state).

DFLRPE Bit (E2 DataFlash Read Protection Violation Flag): This bit is used to indi-
cate whether or not the reading protection set by DFLREy (y � 0, 1) is violated. When the
DFLRPE bit is set to 1, the FSTATR0.ILGLERR bit is set to 1, and the CMDLK bit be-
comes 1 (command-locked state).

DFLAE Bit (E2 DataFlash Access Violation Flag): This bit indicates whether an E2
DataFlash access violation occurred. When the DFLAE bit is set to 1, the ILGLERR bit in
FSTATR0 is set to 1, and the CMDLK bit becomes 1 (command-locked state).

CMDLK Bit (FCU Command-Lock Flag): This bit is used to indicate whether the FCU
can receive commands. When any bit of the FASTAT register is set to 1, the CMDLK bit is
set to 1, and the FCU receives no commands. To enable the FCU to receive commands, a
status register clear command must be issued to the FCU after setting FASTAT to 10h.

ROMAE Bit (ROMAccess Violation Flag): This bit indicates whether a ROM access vi-
olation occurred. When the ROMAE bit is set to 1, the FSTATR0.ILGLERR bit is set to 1,
and the CMDLK bit becomes 1 (command-locked state).

Flash Ready Interrupt Enable Register (FRDYIE)

TABLE 7.8 FRDYIE Register, Address(es): 007F C412h [1], page 1741.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 FRDYIE Flash Ready
Interrupt Enable

0: FRDYI interrupt requests disabled R/W

1: FRDYI interrupt requests enabled

b7 to b1 — Reserved These bits are read as 0. The write value
should be 0.

R/W
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This register is common to the ROM and the E2 DataFlash. When the on-chip ROM is dis-
abled, the data read from this register is 00h and writing is disabled.

FRDYIE Bit (Flash Ready Interrupt Enable): This bit is to enable or disable a flash
ready interrupt request when programming/erasure is completed. If the FRDYIE bit is set
to 1, a flash ready interrupt request (FRDYI) is generated when execution of the FCU com-
mand has completed (FSTATR0.FRDY bit changes from 0 to 1).

E2 DataFlash Read Enable Register 0 (DFLRE0)

TABLE 7.9 DFLRE0 Register Address(es): 007F C440h [1], page 1742.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 DBRE00 0000–0063 Block
Read Enable

0: Read disabled R/W

1: Read enabled

b1 DBRE01 0064–0127 Block
Read Enable

R/W

b2 DBRE02 0128–0191 Block
Read Enable

R/W

b3 DBRE03 0192–0255 Block
Read Enable

R/W

b4 DBRE04 0256–0319 Block
Read Enable

R/W

b5 DBRE05 0320–0383 Block
Read Enable

R/W

b6 DBRE06 0384–0447 Block
Read Enable

R/W

b7 DBRE07 0448–0511 Block
Read Enable

R/W

b15 to b8 KEY[7:0] Key Code These bits control permission and prohibition of
writing to the DFLRE0 register.

R/W*1

To modify the DFLRE0 register, write 2Dh to the
8 higher-order bits and the desired value to the
8 lower-order bits as a 16-bit unit.

Note 1. Write data is not retained.
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DFLRE0 is a register to enable or disable the 0000 to 0511 blocks of the data area to be
read. Reading is enabled or disabled in 2-Kbyte units (64 blocks). This register is dedicated
to the E2 DataFlash. When the on-chip ROM is disabled, the data read from this register is
0000h and writing is disabled.

E2 DataFlash Read Enable Register 1 (DFLRE1)

TABLE 7.10 DFLRE1 Register, Address(es): 007F C442h [1], page 1743.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 DBRE00 0512–575 Block
Read Enable

0: Read disabled R/W

1: Read enabled

b1 DBRE01 0576–0639 Block
Read Enable

R/W

b2 DBRE02 0640–0703 Block
Read Enable

R/W

b3 DBRE03 0704–0767 Block
Read Enable

R/W

b4 DBRE04 0768–0831 Block
Read Enable

R/W

b5 DBRE05 0832–0895 Block
Read Enable

R/W

b6 DBRE06 0896–0959 Block
Read Enable

R/W

b7 DBRE07 0960–1023 Block
Read Enable

R/W

b15 to b8 KEY[7:0] Key Code These bits control permission and prohibition of
writing to the DFLRE0 register. To modify the DFLRE0
register, write 2Dh to the 8 higher-order bits and the
desired value to the 8 lower-order bits as a 16-bit
unit.

R/W

DFLRE1 is a register to enable or disable the 0512 to 1023 blocks of the data area to be
read. Reading is enabled or disabled in 2 Kbyte units (64 blocks). This register is dedicated
to the E2 DataFlash. When the on-chip ROM is disabled, the data read from this register is
0000h and writing is disabled.
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E2 DataFlash P/E Enable Register 0 (DFLWE0)

TABLE 7.11 DFLWE0 Register Address(es): 007F C450h [1], page 1744.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 DBWE00 0000–0063 Block
Programming/
Erasure Enable

0: Read disabled R/W

1: Read enabled

b1 DBWE01 0064–0127 Block
Programming/
Erasure Enable

R/W

b2 DBWE02 0128–0191 Block
Programming/
Erasure Enable

R/W

b3 DBWE03 0192–0255 Block
Programming/
Erasure Enable

R/W

b4 DBWE04 0256–0319 Block
Programming/
Erasure Enable

R/W

b5 DBWE05 0320–0383 Block
Programming/
Erasure Enable

R/W

b6 DBWE06 0384–0447 Block
Programming/
Erasure Enable

R/W

b7 DBWE07 0448–0511 Block
Programming/
Erasure Enable

R/W

b15 to b8 KEY[7:0] Key Code These bits control permission and prohibition of
writing to the DFLWE0 register. To modify the
DFLWE0 register, write 1Eh to the 8 higher-order
bits and the desired value to the 8 lower-order bits
as a 16-bit unit.

R/W

DFLWE0 is a register to enable or disable the 0000 to 0511 blocks of the data area to be
programmed or erased. Programming or erasing is enabled or disabled in 2-Kbyte units
(64 blocks). This register is dedicated to the E2 DataFlash. When the on-chip ROM is dis-
abled, the data read from this register is 0000h and writing is disabled.
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E2 DataFlash P/E Enable Register 1 (DFLWE1)

TABLE 7.12 DFLWE1 Register, Address(es): 007F C452h [1], page 1744.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 DBWE00 0512–575 Block
Programming/
Erasure Enable

0: Read disabled R/W

1: Read enabled

b1 DBWE01 0576–0639 Block
Programming/
Erasure Enable

R/W

b2 DBWE02 0640–0703 Block
Programming/
Erasure Enable

R/W

b3 DBWE03 0704–0767 Block
Programming/
Erasure Enable

R/W

b4 DBWE04 0768–0831 Block
Programming/
Erasure Enable

R/W

b5 DBWE05 0832–0895 Block
Programming/
Erasure Enable

R/W

b6 DBWE06 0896–0959 Block
Programming/
Erasure Enable

R/W

b7 DBWE07 0960–1023 Block
Programming/
Erasure Enable

R/W

b15 to b8 KEY[7:0] Key Code These bits control permission and prohibition of
writing to the DFLWE0 register. To modify the
DFLWE0 register, write E1h to the 8 higher-order
bits and the desired value to the 8 lower-order bits
as a 16-bit unit.

R/W
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DFLWE1 is a register to enable or disable the 0512 to 1023 blocks of the data area to be
programmed or erased. Programming or erasing is enabled or disabled in 2-Kbyte units
(64 blocks).This register is dedicated to the E2 DataFlash. When the on-chip ROM is dis-
abled, the data read from this register is 0000h and writing is disabled.

FCU RAM Enable Register (FCURAME)

TABLE 7.13 FCURAME Register, Address(es): 007F C454h [1], page 1746.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 FCRME FCU RAM
Enable

0: Access to the FCU RAM disabled R/W

1: Access to the FCU RAM enabled

b7 to b1 — Reserved These bits are read as 0. The write value
should be 0.

R/W

b15 to b8 KEY[7:0] Key Code These bits control permission and prohibition
of writing to the FCURAME register.

R/W

To modify the FCURAME register, write C4h
to the 8 higher-order bits and the desired
value to the 8 lower-order bits as a 16-bit
unit.

This register is common to the ROM and the E2 DataFlash. When the on-chip ROM is dis-
abled, the data read from this register is 0000h and writing is disabled.

FCRME Bit (FCU RAM Enable): This bit is used to enable or disable access to
the FCU RAM. When writing to the FCU RAM, set FENTRYR to 0000h and stop the
FCU. Furthermore, data in the FCU RAM cannot be read regardless of whether access
to the FCU RAM is enabled or disabled. Values read when reading is attempted are
undefined.

Flash Status Register 0 (FSTATR0)

FSTATR0 is also reset by setting the FRESETR.FRESET bit to 1. When the on-chip ROM
is disabled, the data read from this register is 00h and writing is disabled. This register is
common to the ROM and the E2 DataFlash.
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PRGSPD Bit (Programming Suspend Status Flag): This bit is used to indicate that the
FCU enters the programming suspend processing state or programming suspended state.

ERSSPD Bit (Erasure Suspend Status Flag): This bit is used to indicate that the FCU
enters the erasure suspend processing state or erasure suspended state.

TABLE 7.14 FSTATR0 Register, Address(es): 007F FFb0h [1], page 1747.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 PRGSPD Programming
Suspend Status Flag

0: Other than the status described below R

1: During programming suspend processing or
programming suspended

b1 ERSSPD Erasure Suspend
Status Flag

0: Other than the status described below R

1: When erasure suspend processing or erasure
suspended

b2 — Reserved This bit is read as 0 and cannot be modified. R

b3 SUSRDY Suspend Ready Flag 0: P/E suspend commands cannot be received R

1: P/E suspend commands can be received

b4 PRGERR Programming Error
Flag

0: Programming terminates normally R

1: An error occurs during programming

b5 ERSERR Erasure Error 0: Erasure terminates normally R

1: An error occurs during erasure

b6 ILGLERR Illegal Command
Error Flag

0: FCU detects no illegal command or illegal
ROM/E2 DataFlash access

R

1: FCU detects an illegal command or illegal
ROM/E2 DataFlash access

b7 FRDY Flash Ready Flag 0: During programming/erasure, During
suspending programming/erasure, During the
lock-bit read 2 command processing, During
the peripheral clock notification command
processing, During the blank check processing
of E2 DataFlash

R

1: Processing described above is not performed
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SUSRDY Bit (Suspend Ready Flag): This bit is used to indicate whether the FCU can
receive a P/E suspend command.

PRGERR Bit (Programming Error Flag): This bit is used to indicate the result of the
ROM/E2 DataFlash programming process by the FCU. When the PRGERR bit is set to 1,
the FASTAT.CMDLK bit becomes 1 (command-locked state).

ERSERR Bit (Erasure Error Flag): This bit is used to indicate the result of the
ROM/E2 DataFlash erasure process by the FCU. When the ERSERR bit is set to 1, the
FASTAT.CMDLK bit becomes 1 (command-locked state).

ILGLERR Bit (Illegal Command Error Flag): This bit is used to indicate that the FCU
detects any illegal command or ROM/E2 DataFlash access. When the ILGLERR bit is set
to 1, the FASTAT.CMDLK bit becomes 1 (command-locked state).

Flash Status Register 1 (FSTATR1)

TABLE 7.15 FSTATR1 Register, Address(es): 007F FFb1h [1], page 1749.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b3 to b0 — Reserved This bit is read as 0 and cannot be modified. R

b4 FLOCKST Lock Bit Status 0: Protected R

1: Not Protected

b6,b5 — Reserved This bit is read as 0 and cannot be modified. R

B7 FCUERR FCU error Flag 0: No error occurs in the FCU processing R

1: An error occurs in the FCU processing

FSTATR1 is also reset by setting the FRESETR.FRESET bit to 1. When the on-chip ROM
is disabled, the data read from this register is 00h and writing is disabled. This register is
common to the ROM and the E2 DataFlash.

FLOCKST Bit (Lock-Bit Status): This bit is to reflect the read data of a lock bit when
using the lock-bit read 2 commands. When the FSTATR0.FRDY bit is set to 1 after a lock-
bit read 2 command is issued, the value of the lock-bit status is stored in the FLOCKST bit.
The value of the FLOCKST bit is retained until the completion of the next lock-bit read
2 command.
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FCUERR Bit (FCU Error Flag): This bit is used to indicate that an error occurs in the
FCU internal processing.When the FCUERR bit is set to 1, set the FRESETR.FRESET bit
to 1 to initialize the FCU. Additionally, recopy the FCU firmware from the FCU firmware
area to the FCU RAM area.

Flash P/E Mode Entry Register (FENTRYR)

TABLE 7.16 FENTRYR Register, Address(es): 007F FFB2h [1], page 1750.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 FENTRY0 ROM P/E Mode
Entry 0

0: Area 0 is in ROM read mode R/W

1: Area 0 is in ROM P/E mode

b1 FENTRY1 ROM P/E Mode
Entry 1

0: Area 1 is in ROM read mode R/W

1: Area 1 is in ROM P/E mode

b2 FENTRY2 ROM P/E Mode
Entry 2

0: Area 2 is in ROM read mode R/W

1: Area 2 is in ROM P/E mode

b3 FENTRY3 ROM P/E Mode
Entry 3

0: Area 3 is in ROM read mode R/W

1: Area 3 is in ROM P/E mode

b6 to b4 — Reserved R/W

b7 FENTRYD E2 DataFlash
P/E mode entry

0: E2 DataFlash is in read mode R/W

1: E2 DataFlash is in P/E mode

b15 to b8 FEKEY[7:0] Key Code These bits control permission and prohibition
of writing to the FENTRYR register. To modify
the FENTRYR register, write AAh to the
8 higher-order bits and the desired value to
the 8 lower-order bits as a 16-bit unit.

R/W

To place the ROM/E2 DataFlash in ROM P/E mode so that the FCU can accept commands,
either the FENTRYD or FENTRYn bits (n � 0 to 3) must be set to 1. Note that if a value
is set other than AA01h, AA02h, AA04h, AA08h, and AA80h in FENTRYR, the
FSTATR0.ILGLERR bit is set to 1 and the FSATAT.CMDLK bit is set to 1 (command-
locked state). The ROM exists from area 0 up to area 3 at the maximum, and the
FENTRY0 to FENTRY3 bits correspond to the respective areas. The FENTRYn bits
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(n � 0 to 3) for areas that are not present cannot be set to 1. FENTRYR is also reset when
the FRESETR.FRESET bit is set to 1. When on-chip ROM is disabled, the data read from
FENTRYR is 0000h and writing is disabled. This register is common to the ROM and the
E2 DataFlash.

FENTRYn Bit (ROM P/E Mode Entry n: n � 0 to 3): This bit is used to place area n
(n � 0 to 3) in P/E mode.

Write-enable conditions (when all of the following conditions are met):

� On-chip ROM is enabled.
� The FSTATR0.FRDY bit is set to 1.
� AAh is written to the FEKEY[7:0] bits in word access.
� The write-enable conditions are met, FENTRYR is set to 0000h, and 1 is written to

the FENTRYn (n � 0 to 3).
� Data is written in byte access.
� Data is written in word access when the FEKEY[7:0] bits are other than AAh.
� When the write-enable conditions are met, 0 is written to the FENTRYn

(n � 0 to 3) bit.
� When the write-enable conditions are met and FENTRYR is other than 0000h,

data is written to FENTRYR.

Flash Protection Register (FPROTR)

TABLE 7.17 FPROTR Register, Address(es): 007F FFB4h [1], page 1752.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 FPROTCN Lock-Bit
Protection Cancel

0: Protection with a lock bit enabled R/W

1: Protection with a lock bit disabled

b7 to b1 — Reserved These bits are read as 0. The write value
should be 0.

R/W

b15 to b8 FPKEY[7:0] Key Code These bits control permission and
prohibition of writing to the FPROTR
register.

R/W

To modify the FPROTR register, write 55h to
the 8 higher-order bits and the desired
value to the 8 lower-order bits as a 16-bit
unit.

07.ES_Conrad_RX63N_Advanced_CH07.qxd:RX63N Advanced  3/4/14  12:01 PM  Page 159



160 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

FPROTR is also reset when the FRESETR.FRESET bit is set to 1. When the on-chip ROM
is disabled, the data read from FPROTR is 0000h and writing is disabled. This register is
dedicated to the ROM.

FPROTCN Bit (Lock-Bit Protection Cancel): 55h is written to the FPKEY[7:0] bits
and 1 is written to the FPROTCN bit in word access when the value of FENTRYR is other
than 0000h.

� Data is written in byte access the FPKEY[7:0] bits are 55h.
� Data is written in word access when the FPKEY[7:0] bits are other than 55h.
� 55h is written to the FPKEY[7:0] bits and 0 is written to the FPROTCN bit in word

access.
� The value of FENTRYR is 0000h.

Flash Reset Register (FRESETR)

TABLE 7.18 FRESETR Register, Address(es): 007F FFB6h [1], page 1753.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 FRESET Flash Reset 0: FCU is not reset R/W

1: FCU is reset

b7 to b1 — Reserved These bits are read as 0. The write value should
be 0.

R/W

b15 to b8 FPKEY[7:0] Key Code These bits control permission and prohibition of
writing to the FRESETR register.

R/W

To modify the FRESETR register, write CCh to the
8 higher-order bits and the desired value to the
8 lower-order bits as a 16-bit unit.

When the on-chip ROM is disabled, the data read from FRESETR is 0000h and writing is
disabled. This register is common to the ROM and the E2 DataFlash.

FRESET Bit (Flash Reset): When the FRESET bit is set to 1, programming/erasure op-
erations for the ROM/E2 DataFlash are forcibly terminated and the FCU is initialized.
High voltage is applied to the ROM/E2 DataFlash during programming/erasure. To ensure
the time required for dropping the voltage applied to the memory, keep the FRESET bit set
to 1 for tFCUR when initializing the FCU. While the FRESET bit is kept as 1, the user ap-
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plication is prohibited from reading the ROM/E2 DataFlash.Additionally, when the FRESET
bit is set to 1, the FCU commands cannot be used because FENTRYR is initialized.

FCU Command Register (FCMDR)

TABLE 7.19 FCMDR Register Address(es): 007F FFBAh [1], page 1754.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b7 to b0 PCMDR[7:0] Precommand Store the command immediately before the
last command received by the FCU.

R

b15 to b8 CMDR[7:0] Command Store the last command received by the FCU. R

FCMDR is also initialized when the FRESETR.FRESET bit is set to 1. When the on-chip
ROM is disabled, the data read from FCMDR is 0000h and writing is disabled. This regis-
ter is common to the ROM and the E2 DataFlash.

FCU Processing Switching Register (FCPSR)

TABLE 7.20 FCPSR Register, Address(es): 007F FFC8h [1], page 1755.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 ESUSPMD Erasure Suspend mode 0: Suspension priority mode R/W

1: Erasure priority mode

b15 to b1 — Reserved These bits are read as 0. The write value
should be 0.

R/W

FCPSR is also reset when the FRESETR.FRESET bit is set to 1. When the on-chip ROM
is disabled, the data read from FCPSR is 0000h and writing is disabled. This register is
common to the ROM and the E2 DataFlash.

ESUSPMD Bit (Erasure Suspend Mode): This bit is to select the erasure suspend mode
for when a P/E suspend command is issued while the FCU executes the erasure processing
for the ROM/E2 DataFlash.
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E2 DataFlash Blank Check Control Register (DFLBCCNT)

DFLBCCNT is also reset when the FRESETR.FRESET bit is set to 1. When the on-chip
ROM is disabled, the data read from DFLBCCNT is 0000h and writing is disabled. This
register is dedicated to the E2 DataFlash.

BCADR[10:0] Bits (Blank CheckAddress Setting): These bits are used to set the address
of the area to be checked when the size of the area to be checked by a blank check command
is 2 bytes (the BCSIZE bit is 0). Set the BCADR[0] bit to 0.When the BCSIZE bit is 0, the
start address of the area to be checked is obtained by adding the DFLBCCNT setting value
to the block start address (in 2-Kbyte units) specified at issuance of a blank check command.
When the BCSIZE bit is 1, the setting of the BCADR[10:0] bits will be ignored.

Flash P/E Status Register (FPESTAT)

TABLE 7.21 DFLBCCNT Register, Address(es): 007F FFCAh [1], page 1755.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b10 to b0 BCADR[10:0] Blank Check
Address Setting

Set the address of the area to be checked R/W

b14 to b11 — Reserved These bits are read as 0. The write value should be 0. R/W

b15 to b8 BCSIZE Blank Check
Size Setting

0: The size of the area to be blank checked is 2 bytes R/W

1: The size of the area to be blank checked is 2 Kbytes

TABLE 7.22 FPESTAT Register, Address(es): 007F FFCCh [1], page 1756.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b7 to b0 PEERRST[7:0] P/E Error
Status

00h: No error R

01h: Programming error against areas protected by a lock bit

02h: Programming error due to sources other than the lock-bit
protection

11h: Erasure error against areas protected by a lock bit

12h: Erasure error due to sources other than the lock-bit
protection

(Values other than above are reserved)

b15 to b8 — Reserved These bits are read as 0 and cannot be modified. R
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FPESTAT is also reset when the FRESETR.FRESET bit is set to 1. When on-chip ROM is
disabled, the data read from FPESTAT is 0000h and writing is disabled. This register is
dedicated to the ROM.

PEERRST[7:0] Bits (P/E Error Status): These bits are used to indicate the reason of an
error that occurs during the programming/erasure processing for the ROM. The value of
the PEERRST[7:0] bits is valid only when the FSTATR0.FRDY bit is set to 1 while the
FSTATR0.ERSERR bit or FSTATR0.PRGERR bit is 1. The value of the reason of the past
error is retained in the PEERRST[7:0] bits when the ERSERR bit and the PRGERR bit is 0.

E2 DataFlash Blank Check Status Register (DFLBCSTAT)

TABLE 7.23 DFLBCSTAT Register, Address(es): 007F FFCEh [1], page 1756.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 BCST Blank Check
Status

0: The area to be blank-checked is erased (blank) R

1: 0 or 1 is written in the area to be blank-checked

b15 to b1 — Reserved These bits are read as 0.The write value should be 0. R/W

DFLBCSTAT is also reset when the FRESETR.FRESET bit is set to 1. When on-chip
ROM is disabled, the data read from DFLBCSTAT is 0000h and writing is disabled. This
register is dedicated to the E2 DataFlash.

Peripheral Clock Notification Register (PCKAR)

TABLE 7.24 PCKAR Register Address(es): 007F FFE8h [1], page 1757.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b7 to b0 PCKA[7:0] Peripheral Clock
Notification

These bits are used to set the flash interface
clock (FCLK) at the programming/erasure for
the ROM/E2 DataFlash.

R/W

b15 to b8 — Reserved These bits are read as 0. The write value
should be zero.

R/W
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PCKA[7:0] Bits (Peripheral Clock Notification): These bits are used to set the FCLK at
the programming/erasure for the ROM/E2 DataFlash.

� Set the FCLK frequency in the PCKA[7:0] bits and issue a peripheral clock notifi-
cation command before programming/erasure. Do not change the frequency dur-
ing programming/erasure for the ROM/E2 DataFlash.

� Write a setting to the PCKA[7:0] bits as a binary value that selects the operating
frequency in MHz units.

� For example, when the operating frequency of the FCLK is 35.9 MHz, the setting
value is calculated as follows:
▫ Round 35.9 off to a whole number.
▫ Convert 36 to binary and set the upper bits and lower bits of the PCKA[7:0]

bits to 00h and 24h (0010 0100b).

7.2.7 Mode Transitions

� Switching to ROM Read Mode or ROM/E2 DataFlash Read Mode: High-speed
reading of the ROM requires clearing of the FENTRYR.FENTRYn (n � 0 to 3) bits
to 0000b, which places the FCU in ROM read mode. Writing of 02h as a byte to
FWEPROR is also required to disable programming and erasure. Before switching
the FCU from ROM P/E mode to read mode, ensure that all processing of FCU
commands has been completed and that the FCU has not detected an error. For a
transition to ROM/E2 DataFlash read mode, the FENTRYR.FENRTYn (n � 0 to 3)
bits and the FENTRYD bit must be set to 0.

� Switching to P/E Mode: A transition to ROM P/E mode is required before execut-
ing an FCU command for programming or erasure of the ROM. Setting any of the
FENTRYR.FENTRYn (n � 0 to 3) bits to 1 causes a transition to ROM P/E mode
for programming and erasure of the corresponding address range.

� A transition to E2 DataFlash P/E mode is required before executing an FCU com-
mand for programming or erasure of the E2 DataFlash. For a transition to
E2 DataFlash P/E mode, set the FENTRYR.FENTRYD bit to 1. Before actually
proceeding to program or erase the ROM, enable programming and erasure by
writing 01h as a byte to the FWEPROR (Flash Write Erase Protection Register).

� Switching to P/E Normal Mode: Two methods are available for the transition to
P/E normal mode: setting FENTRYR while the FCU is in ROM/E2 DataFlash
read mode or issuing the normal mode transition command while the FCU is in
P/E mode. The normal mode transition command is issued by writing FFh to a
ROM programming/erasure address or to an E2 DataFlash address.
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� Switching to Status Read Mode: Issuing a status read mode transition command or
an FCU command other than a normal mode transition or lock-bit read mode tran-
sition command places the FCU in status read mode. The status read mode transi-
tion command is issued to place the FCU in ROM status read mode, and the value
of FSTATR0 is obtained by reading from a ROM programming/erasure address or
an E2 DataFlash address and is then checked.

� Switching to ROM Lock-Bit Read Mode: Clearing the FMODR.FRDMD bit
(memory area reading method) issues a lock-bit read mode transition (lock-bit
read 1) command. After the transition to lock-bit read mode, the lock-bit value
is obtained by reading from a ROM programming/erasure address. All bits of a
value thus read have the value of the lock bit of the block that contains the ac-
cessed address. Since there are no lock bits for the E2 DataFlash, undefined data
are read from the E2 DataFlash area after a transition of the lock-bit read mode
is made.

7.2.8 Programming and Erasure Procedures

The flow of procedures for programming or erasing the ROM or E2 DataFlash is as given
as follows:

1. Firmware Transfer to the FCU RAM: FCU commands can only be used if the FCU
RAM holds the firmware for the FCU. The FCU RAM does not hold the FCU
firmware immediately after the chip has been booted up, so the firmware must be
copied from the FCU firmware area to the FCU RAM. Furthermore, when the
FSTATR1.FCUERR bit is set to 1, the FCU must be reset and the firmware re-
copied because the firmware stored in the FCU RAM may have been corrupted.

2. Jump to the on-chip RAM: Since fetching instructions from the ROM is not possible
while the ROM is being programmed or erased, instructions have to be fetched from
an area other than the ROM. Copy the required program code to the on-chip RAM
and then make a jump to the address where the code starts in the on-chip RAM.

3. P/E mode transition: The FCU is placed in P/E mode by setting the FENTRYR.
FENTRYn (n � 0 to 3) bits and FWEPROR register.

4. Error check.
5. Issue a peripheral clock notification command: FCLK is used in programming and

erasing the ROM or E2 DataFlash, so the frequency of this clock has to be set in
the PCKAR. Frequencies in the range from 1 to 100 MHz are selectable. If a fre-
quency within this range has not been set, the FCU will detect the error leading the
FASTAT.CMDLK bit being set to 1 (command-locked state).

6. Check the execution result of the FCU command.
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7.2.9 Programming

The programming command is used to write data to the ROM or the E2 DataFlash.
ROM Programming: In the first and second cycles for the programming com-

mand, respectively, the values E8h and 40h are written to the address range for pro-
gramming and erasure of the ROM. In the third cycle, write the actual data to be
programmed, as a word unit, to the start address of the target area for programming. For
this start address, always use an address that is aligned on a 128-byte boundary. In the
fourth to the 66th cycles, write the data for programming in 63 word-unit rounds to the
address range for programming and erasure of the ROM. Once the value D0h has been
written to the address range for programming and erasure of the ROM in the 67th cycle,
the FCU begins the actual process of programming the ROM. The FSTATR0.FRDY bit
can be used to check whether or not the programming has been completed. Addresses
that can be used in the first to 67th cycles differ according to the setting of the
FENTRYR.FENTRYn bits (n � 0 to 3). Ensure that the addresses suit the setting of
FENTRYR.FENTRYn bits. If issuing of the command is attempted for an address in the
area for which the P/E mode is disabled by the FENTRYR register, the FCU will detect
the error leading the FASTAT.CMDLK bit being set to 1 (command-locked state). In
cases where the target range (in the third to 66th cycles) includes addresses that do not
require programming, use FFFFh as the data for programming to those addresses. Fur-
thermore, when a lock is programmed so that protection by the lock bit becomes effec-
tive, the FPROTR.FPROTCN bit must be set to 1.

E2 DataFlash Programming: Write E8h to an address within the E2 DataFlash area
in the first cycle of the programming command, and 01h in the second cycle. In the third
cycle, write the first word of data for programming to the address where the target area for
programming starts. This address must be on a 2-byte boundary. After writing words to ad-
dresses in the E2 DataFlash area one time, write byte D0h to an address within the
E2DataFlash area in the fourth cycle; the FCU will then start actual programming of the
E2 DataFlash. Read the FRDY bit in FSTATR0 to confirm the completion of the
E2 DataFlash programming.When programming, for locking to prohibit programming and
erasure according to the setting of the DFLWEy register (y � 0, 1), the relevant bit of the
DFLWEy register (y � 0, 1) must be set to 1.

7.2.10 Erasure

To erase the ROM/E2 DataFlash, use the block erasure command. In the first cycle of a
block-erasure command, 20h is written to an address for programming or erasure of the
ROM or an address in the E2 DataFlash. In the second cycle, when D0h is written to any
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address within the target block for erasure, the FCU starts processing to erase the ROM or
E2 DataFlash. The FSTATR0.FRDY bit can be checked to confirm the completion of era-
sure.When the CPU reads ROM that has been erased, the value read is FFFF FFFFh. In the
case of the E2 DataFlash, values read are undefined. In the case of the ROM, the
FPROTR.FPROTCN bit must be set to 1, if protection by the lock bit is in effect, for a
block to be erased. Note that the E2 DataFlash has a programming and erasure protection
function that is controlled by DFLWEy (y � 0, 1).When erasure for locking to prohibit
programming and erasure according to the setting of the DFLWEy register (y � 0, 1) pro-
ceeds, the relevant bit of the DFLWEy register (y � 0, 1) must be set to 1.

7.2.11 Simple Flash API for RX63N

The Simple Flash API is provided by Renesas to make the process of programming and
erasing on-chip flash areas easier. Both the ROM and E2 DataFlash areas are supported.
The API in its simplest form can be used to perform blocking erase and program opera-
tions. The term ‘blocking’means that when a program or erase function is called, the func-
tion does not return until the operation has finished. When a flash operation is on-going,
that flash area cannot be accessed by the user. If an attempt to access the flash area is made,
the flash control unit will transition into an error state. For this reason ‘blocking’ operations
are preferred by some users to prevent the possibility of a flash error. But there are other
cases where blocking operations are not desired.

If the user is writing data to the E2 DataFlash, for example, the ROM can still be read. In
this case many users would like for the E2 DataFlash write or erase to occur in the background
(non-blocking) while their application continues to run in ROM. RX600 MCUs support this
feature and it is available in the Simple Flash API. The user can also perform non-blocking
ROM operations as well, but application code will need to be located outside of the ROM. For
more information, please refer the hardware manual provided by Renesas for RX63N.

Features

Below is a list of the features supported by the Simple Flash API.

� Blocking, erasing, and programming of User ROM
� Non-blocking, background operation, erasing, and programming of user ROM
� Blocking, erasing, programming, and blank checking of E2 DataFlash
� Non-blocking, background operation, erasing, programming, and blank checking

of E2 DataFlash
� Callback functions for when flash operation has finished (only with non-blocking)
� ROM to ROM transfers
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� E2 DataFlash to E2 DataFlash transfers
� Lock-bit protection
� Lock-bit set/read

7.3 BASIC EXAMPLES

EXAMPLE 1

This function initializes the FCU peripheral block.

1. static uint8_t flash_init(void){
2. uint32_t * src, * dst;
3. uint16_t i;
4. FLASH.FAEINT.BIT.ROMAEIE = 0;
5. FLASH.FAEINT.BIT.CMDLKIE = 0;
6. FLASH.FAEINT.BIT.DFLAEIE = 0;
7. FLASH.FAEINT.BIT.DFLRPEIE = 0;
8. FLASH.FAEINT.BIT.DFLWPEIE = 0;
9. IPR(FCU, FIFERR) = 0;

10. IEN(FCU, FIFERR) = 0;
11. #if defined(DATA_FLASH_BGO) ƒ ƒ defined(ROM_BGO)
12. IPR(FCU, FRDYI) = FLASH_READY_IPL;
13. IEN(FCU, FRDYI) = 1;
14. #else
15. IPR(FCU, FRDYI) = 0;
16. IEN(FCU, FRDYI) = 0;
17. #endif
18. if(FLASH.FENTRYR.WORD != 0x0000){
19. FLASH.FENTRYR.WORD = 0xAA00;
20. while(0x0000 != FLASH.FENTRYR.WORD){
21. }
22. }
23. FLASH.FCURAME.WORD = 0xC401;
24. src = (uint32_t *)FCU_PRG_TOP;
25. dst = (uint32_t *)FCU_RAM_TOP;
26. for( i=0; i<(FCU_RAM_SIZE/4); i++){
27. *dst = *src;
28. src++;
29. dst++;
30. }
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31. g_fcu_transfer_complete = 1;
32. return FLASH_SUCCESS;
33. }

Line 4 to 8 disables the FCU interrupts in the FCU block. Line 9 and 10 disables the flash
interface error interrupt (FIFERR). If the background operations for the flash are enabled,
then enable the flash-ready interrupt (FRDYI) (line 12 and 13) or else disable the flash-
ready interrupt (line 15 and 16). Then transfer the firmware to the FCU RAM. To use the
FCU commands, the FCU firmware must be stored in the FCU RAM. Before writing to the
FCU RAM, the FENTRY must be cleared to stop the FCU (line 18). Disable the FCU from
accepting commands. Clear both the FENTRY0 (ROM) and FENTRYD (E2 DataFlash)
bits to 0 (line 19). Read the FENTRYR to ensure it has been set to 0. Note that the top byte
of the FENTRYR register is not retained and is read as 0x00 (line 20). Then Enable the
FCU RAM (line 23). Then copy the FCU firmware to the FCU RAM. Source: FEFFE000h
to FF000000h (FCU firmware area). Destination: 007F8000h to 007FA000h (FCU RAM
area). Iterate for loop to copy the FCU firmware (line 26) and copy data from the source to
the destination pointer (line 27). If the FCU firmware transfer is complete, set the flag to
1 (line 31).

EXAMPLE 2

The following commands are used to allow read and program permissions to the
E2 DataFlash area. This function does not have to execute from in the RAM. It must be in
the RAM, though, if ROM_BGO is enabled and this function is called during a ROM P/E
operation. The arguments passed are as follows:

1. read_en_mask -
� Bitmasked value. Bits 0–3 represent each Data Blocks 0–3 (respectively).
� ‘0’�no Read access.
� ‘1’�Allows Read by CPU

2. write_en_mask -
� Bitmasked value. Bits 0–3 represent each Data Blocks 0–3 (respectively).
� ‘0’�no Erase/Write access.
� ‘1’�Allows Erase/Write by FCU

1. void R_FlashDataAreaAccess(uint16_t read_en_mask, uint16_t
write_en_mask){

2. //This line Sets Read access for the E2 DataFlash blocks DB0-DB7
3. FLASH.DFLRE0.WORD = 0x2D00 ƒ (read_en_mask & 0x00FF);
4. //This line Sets Read access for the E2 DataFlash blocks DB8-DB15
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5. FLASH.DFLRE1.WORD = 0xD200 ƒ ((read_en_mask >> 8) & 0x00FF);
6. //This line Sets Erase/Program access for the E2 DataFlash

blocks DB0-DB7
7. FLASH.DFLWE0.WORD = 0x1E00 ƒ (write_en_mask & 0x00FF);
8. //This line Sets Erase/Program access for the E2 DataFlash

blocks DB8-DB15
9. FLASH.DFLWE1.WORD = 0xE100 ƒ ((write_en_mask >> 8) & 0x00FF);

10. }

EXAMPLE 3

This function copies Flash API code from the ROM to the RAM. This function needs to be
called before any program/erase functions. This function need not be used when we are
dealing with only flash programming.

1. void R_FlashCodeCopy(void){
2. uint8_t * p_ram_section;
3. uint8_t * p_rom_section;
4. uint32_t bytes_copied;
5. p_ram_section = (uint8_t *) sectop("RPFRAM");
6. p_rom_section = (uint8_t *) sectop("PFRAM");
7. for (bytes_copied=0; bytes_copied < secsize("PFRAM");

bytes_copied++){
8. p_ram_section[bytes_copied]= p_rom_section[bytes_copied];
9. }

10. }

Lines 2 and 3 name pointers to the beginning of the RAM and the ROM sections respec-
tively. Line 5 and 6 initializes the RAM and ROM section pointers respectively. Lines 7 to
9 copy code from the ROM to the RAM, 1 byte at a time.

7.4 ADVANCED CONCEPTS

7.4.1 Virtual EEPROM for RX63N

Many users wish to use the E2 DataFlash on their MCUs as they would an EEPROM. The
problem with this is that the E2 DataFlash on the RX63N does not have 1-byte write or
1-byte erase capabilities. Even if their RX MCU did offer this granularity there would also
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be the issue of wear leveling. To help solve these issues the Virtual EEPROM project (VEE
for short) was created.

The VEE project offers these features:

� Wear leveling is used to increase E2 DataFlash longevity
� Easy to use API interface to safely read and write
� Uses the background operation feature of MCUs so E2 DataFlash operations do

not block the user application
� Automatically recovers from resets or power downs that occur during programs

and erases
� Adapts to flashes with different program sizes, erase sizes, block sizes, and num-

ber of E2 DataFlash blocks
� Highly configurable to adjust to unique needs of each user

The VEE project is a software layer that sits on top of the Renesas provided Flash API,
shown in Figure 7.3. The Virtual EEPROM requires that the user’s MCU have hardware
support for background operations (BGO) on the E2 DataFlash and that the Flash API has
software support. Background operation means that flash operations do not block. In a
blocking system (one that does not have support for BGO) when a flash operation is
started, control is not given back to the user application until the operation has completed.
With a system that supports BGO, control is given back to the user application immedi-
ately after the operation has been successfully started. The user will be alerted by a call-
back function, or can poll to see if the operation has completed. Since the VEE project
uses the BGO capabilities of the MCU this means less time is taken away from the user
application.

Virtual EEPROM (software)

Flash API (software)

MCU (hardware)

Figure 7.3 Project Layers [2], page 2.
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Records

When data is written to the VEE it is done using VEE Records. Each record has some in-
formation that must be filled in by the user as well as a pointer to the data to be stored.
Users can store as much data as they wish with each record. When the user writes a record
to the VEE it stores the data and the record information together. Each record is identified
by a unique ID. If the user writes a record with the same ID as a record that was previously
written then it will be written as a new record and the older record will no longer be valid.
The reason this is done is for wear leveling purposes. The user does have the option of con-
figuring the VEE code to ignore duplicate writes.

Data Management

With the VEE project the MCU’s E2 DataFlash area is split up into VEE Sectors. These do
not correspond to real sectors on the MCU. The VEE project requires at least one VEE Sec-
tor. Each VEE Sector is made up of at least two VEE Blocks. Each VEE Block can be made
up of one or more flash blocks on theMCU. OneVEE Block has the latest stored data for that
VEE Sector at any given time. The VEE Blocks ping-pong data back and forth as one be-
comes full. When a write occurs and there is no room left in the current VEE Block, a defrag
occurs in which the latest data is transferred to the next VEE Block in the VEE Sector. Once
the data has been transferred the old VEE Block can be erased so that it will be ready when
the newVEE Block becomes full. This moving of data is used for wear leveling purposes.

Having different VEE Sectors allows the user to separate data. One reason for doing
this would be to separate frequently written data from infrequently written data. An exam-
ple is if a user had one large block of data that was written once a day and a small block of
data that was written every minute. The small block will fill up the current block quickly
and will force a defrag frequently which means the large block of data that has not been
changed will need to be transferred even though the data is the same as before. The large
block can also cause defragmentation to happen more often since it can take up a signifi-
cant portion of the VEE Block’s available space.

VEE in Action

VEE Records are stored in VEE Blocks. At least 2 VEE Blocks are needed to make a VEE
Sector. At any point in time within the VEE project there is a maximum of one valid record
per unique ID. As records with the same ID are written, the newest record becomes the
valid record and the previously written records are ignored.

When a VEE write is issued to a VEE Block that does not have enough room for the
record, a defrag is needed. A defrag will move all valid records to another VEE Block. This
is shown in Figure 7.4 where the write of VEE Record 1 will not fit into VEE Block 0.
This forces a defrag where all valid records will be moved to VEE Block 1.
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Assigning VEE Records to VEE Sectors

VEE Records are assigned toVEE Sectors at compile time via the g_vee_RecordLocations[]
array. There is one entry in this array per unique ID in theVEE project. The value for each en-
try in the array is which VEE Sector the record will be located in. Following is an example
configuration where there are 2 VEE Sectors and we want the first four records to be located
in VEE Sector 0 and the last four records to be located in VEE Sector 1.

VEE Sector 0

VEE Block 0

VEE Record 0

VEE Record 1

VEE Record 1

VEE Record 1

VEE Record 2

VEE Record 2

VEE Record 1

VEE Block 1

VEE Record 1

DEFRAG
OCCCURS

Figure 7.4 Filling up Block 0 [2], page 3.

VEE Sector 0

VEE Block 0 VEE Block 1

VEE Record 1

VEE Record 0

VEE Record 2

Figure 7.5 Defrag moves data to Block 1 [2], page 3.
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1. const uint8_t g_vee_RecordLocations[VEE_MAX_RECORD_ID] = {
2. 0,/* Record 0 will be in sector 0 */
3. 0,/* Record 1 will be in sector 0 */
4. 0,/* Record 2 will be in sector 0 */
5. 0,/* Record 3 will be in sector 0 */
6. 1,/* Record 4 will be in sector 1 */
7. 1,/* Record 5 will be in sector 1 */
8. 1,/* Record 6 will be in sector 1 */
9. 1,/* Record 7 will be in sector 1 */

10. };

Allocating VEE Blocks

After defining how many VEE Sectors will be used, the user must decide where the VEE
Blocks inside of the sectors will be allocated. This is done using two separate arrays. The
names presented below are the defaults used. The first array is named g_vee_sect#_block_
addresses[], where the ‘#’ is replaced with the sector number. Each entry of the array de-
fines the starting address of aVEE Block in this particular sector. There will be one of these
arrays defined for each VEE Sector.

The second array is named g_vee_sect#_df_blocks[][2], where the ‘#’ is once again re-
placed with the sector number. This is a 2D array so each entry is another array. The inter-
nal array is an array that holds the first and last E2 DataFlash blocks on the MCU that make
up this VEE Block. There will be one of these arrays defined for each VEE Sector. An ex-
ample is shown of a system with the following setup:

� Two VEE Sectors
� Two VEE Blocks per VEE Sector
� Four MCU E2 DataFlash blocks per VEE Block
� VEE Sector 0 will be allocated lower in memory than VEE Sector 1

1. const uint32_t g_vee_sect0_block_addresses[] = { //Sector 0
2. 0x100000, //Start address of VEE Block 0
3. 0x102000 //Start address of VEE Block 1
4. };
5. const uint16_t g_vee_sect0_df_blocks[][2] = {
6. {BLOCK_DB0, BLOCK_DB3}, //Start & end DF blocks making up

VEE Block 0
7. {BLOCK_DB4, BLOCK_DB7} //Start & end DF blocks making up VEE

Block 1
8. };
9. const uint32_t g_vee_sect1_block_addresses[] ={ //Sector 1
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10. 0x104000, //Start address of VEE Block 0
11. 0x106000 //Start address of VEE Block 1
12. };
13. const uint16_t g_vee_sect1_df_blocks[][2] = {
14. {BLOCK_DB8, BLOCK_DB11}, //Start & end DF blocks making up

VEE Block 0
15. {BLOCK_DB12, BLOCK_DB15} //Start & end DF blocks making up

VEE Block 1
16. };

Data Structure that Holds VEE Project Data Configuration

The g_vee_Sectors array is the data structure that is used in the VEE project code for ob-
taining information about the current systems VEE data configuration. Each entry defines
a VEE Sector and holds the following information:

� The ID of the sector
� How many VEE Blocks make up this sector
� The size (in bytes) of this sector
� The starting MCU addresses for each VEE Block in this sector
� The number of MCU E2 DataFlash blocks per VEE Block
� The start and end MCU E2 DataFlash blocks for each VEE Block

An example is shown of a VEE project with two different sized VEE Sectors.

1. const vee_sector_t g_vee_Sectors[ VEE_NUM_SECTORS ] =
2. { //Sector 0
3. 0, //ID is 0
4. 2, //There are 2 VEE Blocks in this sector
5. 8192, //Size of each VEE Block
6. //Starting addresses for each VEE Block
7. (const uint32_t *)g_vee_sect0_block_addresses,
8. //Number of E2 DataFlash blocks per VEE Block
9. //(End Block # - Start Block # + 1)

10. 4,
11. //Start & end DF blocks making up VEE Blocks
12. g_vee_sect0_df_blocks
13. },
14. { //Sector 1
15. 1, //ID is 1
16. 2, //There are 2 VEE Blocks in this sector
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17. 6144, //Size of each VEE Block
18. //Starting addresses for each VEE Block
19. (const uint32_t *)g_vee_sect1_block_addresses,
20. //Number of E2 DataFlash blocks per VEE Block
21. //(End Block # - Start Block # + 1)
22. 3,
23. //Start & end DF blocks making up VEE Blocks
24. g_vee_sect1_df_blocks
25. };

VEE Record

When reading and writing to the VEE using the provided API functions, the user sends in
data using a VEE Record data structure. This structure is shown next.

1. //VEE Record Structure
2. typedef struct{
3. //Unique record identifier, cannot be 0xFF!
4. vee_var_data_t ID;
5. //Number of bytes of data for this record
6. vee_var_data_t size;
7. //Valid or error checking field
8. vee_var_data_t check;
9. //Which VEE Block this record is located in, user does not set

this
10. vee_var_data_t block;
11. //Pointer to record data
12. uint8_t far * pData;
13. } vee_record_t;

7.4.2 Protection

Protection against programming/erasure for the ROM/E2 DataFlash includes software pro-
tection and the command-locked state.

Software Protection

With the software protection, the ROM/E2 DataFlash programming/erasure is prohibited
by the settings of the control registers or user area lock bit. When the software protection is
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violated and a ROM/E2 DataFlash programming/erasure-related command is issued, the
FCU detects an error and the FASTAT.CMDLK bit is set to 1 (command-locked state).

1. Protection through FWEPROR: If the FWEPROR.FLWE[1:0] bits are not set to
01b, programming cannot be performed in any of the modes.

2. Protection through FENTRYR: When the FENTRYR.FENTRY3, FENTRY2,
FENTRY1, FENTRY0 bits are 0, the ROM/E2 DataFlash read mode is selected.
Because the FCU command cannot be received in the ROM/E2 DataFlash read
mode, ROM/E2 DataFlash programming/erasure is prohibited. When an FCU
command is issued in the ROM/E2 DataFlash read mode, the FCU detects an ille-
gal command error and the FASTAT.CMDLK bit is set to 1 (command-locked
state).

3. Protection through the Lock Bit: Each block in the user area includes a lock bit.
When the FPROTR.FPROTCN bit is 0, blocks whose lock bit is set to 0 are pro-
hibited from being programmed/erased. To program or erase blocks whose lock
bit is set to 0, set the FPROTCN bit to 1. When the lock-bit protection is violated
and a ROM programming/erasure-related command is issued, the FCU detects a
programming/erasure error and the FASTAT.CMDLK bit is set to 1 (command-
locked state).

4. Protection through DFLWEy: When the DBWEj (j � 00 to 15) bit in DFLWEy
(y � 0, 1) is 0, programming and erasure of block DBj in the data area is disabled.
If an attempt is made to program or erase block DBj while the DBWEj bit is 0, the
FCU detects a programming/erasure protection error and the FASTAT.CMDLK bit
is set to 1 (command-locked state).

5. Protection through DFLREy: When the DBREj bit (j � 00 to 15) in DFLREy
(y � 0, 1) is 0, reading of block DBj in the data area is disabled. If an attempt is
made to read block DBj while the DBREj bits are 0, the FCU detects a read pro-
tection error and the FASTAT.CMDLK bit is set to 1 (command-locked state).

Command-Locked State

With the command-locked state, the FCU detects malfunctions caused by command is-
suance errors and prohibited access occurrences, and a command is prohibited from be-
ing received. When any bit from among the status bits (the ILGLERR, ERSERR, and
PRGERR bits in FSTATR0, the FSTATR1.FCUERR bit, and the ROMAE, DFLAE,
DFLRPE, and DFLWPE bits in FASTAT), the FCU will be in the command-locked state
(FASTAT.CMDLK bit is set to 1), so programming and erasure of the ROM/E2 DataFlash
are prohibited. To clear the command-locked state, a status register clear command must be
issued with FASTAT set to 10h. While the interrupt enable bit in FAEINT is 1, if the corre-
sponding bit in FASTAT is set to 1, a flash interface error (FIFERR) interrupt occurs.
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7.4.3 User Boot Mode

There are many methods of booting from the flash. We discuss only the User boot mode
since it is the one which is most commonly used.

If the low level is on the MD pin and the high level is on the PC7 pin at the time of re-
lease from the reset state, the chip starts in user boot mode. The reset vector at this time
points to the address FF7F FFFCh of the user boot area. In user boot mode, it is possible to
perform programming using a given interface; user area or data area can be programmed or
erased by issuing the FCU command. Note that programming to the user boot area should
be performed in boot mode.

Boot Mode System Configuration

In boot mode, the host sends control commands and data for programming, and the user
area, data area, and user boot area are programmed or erased accordingly. An on-chip SCI
handles transfer between the host and RX63N/RX631 in asynchronous mode. Tools
for transmission of control commands and the data for programming must be prepared in
the host. When the RX63N/RX631 is activated in boot mode, the program on the boot
area is executed. This program automatically adjusts the bit rate of the SCI and controls
programming/erasure by receiving control commands from the host.

Figure 7.6 shows the system configuration for operations in boot mode. Table 7.25 shows
the input and output pins associated with the ROM/E2 DataFlash.

ROM/E2 DataFlash

Boot Program

On-chip SCI

Host

Boot
programming
tools and
programming
data

Control command and
programming data

Status

RX63N, RX631

Figure 7.6 Systems Configuration for Operations in Boot Mode [1], page 1787.
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State Transitions in Boot Mode

1. Matching the Bit Rates: When the RX63N/RX631 is activated in boot mode, the
bit rate of the SCI is automatically adjusted to match that of the host. On comple-
tion of this automatic bit rate adjustment, the RX63N/RX631 transmits the value
00h to the host. On subsequent correct reception of the value 55h sent from the
host, the RX63N/RX631 enters the wait for a command for inquiry or selection.

2. Waiting for a Command for Inquiry or Selection: This state is for inquiries on the
area size, the area configuration, the addresses where the areas start, the state of
support, and selection of the device, clock mode, and bit rate. The RX63N/RX631
receives a programming/erasure state transition command issued by the host and
then enters the state to determine whether ID code protection is enabled or disabled.

3. Judging ID Code Protection: This state is for determining whether ID code protec-
tion is enabled or disabled. The control code and ID code written in the ROM are
used to determine whether ID code protection is enabled or disabled. When en-
abled, the state of waiting for the ID code is entered. When disabled, the user area

TABLE 7.25 Input and Output Pins Associated with the ROM/E2 DataFlash [1], page 1792.

PIN NAME I/O
MODE TO
BE USED USE

MD Input Boot mode
User boot mode
USB boot mode

Selection of operation mode

PC7 Input Selection of boot mode
(SCI boot), user boot mode, or
USB boot mode

PF2/RXD1 (177/176-pin package)
P30/RXD1 (145/144/100/64/48-pin
packages)

Input Boot mode For host communication
(to receive data through SCI)

PF0/TXD1 (177/176-pin package)
P26/TXD1 (145/144/100/64/48-pin
packages)

Output For host communication
(to transmit data through SCI)

USB0_DP.USB0_DM I/O USB boot mode Data Input/output of USB

P14/USB0_DPUPE I/O Control of pull-up for USB

P16/USB0_VBUS Input Detection of connection and
disconnection of USB cables

P35 Input Selection of USB bus-power
mode or self power mode
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and data area are completely erased, and the wait for programming and erasure
commands is entered.

4. Waiting for an ID Code: This state is for waiting for the control code and ID code
to be sent from the host. The control code and ID code sent by the host are com-
pared with the code stored in the ROM, and the state of waiting for programming
and erasure commands is entered if the two match. If they do not match, the next
transition is back to the state of waiting for an ID code. However, if the ID codes
fail to match three times in a row and also the state of protection is authentication
method 1, the ROM is completely erased, and the state of waiting for an ID code is
entered again. Turn the power off and start all over.

5. Waiting for a Command for Programming or Erasure: In this state, programming
and erasure proceed in accordance with commands from the host. In response to
the reception of a command, the RX63N/RX631 enters the wait for the data to use
in programming, the wait for specification of the erasure block to be erased, or the
state of executing the processing of commands, such as read and check. When the
RX63N/RX631 receives a programming selection command, it enters the state of
waiting for the data to use in programming. After the host has issued the program-
ming selection command, the process continues with the address where program-
ming is to start and then the data for programming. Setting of FFFF FFFFh as the
address where programming is to start indicates the completion of programming,
and the next transition is from the wait for the data to use in programming to the
wait for programming and erasure commands.

When the RX63N/RX631 receives an erasure selection command, it enters the state of wait-
ing for specification of the erasure block to be erased. After the host has issued the erasure
selection command, the process continues with the number of the erasure block to be
erased. Setting of FFh as the number of the erasure block indicates the completion of era-
sure, and the next transition is from the wait for specification of the erasure block to the wait
for programming and erasure commands. Since the user area, user boot area, and data area
are all completely erased during the interval between booting up in boot mode and the tran-
sition to the wait for programming and erasure commands, execution of erasure is not nec-
essary unless data newly programmed in boot mode is to be erased without a further reset.

Other than the programming and erasure commands, commands for execution in this
state include those for checksum of the user area and user boot area, blank checking, read-
ing from memory, and acquiring status information.

Automatic Adjustment of the Bit Rate

When the RX63N/RX631 is booted up in boot mode, asynchronous transfer by the SCI
is used to measure the periods at low level of consecutive bytes with value 00h that are
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sent from the host. While the period at low level is being measured, set the host’s SCI
transfer format to 8-bit data, one stop bit, no parity, and a transfer rate of 9,600 bps or
19,200 bps. The RX63N/RX631 calculates the host’s SCI bit rate from the measured
periods at low level, adjusts its own bit rate accordingly, and then sends the value 00h to
the host.

If reception of the value 00h by the host is successful, the host responds by sending the
value 55h to the RX63N/RX631. If successful reception of 00h by the host is not possible,
reboot the RX63N/RX631 in boot mode, and then repeat the process of automatically
adjusting the bit rate. If reception of the value 55h by the RX63N/RX631 is successful,
it responds by sending E6h to the host, and if successful reception of 55h by the
RX63N/RX631 is not possible, it responds by sending FFh to the host.

ID Code Protection (Boot Mode)

This function is used to prohibit reading/programming/erasure from the host, such as
the PC.

After automatic adjustment of the bit rate when booting up in boot mode, the ID code
transmitted from the host and the control and ID codes written to the ROM are used to de-
termine disabling or enabling of ID code protection. When ID code protection is enabled,
the code sent from the host is compared with the control code and ID code in the ROM to
determine whether they match, and reading/programming/erasure will be enabled only
when the two match.

The control code and ID code in the ROM consists of four 32-bit words. Figure 7.7 shows
the configuration of the control code and ID code. The ID code should be set in 32-bit units.

31 24 23 16 15 8 7 0

FFFF FFA0h

FFFF FFA4h

FFFF FFA8h

FFFF FFACh

Control code ID code 1 ID code 2 ID code 3

ID code 4 ID code 5 ID code 6 ID code 7

ID code 8 ID code 9 ID code 10 ID code 11

ID code 12 ID code 13 ID code 14 ID code 15

Figure 7.7 Configuration of Control Code and ID Code in ROM [1], page 1792.

Control Code

The control code determines whether ID code protection is enabled or disabled and the
method of authentication to use with the host. Table 7.26 lists how the control code deter-
mines the method of authentication.
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ID Code

The ID code can be set to any desired value. However, if the control code is 52h and the
ID code is 50h, 72h, 6Fh, 74h, 65h, 63h, 74h, FFh, . . ., FFh (from the ID code 1 field),
there is no determination of matching and the ID code is always considered to be non-
matching. Accordingly, reading, programming, and erasure from the host are prohibited.

Program Example for ID Code Setting

The following assembler directives set up a control code of 45h and an ID code of 01h, 02h,
03h, 04h, 05h, 06h, 07h, 08h, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 0Fh (from the ID code 1 field).

TABLE 7.26 Specifications for ID Code Protection [1], page 1792.

CONTROL
CODE ID CODE

STATE OF
PROTECTION

OPERATIONS AT
THE TIME OF SCI
CONNECTION

45h As desired Protection enabled
(authentication
method 1)

Matching ID code: The
command wait is
entered.

Non-matching ID code:
The ID code protection
wait is entered again.

However, if a
non-matching ID code
is received three times
in a row, all blocks are
erased.

52h Sequences other than
50h, 72h, 6Fh, 74h, 65h,
63h, 74h, FFh, . . ., FFh

Protection enabled
(authentication
method 2)

Matching Id code: The
command wait is
entered.

Non-matching ID code:
The ID code protection
wait is entered again.

50h, 72h, 6Fh, 74h, 65h,
63h, 74h, FFh, . . ., FFh

Protection enabled
(authentication
method 3)

Always judged to be a
non-matching ID code.

Other than above — Protection disabled All blocks are erased.

07.ES_Conrad_RX63N_Advanced_CH07.qxd:RX63N Advanced  3/4/14  12:01 PM  Page 182



CHAPTER 7 / FLASH AND EEPROM PROGRAMMING 183

SECTION ID_CODE,CODE
.ORG 0FFFFFFA0h
.LWORD 45010203h
.LWORD 04050607h
.LWORD 08090A0Bh
.LWORD 0C0D0E0Fh

7.5 COMPLEX EXAMPLES

EXAMPLE 1

The following example creates a function to notify the clock supplied to the Flash unit. The
input to this function would be the Flash address (flash_addr) we will be erasing or writing to.

1. static uint8_t notify_peripheral_clock(FCU_BYTE_PTR flash_addr){
2. int32_t wait_cnt;
3. FLASH.PCKAR.WORD = (FLASH_CLOCK_HZ/1000000);
4. *flash_addr = 0xE9;
5. *flash_addr = 0x03;
6. *(FCU_WORD_PTR)flash_addr = 0x0F0F;
7. *(FCU_WORD_PTR)flash_addr = 0x0F0F;
8. *(FCU_WORD_PTR)flash_addr = 0x0F0F;
9. *flash_addr = 0xD0;

10. wait_cnt = WAIT_MAX_NOTIFY_FCU_CLOCK;
11. while(FLASH.FSTATR0.BIT.FRDY == 0){
12. wait_cnt—;
13. if(wait_cnt == 0){
14. flash_reset();
15. return FLASH_FAILURE;
16. }
17. }
18. if(FLASH.FSTATR0.BIT.ILGLERR == 1){
19. return FLASH_FAILURE;
20. }
21. return FLASH_SUCCESS;
22. }

Line 2 declares a wait counter variable. Line 3 notifies the PCLK and sets frequency of
PCLK in MHz. Line 4 to 8 executes the peripheral clock notification command. Line 9 sets
the timeout wait duration. Line 11 checks for the FRDY bit to be zero. If it is then it
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decrements the wait counter variable (line 12). If the wait counter reaches zero, it means
that the timeout duration has elapsed and it assumes operation failure, hence it resets the
FCU (lines 13 through 15).

EXAMPLE 2

This example shows how to read the program lock bit which is set to ensure safety of the
Flash. The input to this function would be the block from which the lock bit is read.

1. uint8_t R_FlashReadLockBit(uint8_t block){
2. FCU_BYTE_PTR pAddr;
3. uint8_t result = FLASH_SUCCESS;
4. uint8_t lock_bit;
5. if( flash_grab_state(FLASH_LOCK_BIT) != FLASH_SUCCESS ){
6. return FLASH_BUSY;
7. }
8. pAddr = (FCU_BYTE_PTR)(g_flash_BlockAddresses[ block ]);
9. g_current_mode = ROM_PE_MODE;

10. if( enter_pe_mode((uint32_t)pAddr) != FLASH_SUCCESS){
11. exit_pe_mode();
12. flash_release_state();
13. return FLASH_FAILURE;
14. }
15. *pAddr = 0x71;
16. if(FLASH.FSTATR0.BIT.ILGLERR == 1) {
17. result = FLASH_FAILURE;
18. }
19. else{
20. lock_bit = *pAddr;
21. if(lock_bit != 0x00){
22. result = FLASH_LOCK_BIT_NOT_SET;
23. }
24. else{
25. result = FLASH_LOCK_BIT_SET;
26. }
27. }
28. exit_pe_mode();
29. flash_release_state();
30. return result;
31. }
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In this function, Line 2 declares an address pointer. Line 3 declares an operation result con-
tainer variable. Line 4 holds the outcome of lock-bit read. If the attempt to grab state fails,
then it exits the function stating that the flash is busy (line 5 to 7). Line 8 is the Flash com-
mand address to get the value in the block. Then FCU is set to ROM PE mode and exit
PE mode if the operation is successful, or else it exits the function by making the flag
FLASH_FAILURE as 1 (lines 9 to 14).

Now switch to ROM lock-bit read mode by the setting values to the appropriate bits of
the register (line 15). Now read the lock-bit value. If the lock bit is set, then the
FLASH_LOCK_BIT_SET is set to 1, or else the FLASH_LOCK_BIT_NOT_SET is set to
1 (lines 21 to 26).

7.6 RECAP

In this chapter, Flash and EEPROM programming for Renesas RX63N was analyzed in
detail, where the different modes of operations and FCU registers were discussed. The
chapter begins by explaining the difference between flash and EEPROM programming.
The different modes of operation, namely programming/erasure mode, read only mode,
and lock-bit mode were analyzed in detail. The FCU registers were explained at the bit
level. The EEPROM project for erasing data byte by byte was explained in brief. A few ex-
amples were provided to demonstrate the FCU registers used for flash programming.
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7.8 EXERCISES

1. What is the major difference between Flash memory and EEPROM?
2. What are the two types of flash memory used in RX63N and what are their sizes?
3. What are the different types of operating modes associated with flash memory?
4. Say, for example, the data area for the DataFlash starts at 0010 0000h. Calculate

the address of block 127 in the block configuration of the flash.
5. What are the different ways the flash can be protected?
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6. What are the applications of flash memory?
7. Write a C function to clear the status of the E2 DataFlash operation.
8. What are the different states that are possible in a VEE operation related to

Virtual EEPROM?
9. What is the difference between a blocking and non-blocking operation?
10. Why should there be hardware support for background operations for a Virtual

EEPROM project?
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8.1 LEARNING OBJECTIVES

This chapter discusses the Universal Serial Bus (USB) basics, implementation of the USB
specification, and some advanced USB features. The first section covers the basics of
USB 2.0. In the second section we will see how to communicate with the USB device. The
third section explores the advanced concepts of USB connectivity. The last section de-
scribes the Human Interface Device Driver class in detail.

8.2 BASIC CONCEPTS OF USB CONNECTIVITY

8.2.1 USB Interface Specifications

The USB is an industry standard for serial communication. The USB specification contains
details about the electrical signaling of the various pins on the connector and its physical
dimensions, protocol layer etc. USB has many advantages when compared to other inter-
faces, such as a common connector, interoperability between many devices, simplified
connectivity to enable ‘Plug and Play,’ and higher data transfer rates at lower costs.

8.2.1.1 Cabling and Connectors

USB uses a four-wire cable interface. Two of the wires, labeled as “D�” and “D�”, are
used in differential mode for transmitting and receiving data, and the other two wires are
for power and ground. Historically, there were two different connectors designed (Type A
and B), one on each end of a USB cable.

Original USB Connectors: The Type A Connector is used for upstream communication
and connects to the host. The Type B Connector is used for downstream communication
and connects to the device. Physically, the power pins (VBus and Gnd) are longer than the
data pins so that power is applied to the device first before the physical data connection is

Universal Serial Bus (USB) Connectivity
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made. Also, when unplugging the device the data pins disconnect before the power supply
pins.

USB Mini Connectors: Mini connectors are a substitute to the standard B type connector.
As the name suggests these connectors are smaller and hence used on smaller portable and
hand-held devices. The mini-B connectors have an additional fifth pin, named ID, but it is
not connected. Mini connectors were replaced by even smaller micro connectors typically
used in small handheld devices.

1 2

4 3

D21

D12

Type B

Type A
2

1

D1

2

D2

3

1

4

Figure 8.1 USB Connector Types A and B.

TABLE 8.1 USB Wire Usage

WIRE NAME USAGE COLOR

1 Ground Power Black

2 D� Data Green

3 D� Data White

4 VBus Power Red

1 2 3 4 5

Figure 8.2 USB Mini Connector.
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USB On-The-Go (OTG) Micro Connectors: One of the biggest concerns with USB is
that it is host controlled; that is, if the USB host is shut off, the USB stops working. Also,
USB does not support peer-to-peer communication. A USB device (like a camera) cannot
communicate directly with another USB device (like a printer); they need to communicate
via a common host (camera to PC to printer). To resolve this problem a new standard, USB
OTG, was created which can act as both host and peripheral. The connectors on the
USB OTG devices are the Micro-USB type. With the ID pin, these connectors determine
the type of device, whether a Micro-A or a Micro-B plug is being used. When a Micro-A
plug is connected the resistance on the ID pin to ground is low (�10 �); in this case
ID�FALSE. When a Micro-B plug is used, the resistance on the ID pin to ground is
greater (�100 �); in this case ID�TRUE [1].

8.2.1.2 Electrical Specifications

There are specific electrical specifications of USB interfaces and cabling. Most prominent
is that for USB 2.0 a device may draw a maximum of 500 mA from a single port [1]. Some
other electrical characteristics include:

� Either the D� or the D� line will be pulled high. If the D� is high, the device is
Full or High Speed. If D� is high, the device is Low speed.

� High Speed negotiation protocol occurs during the Bus Reset Phase.
� After detecting the reset signal, a high speed device will signal the host with a
480 Mbps chirp [1].

8.2.2 Host and Devices

USB can connect a large number of devices using a tiered star topology as shown in
Figure 8.3. The key elements in USB topology are the host, hubs, and devices. The hubs

TABLE 8.2 USB Mini Wire Usage.

WIRE NAME USAGE COLOR

1 Ground Power Black

2 ID No Connection

3 D� Data Green

4 D� Data White

5 VBus Power Red
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are bridges that expand the logical and physical fan-out of the network. A hub has a single
upstream connection (to a host or a hub closer to the host) and many downstream connec-
tions (to devices). The host schedules and initiates data transfers. Up to 127 devices can be
connected to any one USB host at any given time. The host and hubs power the devices.We
can have a maximum of seven levels of tiers, with each tier formed from a hub.

USB Host

The USB host communicates to devices using a USB host controller. The USB host con-
trollers have their own specifications. With USB 1.1, there were two Host Controller Inter-
face Specifications:

UHCI (Universal Host Controller Interface), developed by Intel, placed more burden
on software (Microsoft) for cheaper hardware.

OHCI (Open Host Controller Interface), developed by Compaq, Microsoft, and
National Semiconductor, put more burden on hardware (Intel) for simpler software.

For USB 2.0 a new HCI Specification was needed to describe the USB’s register level de-
tails. So EHCI (Enhanced Host Controller Interface) was introduced in this specification.

Host / Root Hub Tier 1 Tier 2 Tier 6 Tier 7

Hub Hub Hub

Hub

HS

LS/FS

Figure 8.3 USB topology [1], page 36.
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The USB host is responsible for detecting and enabling devices, managing bus access, per-
forming error checking, providing power to devices, and initiating communications on the
bus. The host’s communication with devices consists mainly of queries.

USB Device

The functionality of a USB device is identified by unique class codes. The host uses these
class codes to identify the connected device and load the appropriate driver. This makes the
host independent of the device that is connected to it. This also makes it easier for the host
to adapt to newer devices and support them, irrespective of the manufacturer. Examples of
USB devices are keyboards, webcams, speakers, and mice.

8.2.3 Transfers, Transactions, and Frames

A transfer is the largest unit of communication in USB and consists of one or more trans-
actions that can carry data to or from an endpoint. A transaction is made up of a sequence
of three packets: Token packet (Header), Data packet (Payload), and Status/Handshake
packet (Figure 8.4).

� Token Packet: There are three types of token packets:
▫ In—Tells USB device that the host wants to read information.
▫ Out—Informs USB device that the host wishes to send information.
▫ Setup—Used to begin control transfers.

� Data Packet: The maximum payload size for low-speed devices is 8 bytes, the
maximum payload size for high-speed devices is 1024 bytes, and data must be sent
in multiples of bytes.

� Handshaking Packet: Tells if the data and token are successfully received. Also re-
ports if the endpoint is stalled or not accepting data.

The Universal Serial Bus specification defines four transfer/endpoint types:

� Control Transfers: Control Transfers are used by the host to send standard requests
during and after enumeration [1]. The host learns about the device’s capabilities
through Standard requests.

� Bulk Transfers: Bulk transfers are targeted for devices that exchange bulk blocks
of data, to such an extent that it takes all of the available bus bandwidth. Error de-
tection and retransmission mechanisms are implemented in hardware to guarantee
data integrity and reliability. Timing is not guaranteed in bulk transfers. Mass stor-
age devices are the best example of devices that use bulk transfers.

� Interrupt Transfers: Interrupt transfers are for devices with latency constraints [1].
Devices using interrupt transfer are provided with a polling interval which determines

08.ES_Conrad_RX63N_Advanced_CH08.qxd:RX63N Advanced  3/4/14  9:57 PM  Page 191



192 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

when the scheduled data is transferred over the bus. Interrupt transfers are typically
used to notify events.

� Isochronous Transfers: Isochronous transfers are used by audio and video devices
that require data delivery to happen at a constant rate with a certain level of error-
tolerance. Retransmission is not supported in isochronous transfers.

Token Packet Data Packet Handshake Packet

Transaction 1 Transaction 2 Transaction 3

Packets form transactions

Transactions form transfers

Transfers are collected together to fill frames
Maximum 128 transfers per frame

Time (ms)

USB Bus

0 1 2 3 4 5 6 7

Figure 8.4 USB Frame Breakdown [1], page 53.

8.2.4 Class Drivers

8.2.4.1 Communication Device Class

The Communications Device Class (CDC) defines a framework to encapsulate existing
communication service standards using a USB link. Various telecommunication and net-
working devices are included in the CDC. These include such devices as analog modems
and ISDN terminal adapters. Examples of networking devices include Ethernet adapters
and hubs. Communication devices handle call management, data transmission, and general
device management. Seven major groups of devices are categorized by the CDC based on
the model of communication they use. A single group may include numerous subclasses.
Aside from the CDC base class, each group of devices has its own specification document.
The seven groups are as follows:

� Public Switched Telephone Network devices.
� Integrated Services Digital Network devices, such as terminal adaptors and tele-
phones.
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� Ethernet Control Model devices.
� Asynchronous Transfer Mode devices.
� Wireless Mobile Communications devices.
� Ethernet Emulation Model devices.
� Network Control Model devices.

A Communications Class Interface (CCI) is a CDC device interface that manages the de-
vice and, optionally, the calls. The device management handles general device control,
device configuration, and the notification of events to the host. The call management han-
dles the formation and termination of calls. Because the communication model specifica-
tions supported by a CDC device are defined by its CCI, all CDC devices must have a
CCI. Any defined USB class interface, such as Audio or vendor-specific interfaces, can be
paired with the CCI. All vendor-specific interfaces are represented with Data Class Inter-
faces (DCIs).
A DCI is a CDC device interface that manages data transmission. A specific format is

not required for transmitted and/or received data. The data used by DCIs can follow a pro-
prietary format or simply be raw data from a communication line. DCIs are always subor-
dinate to a CCI.
At least one CCI and zero or more DCIs are required for any given CDC device. One

CCI and any subordinate DCI together provide a feature to the host often called a function.
Several functions can exist in a CDC composite device, and the device would therefore be
composed of several sets of CCI and DCI(s) as shown in Figure 8.5.

CDC Device

Function #1

CCI

DCI

Function #2

CCI

DCI

DCI

Function #3

CCI

Audio

Figure 8.5 CDC Function Examples [1], page 165.

Table 8.3 provides a list of all the different types of endpoints distinguished by their data
flow direction, interface, and application. CDC devices use combinations of these end-
points. An interrupt endpoint is often used by communication devices to notify the host of
any events.
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The seven major models of communication encompass several subclasses that describe
the way the device should use the CCI to handle the device and call management. All of
the possible subclasses and their corresponding communication models are shown in
Table 8.4.

8.2.4.2 Human Interface Device Class

This driver class will be discussed in detail in Section 8.4.

8.2.4.3 Mass Storage Device Class

The Mass Storage Class (MSC) provides the means to transfer information such as exe-
cutable programs, source code, documents, images, and configuration data to and from a
USB device. The USB device is usually a flash drive or an SD card, and a host recognizes
it as an external storage medium.
A file system is required to define how the files are arranged within the storage media.

However, a conforming device does not need any particular file system in order to be

TABLE 8.3 CDC Endpoints [1], page 166.

ENDPOINT DIRECTION INTERFACE USE FOR

Control IN Device-to-host CCI Standard requests for
enumeration, class-specific
requests, device management
and, (optionally) call
management.

Control OUT Host-to-device CCI Standard requests for
enumeration, class-specific
requests, device management
and, (optionally) call
management.

Interrupt or bulk IN Device-to-host CCI Events notification, such as
ring detect, serial line status,
network status.

Bulk or isochronous IN Device-to-host DCI Raw or formatted data
communication.

Bulk or isochronous OUT Host-to-device DCI Raw or formatted data
communication.
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TABLE 8.4 CDC Subclasses [1], page 167.

SUBCLASS
COMMUNICATION

MODEL
EXAMPLE OF DEVICES
USING THIS SUBCLASS

Direct Line Control Model PSTN Modem devices directly controlled by the
USB host

Abstract Control Model PSTN Serial emulation devices, modem devices
controlled through a serial command set

Telephone Control Model PSTN Voice telephony devices

Multi-Channel Control Model ISDN Basic rate terminal adaptors, primary rate
terminal adaptors, telephones

CAPI Control Model ISDN Basic rate terminal adaptors, primary rate
terminal adaptors, telephones

Ethernet Networking Control
Model

ECM DOC-SIS cable modems, ADSL modems that
support PPPoE emulation, Wi-Fi adaptors
(IEEE 802.11-family), IEEE 802.3 adaptors

ATM Networking Control ATM ADSL modems

Wireless Handset Control
Model

WMC Mobile terminal equipment connecting to
wireless devices

Device Management WMC Mobile terminal equipment connecting to
wireless devices

Mobile Direct Line Model WMC Mobile terminal equipment connecting to
wireless devices

OBEX WMC Mobile terminal equipment connecting to
wireless devices

Ethernet Emulation Model EEM Devices using Ethernet frames as the next
layer of transport.

Not intended for routing and Internet
connectivity devices

Network Control Model NCM IEEE 802.3 adaptors carrying high-speed
data bandwidth on network
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accessible with the USB mass storage class specification. Instead, reading and writing sec-
tors of data is done through a simple interface called the Small Computer System Interface
(SCSI) transparent command set.
MSC transport protocols supported by the USB mass storage host class are Bulk-Only

Transport and Control/Bulk/Interrupt Transport. Mass storage commands follow a protocol
which utilizes a Command Block Wrapper (CBW) and a Command Status Wrapper
(CSW). The protocol is shown in Figure 8.6.

Command Transport
(CBW)

Data-In (to Host)Data-Out (from Host)

Status Transport
(CSW)

Ready

Figure 8.6 MSC Protocol [1], page 217.

8.3 BASIC EXAMPLES

The following examples where taken from Rev. 2.10 of Renesas’ application notes on their
USB Host Human Interface Device Class Driver [2]. For the most up to date information
on Renesas’ drivers, go to their website and download the supporting documentation for
their drivers.

8.3.1 Example 1: Detecting a Device

Format:

int16_t open(int8_t *name, uint16_t mode, uint16_t flg)
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Argument:

*name Class Code
mode Open mode, set to 0 (not used)
flg Open flag, set to 0 (not used)

Return Value:

—File number

Description:

This function will enumerate the connected USB device. A hardware pipe based on the
USB information received will be set up, and a connection with the USB device will be es-
tablished. If enumeration and HW pipe allocation are normal, this function returns a file
number ranging from 0x10 to 0x1f. If Enumeration and HW pipe allocation fail, (�1) is re-
turned. After the file number is received by the caller, the USB device class communica-
tions using read() can be performed.

NOTES:

� Call this function from the user application program.
� Because the file number is required for USB device class communications using
read(), the open function must be called before performing the communication.

� The second argument (mode) and third argument (flag) cannot be used with API:
please set both to 0.

EXAMPLE

1. int16_t usb_smp_fn;
2. void usb_apl_open() {
3. usb_smp_fn = open((int8_t *)USB_CLASS_HHID, 0, 0);
4. if(usb_smp_fn != -1) {
5. //USB Transfer
6. }
7. }

8.3.2 Example 2: Ending Connection to a USB Device

Format

int16_t close(int16_t fileno)
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Argument

fileno File number

Return Value

0: Successful
�1: Failure

Description

This function ends the connection with the USB device given by the file number. If the op-
eration ends successfully, (0) is returned; if the operation fails, (�1) is returned.

NOTES:

� Call this function from the user application program.

EXAMPLE

1. int16_t usb_smp_fn;
2. void usb_apl_close() {
3. USB_ER_t err;
4. err = close(usb_smp_fn);
5. if(err == USB_OK) {
6. usb_smp_fn = -1;
7. }
8. }

8.3.3 Example 3: Receiving

Format

int32_t read(int16_t fileno, uint8_t *buf, int32_t count)

Argument

fileno File number
*buf Pointer to data buffer
count Data transfer size
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Return Value

.. Error Code. Always (�1)

Description

This function executes a data receive request for the USB device class specified by the file
number. Data is read from the FIFO buffer in the specified data transfer size (3rd argument)
and then stored in the data buffer (2nd argument). When the receive process is complete,
the call-back function set in control (USB_CTL_RD_NOTIFY_SET) is called. The actual
read size can be obtained from control (USB_CTL_RD_LENGTH_GET) after the receive
process is complete.

NOTES:

� Call this function from the user application program.
� This function only executes a data receive request and does not block any
processes. Therefore the return value is always �1.

� Use control (USB_CTL_RD_NOTIFY_SET) to register the call-back function for
a notification of the data transfer being complete and then call the API.

EXAMPLE

1. int16_t usb_spvendor_bulk_fn;
2. void* data_len;
3. int32_t size;
4. uint8_t *buf;
5. void* state;
6.
7. //Processing at the time of the completion of reception
8. void usb_smp_Read_Notify (USB_UTR_t *ptr, uint16_t data1,

uint16_t data2) {
9. USB_ER_t err;

10. //Receiving data length check
11. err = control(usb_spvendor_bulk_fn, USB_CTL_RD_LENGTH_GET,

&data_len);
12. if(err != USB_CTL_ERR_PROCESS_COMPLETE) {
13. //Error Processing
14. }
15. }
16.
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17. void usb_apl_read() {
18. USB_ER_t err;
19. //Set data receive complete notification call-back
20. control(usb_smp_fn, USB_CTL_RD_NOTIFY_SET,

(void*)&usb_smp_Read_Notify);
21. //receiving data request
22. read(usb_smp_fn, (uint8_t *)buf, (int32_t)size);
23. //receiving request status check
24. err = control(usb_spvendor_bulk_fn, USB_CTL_GET_RD_STATE,

(void*)&state);
25. if(err != USB_CTL_ERR_PROCESS_COMPLETE) {
26. //Error Processing
27. }
28. }

8.4 HUMAN INTERFACE DEVICE DRIVER CLASS

8.4.1 Overview

USB supports Human Interface Devices (mouse, keyboard, joystick); Human Interface
Devices (HID) are supported by the HID Driver Class. Table 8.5 provides a list of all the
different types of endpoints distinguished by their data flow direction, interface, and appli-
cation. HID devices use combinations of these endpoints. An interrupt endpoint is often
used by communication devices to notify the host of any events.
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TABLE 8.5 HID Class Endpoints Usage [1], page 186.

ENDPOINT DIRECTION USAGE

Control IN Device-to-host Standard requests for enumeration, class-specific requests, and
data communication (input, Feature reports sent to the host
with GET_REPORT requests)

Control OUT Host-to-device Standard requests for enumeration, class-specific requests, and
data communication (output, Feature reports received from the
host with SET_REPORT requests)

Interrupt IN Device-to-host Data communication (input and Feature reports)

Interrupt OUT Host-to-device Data Communication (output and Feature reports)

08.ES_Conrad_RX63N_Advanced_CH08.qxd:RX63N Advanced  3/4/14  9:57 PM  Page 200



CHAPTER 8 / UNIVERSAL SERIAL BUS (USB) CONNECTIVITY 201

8.4.2 Reports

The exchange of data between a host and an HID is done via reports. A report gives for-
matted information about controls and other physical entities of the HID. A user can ma-
nipulate these controls and operate parts of the device. These controls could be a switch, a
button on a mouse, or a knob, for example. Other entities are used to notify the user about
the state of a device such as LEDs on a keyboard notifying the user about the caps lock or
key pad being on.
Analysis of a report descriptor via a parser provides the host information about the use

and format of report data. Data provided by each control in a device is described by a re-
port descriptor which is composed of items. Items are specific pieces of information about
the device. They consist of a 1-byte prefix and variable-length data. Items are broken into
three categories [1]:

� Main item defines or groups certain types of data fields.
� Global item describes data characteristics of a control.
� Local item describes data characteristics of a control.

Different functions, also called tags, define each item type and can be seen as sub-items.
Each of these sub-items belongs to one of the three principal item types. A brief overview
of the item functions in each item type is given in Table 8.6.

8.4.3 Architecture

Devices are enumerated by the host operating system (OS) using the control endpoints. Af-
ter enumeration, interrupt endpoints are used by the host to start transmission/reception
to/from the device.
A device using the HID class must interact with an OS layer (Figure 8.7) specific to

this class. OS services required for the internal functioning of the HID class are provided
by this HID OS layer. This layer is independent of any specific OS.
When the HID class is initializing, the report provided by the application is validated

by a report parser. The initialization will fail if any error is detected by the parser.

8.4.4 More Examples of HID Driver Functions

As with the previous code examples, the following examples where taken from Rev. 2.10 of
Renesas’ application notes on their USB Host Human Interface Device Class Driver [2].
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TABLE 8.6 Function Description for each item [1], pages 187–189.

ITEM TYPE ITEM FUNCTION DESCRIPTION

Main Input Describes information about the data provided by one ormore physical controls.

Output Describes data sent to the device.

Feature Describes device configuration information sent to or received from the
device which influences the overall behavior of the device or one of its
components.

Collection Group related items (Input, Output or Feature).

End of Collection Closes a collection.

Global Usage Page Identifies a function available within the device.

Logical Minimum Defines the lower limit of the reported values in logical units.

Logical Maximum Defines the upper limit of the reported values in logical units.

Physical
Minimum

Defines the lower limit of the reported values in physical units, that is the
Logical Minimum expressed in physical units.

Physical
Maximum

Defines the upper limit of the reported values in physical units, that is the
Logical Maximum expressed in physical units.

Unit Exponent Indicates the unit exponent in base 10. The exponent ranges from �8 to �7.

Unit Indicates the unit of the reported values. For instance, length, mass,
temperature units, etc.

Report Size Indicates the size of the report fields in bits.

Report ID Indicates the prefix added to a particular report.

Report Count Indicates the number of data fields for an item.

Local Usage Represents an index to designate a specific Usage within a Usage Page. It
indicates the vendor’s suggested use for a specific control or group of
controls. A usage supplies information to an application developer about
what a control is actually measuring.

Usage Minimum Defines the starting usage associated with an array or bitmap.

Usage Maximum Defines the ending usage associated with an array or bitmap.

Designator Index Determines the body part used for a control. Index points to a designator in
the Physical descriptor.

Designator
Minimum

Defines the index of the starting designator associated with an array or
bitmap.

Designator
Maximum

Defines the index of the ending designator associated with an array or
bitmap.

String Index String index for a String descriptor. It allows a string to be associated with a
particular item or control.

String Minimum Specifies the first string index when assigning a group of sequential strings to
controls in an array or bitmap.

String Maximum Specifies the last string index when assigning a group of sequential strings to
controls in an array or bitmap.

Delimiter Defines the beginning or end of a set of local items.

08.ES_Conrad_RX63N_Advanced_CH08.qxd:RX63N Advanced  3/4/14  9:58 PM  Page 202



CHAPTER 8 / UNIVERSAL SERIAL BUS (USB) CONNECTIVITY 203

Host operating system

Application

USB Host stack

HID class

HID OS

HID Report
parser

Application

USB Device

Interrupt
IN

Control 0
IN & OUT

Interrupt
OUT

Figure 8.7 USB Stack [1], page 192.

Format

int16_t control(int16_t fileno, USB_CTRLCODE_t code, void *data)

Argument

fileno File number
*buf Pointer to data buffer
*data Pointer to data

(Use of this argument is different for different control codes. See Table 8.7)

Return Value

0 : Successful
�1 : Failure

Description

This function’s processing depends on the control code.
If an unsupported code is specified, the function sends (�1) as the return value.

NOTES:

� Call this function from the user application program.
� If the user is using the ANSI method and specifies “USB_CTL_HID_CLASS_
REQUEST” as the control code (2nd argument), the user can issue the following
class requests (Table 8.8). Assign the definition of the Class Request to the
“bRequestCode” member.
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TABLE 8.7 Supported Control Codes [2], page 25.

CONTROL CODE DESCRIPTION

USB_CTL_USBIP_NUM Get the USB module number.

USB module number is set to the 3rd argument.

USB_CTL_RD_NOTIFY_SET Register the function called back when a data receive request is completed.

Set the call-back function in the 3rd argument.

USB_CTL_RD_LENGTH_GET Get the data length read from the FIFO buffer when the data is read.

The data length is set to the 3rd argument.

USB_CTL_GET_RD_STATE Get the state when data is read.

The state is set to the 3rd argument.

USB_CTL_H_RD_TRANSFER_END Forcibly end the data transfer in the pipe relevant to the 1st argument (File
number).

USB_CTLH_CHG_DEVICE_STATE Change state of connected USB device.

Set the state value to the 3rd argument.

USB_CTL_H_GET_DEVICE_INFO Get state of connected USB device.

The state is set to the 3rd argument.

USB_CTL_HID_CLASS_REQUEST Issue a class request for HID, the request is given by the 3rd argument.

TABLE 8.8 Class Requests [2], page 26.

CLASS REQUEST DEFINITION VALUE

Get_Descriptor(HID) USB_HID_GET_HID_DESCRIPTOR

Get_Descriptor(Report) USB_HID_GET_REPORT_DESCRIPTOR

Get_Descriptor(Physical) USB_HID_GET_PHYSICAL_DESCRIPTOR

Set_Report USB_HID_SET_REPORT

Get_Report USB_HID_GET_REPORT

Set_Idle USB_HID_SET_IDLE

Get_Idle USB_HID_GET_IDLE

Set_Protocol USB_HIS_SET_PROTOCOL

Get_Protocol USB_HID_GET_PROTOCOL
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EXAMPLES

This code will retrieve the USB module number.

1. int16_t usb_smp_fn;
2. void getHIDModuleNumber(USB_UTR_t *ptr) {
3. int16_t num;
4. :
5. //Confirmation USBIP Number
6. control(usb_smp_fn, USB_CTL_USBIP_NUM, (void*) &num);
7. :
8. }

The following function ends a data transfer.

1. int16_t usb_smp_fn;
2. void endHIDTransfer(USB_UTR_t *ptr){
3. USB_CTL_PARAMETER_t smp_parameter;
4. :
5. smp_parameter.transfer_end.status = USB_DATA_STOP;
6. //Forcibly ends data reception
7. control(usb_smp_fn, USB_CTL_H_RD_TRANSFER_END,

(void*)&smp_parameter);
8. :
9. }

This example changes the state of a USB HID.

1. int16_t usb_smp_fn;
2. void setHIDState(USB_UTR_t *ptr) {
3. USB_CTL_PARAMETER_t smp_parameter;
4. :
5. //Callback function
6. smp_parameter.device_state.complete = ptr->complete;
7. smp_parameter.device_state.msginfo = USB_DO_STALL;
8. //Changing USB device information
9. control(usb_smp_fn, USB_CTL_H_CHG_DEVICE_STATE,

(void*)&smp_parameter);
10. :
11. }
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This function will return the state of a USB device.

1. int16_t usb_smp_fn;
2. uint16_t *smp_tbl;
3. void getHIDInfo(USB_UTR_t *ptr) {
4. USB_CTL_PARAMETER_t smp_parameter;
5. :
6. smp_parameter.device_information.tbl = smp_tbl;
7. /* Getting USB device information */
8. control(usb_smp_fn, USB_CTL_H_GET_DEVICE_INFO,

(void*)&smp_parameter);
9. :

10. }

The following example performs a class request.

1. uint16_t devaddr;
2. void HIDClassRequest(USB_UTR_t *ptr){
3. USB_HHID_CLASS_REQUEST_PARM_t class_req;
4.
5. //Class Request
6. class_req.bRequestCode = USB_HID_GET_HID_DESCRIPTOR;
7.
8. //Device address of HID device
9. class_req.devadr = ptr->tranadr;

10. class_req.ip = ptr->ip;
11. class_req.ipp = ptr->ipp;
12. //Pointer to the buffer that the class requests
13. class_req.tranadr = p_data;
14. class_req.complete = ptr->complete;
15.
16. //HID Class Request
17. control(usb_smp_fn, USB_CTL_CLASS_REQUEST, (void*)&class_req);
18. }

For information about using the control codes relevant to Read(), please see Section 8.3.3;
Example 3: Receiving.
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8.5 RECAP

In this chapter we covered the Universal Serial bus peripheral on the Renesas RX63N.
We started with a brief overview of the USB concepts. Then we covered how to enable
the USB and how to transfer data between two USB devices. Additionally, this chapter
described the various class drivers of the USB. In the advanced concepts section we
covered explained briefly about the implementation of the various driver classes. Our
final example showed how to set up and use the Human Interface device driver class.
Renesas has several examples on their websites of USB applications in addition to

reference [3].

8.6 REFERENCES

[1] The Micri�m USB Team (2012). �c/USB Device™ Universal Serial Bus Device Stack,Micri�m Press, Inc.

[2] Renesas Electronics, Inc. (April, 2013). Application Note: Renesas USB MCU and USB ASSP USB Host Hu-

man Interface Device Class Driver (HHID), Rev. 2.10.

[3] Renesas Electronics, Inc. (February, 2013). RX63N Group, RX631 Group User’s Manual: Hardware,

Rev. 1.60.

8.7 EXERCISES

1. What is a USB and who maintains its protocols?
2. What are the different connector types used for a USB? Briefly describe each of
them.

3. What type of network configuration does the USB use and how many devices can
be connected at one time?

4. What are the different USB transfer types? Briefly explain each of them.
5. Describe the Communication Device Class Functions and explain the purpose of
the interfaces used for them.

6. Describe the phases used by the Mass Storage Device Class.
7. How does a Hardware Human Interface Device exchange data? Explain in detail.
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209

9.1 LEARNING OBJECTIVES

The term Ethernet can be understood as a family of networking technologies for Local
Area Networks (LANs). This technology has been standardized as IEEE 802.3. Ethernet
networks can also connect to the internet through a router, which provides access to Wide
Area Networks. The availability of inexpensive Ethernet chips that handle the details of
Ethernet transmission and reception has made the use of Ethernet technology feasible for
embedded devices. The RX63N comes with an 802.3x compliant Ethernet MAC capable
of 10/100 Mbps as well as an Ethernet DMA controller [1].

In this chapter the reader will learn how to:

� Set up an Ethernet connection
� Transmit data over an Ethernet connection
� Receive data over an Ethernet connection

9.2 BASIC CONCEPTS OF ETHERNET AND INTERNET PROTOCOL

Ethernet LANs consist of nodes and interconnected media. Network nodes can be either
Data Terminal Equipment (DTEs) or Data Communication Equipment (DCEs), which for-
ward and transmit frames in the network. DTEs can be PCs, workstations or servers. DCEs
can be devices such as repeaters, network switches, network interface cards or modems.

9.2.1 Ethernet Network Topologies

Ethernet LANs can be configured in a variety of ways, but the three basic configurations
are point-to-point connections, coaxial bus topology, and star-connected topology. The
most basic configuration is the point-to-point connection in which only two nodes and a
network link are involved. The connection may be DTE-to-DTE, DTE-to-DCE, or

RX63N Ethernet Controller
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DCE-to-DCE. The length of the cable or network link depends on the type of cable and the
method of transmission, which will be discussed a little later.

Link

Figure 9.1 Point-to-Point Connection [2], page 18.

In the Co-axial Bus topology, individual nodes are connected to buses, and these buses are
interconnected through repeaters. Earlier Ethernet networks used this method of intercon-
nection. The size of the network is restricted because of constraints on the segment lengths
and the number of connections.

Ethernet bus segment

Ethernet bus segment

Figure 9.2 Co-axial Bus topology [2], page 18.

Ethernet supports a bus topology inherently. In this topology each node shares the same
physical medium. Before any transmission, a node listens first and transmits if it decides
that that there is no traffic on the medium. However, two nodes may decide to transmit at
the same time and this will lead to a collisions. This also known as Carrier Sense Multiple
Access with Collision Detection (CSMA/CD). A bus topology is half-duplex.
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Figure 9.3 Star topology [2], page 18.

Due to cost reductions in cables and switches, nodes can be connected to each other
through star topology where the node connections are peer to peer and full duplex. In full
duplex mode, there is no need for carrier sense (listen first then transmit) and there are no
collisions. This is because the physical medium is only between two nodes and transmit
and receive are on separate wires. This topology not only allows full 10/100Mbps TX and
RX communication but also increases the reliability of the network since a single link fail-
ure is only affects the node involved and not the entire bus.

Newer networks are no longer connected using the bus topology configuration; instead
they use a star configuration in which the central element is a network switch. In fact, this
star topology is the most common topology and the one you are most likely to have en-
countered. This is the topology common with PCs connected via Ethernet cables to a
router (or, likely, to just a RJ45 socket in the wall that eventually connects to switches and
routers.

Ethernet is the physical-layer part of the entire seven-layer OSI model of communica-
tion. This is similar to the way we use the UART or CAN bus. This physical layer is most
often used by the Internet protocol suite.
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9.2.2 Internet Protocol

The Internet protocol suite is a set of well defined communications protocols commonly
used for Internet communications. Two of the most common (and important) of these pro-
tocols is TCP/IP (Transmission Control Protocol and Internet Protocol). TCP/IP identifies
how data is formatted and addressed at the communications source, then how it is routed
and received at the communications destination. Although there are several “layers” asso-
ciated with these protocols, often users interface with only the highest layer, the applica-
tion layer. Examples of applications include File Transfer Protocol (FTP), Hypertext
Transfer Protocol (HTTP), and the telnet virtual terminal communications protocol.

Renesas has provided sample code to demonstrate the RX63N board’s Ethernet capabili-
ties [3]. This code includes the popular open source uIP EmbeddedTCP/IP Stack [4]. The code
package can be downloaded from the Renesas site.A project with a demonstration can be built
and downloaded to the RX63N board. Some versions of this project can be built with the free
demo version of HEW as well as E2 Studio. uIP can support one TCP application at a time.

To communicate using this Renesas Ethernet API, the hardware address of the board
(MAC address) must be known. This six-byte array is typically stored in E2Flash at loca-
tion 0x00107FF2 to 0x00107FF7. The Renesas range of MAC addresses has the first four
bytes of 0x00, 0x30, 0x55, and 0x80. The provided API functions can check this correct
address range.

You can attach an Ethernet cable between the RX63N board and a router and run an
API function to obtain an IP address. This function sends out a DHCP request to the DCHP
server (in the router) in order to obtain the IP address. Once an IP address is obtained
DHCP messages are sent at periodic intervals to extend the lease period for the IP address.
This IP address of the RX63N board could be printed on the screen.

Once the board has an IP address, you can connect to the board using any number of
TCP/IP protocols. These particular protocols are described in more detail in the uIP Man-
ual. For example, a PC connected to the same router could issue a telnet command:

telnet <RX63N_IP_ADDRESS> 1000

You would need to write an application to establish a connection to the TCP port on the
RX63N board. Whenever a TCP packet is received by uIP, it calls this application. This ap-
plication is listening at port 1000.

9.2.3 Example

In the following example, the Ethernet API functions are called to set up the Ethernet
Controllers and initialize uIP. We check to ensure an Ethernet cable is attached and con-
nected to a router. Then we initialize the DHCP and telnet protocol, then wait for Ethernet
packets and work with them.
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1. extern const struct uip_eth_addr my_mac;
2. int main(void) {
3. //Set Ethernet address.
4. uip_setethaddr(my_mac);
5. uip_init();
6.
7. //If links is down, wait until initialization is complete
8. //in case the Ethernet cable is not plugged in.
9. while (R_Ether_CheckLink_ZC(ch) != R_ETHER_OK);

10.
11. //Initialize the MAC.
12. R_Ether_Open_ZC(ch, (uint8_t*)&my_mac.addr[0],

(void **)&uip_buf);
13.
14. //R_Ether_WaitLink must be called at least once after
15. //R_Ether_Open to complete link and Ethernet initializations.
16. while (R_Ether_WaitLink_ZC(ch) != R_ETHER_OK);
17.
18. //Initialize DHCP
19. dhcpc_init(&my_mac.addr[0], 6);
20. //We start to listen for connections on TCP port 1000.
21. uip_listen(HTONS(1000));
21.
22. while (1) { //do forever
22. uip_len = R_Ether_Read(ch, (void *)uip_buf);
23. if (uip_len > 0) {
24. //if something was received through telnet, then process
25. .
26. .
27. .
28. }

There are many supporting files needed and this is only a small snippet of code from
the provided project. Further descriptions and examples of the Ethernet API are show in
Section 9.5.

9.3 ETHERNET CONTROLLER

This section includes detail of what is involved in the hardware associated with Ethernet.
An Ethernet controller chip is the hardware that controls the transmission and reception of
data in conformance to the IEEE 802.3 standards. The RX63N supports both the Media
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Independent Interface (16 pins, 25 MHz) and Reduced Media Independent Interface
(6 pins, 50 MHz) physical layer interfaces. Connecting a physical-layer Large-Scale
Integrated device (LSI) (PHY-LSI) by complying with this standard enables the Ethernet
Controller (ETHERC) to perform the transmission and reception of Ethernet/IEEE802.3
frames. The controller has one Media Access Control (MAC) layer interface port and is
connected to the Ethernet Direct Memory Access Controller (EDMAC) inside this LSI,
which carries out high-speed data transfer to and from the memory.

The Ethernet transmitter assembles the transmit data into a frame and outputs it to the
physical layer interface (MII/RMII) when there is a transmit request from the transmit
EDMAC. The data transmitted by way of the MII/RMII is transmitted to the lines by the
PHY-LSI.

EDMAC

ETHERC

EDMAC Interface

MAC
Receive

controller
Transmit
controller

Command status
interface

MII

RMII

Port

PHY-LSI

Figure 9.4 Configuration of the Ethernet Controller [1], page 1111.

When the transmit enable (ECMR.TE) bit is set, the transmitter enters an idle state. When
a transmit request is issued by the transmit EDMAC, the ETHERC sends the preamble to
the MII/RMII after a carrier has been detected and the transmission has been delayed with
an equivalent frame interval time. If full-duplex transfer is selected, which does not require
carrier detection, the preamble is sent as soon as a transmit request is issued by the trans-
mit EDMAC. The transmitter then sends the SFD, data, and CRC sequentially.
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At the end of a transmission, the transmit EDMAC generates a Transmission Complete
(TC) interrupt. If a collision or the carrier-not-detected state occurs during data transmis-
sion, an interrupt is reported. The transmitter enters the idle state after waiting for the
frame interval time and continues transmission if there is more transmit data.

Transmission is re-tried only when data of 512 bits or less is transmitted. If a collision
is detected during transmission of data greater than 512 bits, only the collision indicator
message is transmitted.

The ETHERC receiver separates the frame sent by the MII/RMII into preamble, SFD
(start frame delimiter), data, and CRC, and the fields from DA (destination address) to the
CRC data are transferred to the receiving EDMAC. Figure 9.6 shows the state transitions
of the ETHERC receiver.

ECMR.TE set
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Transmission
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ECMR.TE reset

Reset

FDPX

Carrier
detection

Carrier
detection

Retransfer
processing*1

Start of transmission
(preamble transmission)

FDPX

HDPX

Carrier
detection

SFD
transmission

Data
transmission

CRC
transmission

Collision

Carrier
detection

Collision

Error

Collision*2

Error

Collision*2

Error

Error
notification

Error detection

Failure of 15
retransfer attempts

or collision
after 512-bit time

Normal transmission

FDPX: Full-duplex
HDPX: Half-duplex
SFD: Start Frame Delimiter

Carrier
non-detection

Retransfer
initiation

HDPX

Carrier
non-detection

See [1], page 1131 for detail of the notes.

Figure 9.5 Transmission of Ethernet Frames [1], page 1131.
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When the receive enable (ECMR.RE) bit is set, the receiver enters the receive idle
state. Upon detecting an SFD after a receive packet preamble, the receiver starts the receive
process. It discards a frame with an invalid pattern. In normal mode, the receiver starts data
reception if the destination address of the frame matches the RX63N address, or if the
broadcast or multicast frame type is specified.

In promiscuous mode, the receiver starts reception for any type of frame. After receiv-
ing data from the MII/RMII, the receiver carries out a CRC check in the frame data field.
The result is indicated as a status bit in the descriptor, after the frame data has been written
to memory. The receiver reports an error status in the case of an abnormality. After the
reception of one frame, the receiver prepares for the reception of the next frame if the re-
ceive enable bit is set (ECMR.RE � 1) in the ETHERC mode.

ETHERC Mode Register (ECMR): The Ethernet Mode Control Register specifies
the operating mode of the controller. The settings in the ECMR should be made in the

Illegal carrier
detection

Idle

Reception
halted

Start of frame
reception

Wait for SFD
reception

Error
detection

Data
reception

CRC
reception

Destination address
reception

SFD
reception

Preamble
detection

Promiscuous and other
station destination address

Receive error
detection

Own destination address
or broadcast
or multicast
or promiscuous

End of
reception

Receive error
detection

Error
notification*1

Normal reception

ECMR.RE
reset

ECMR.RE set

Reset

SFD: Start frame delimiter

Note 1. The error frame also transmits data to the buffer.

ET_RX-DV negation

Figure 9.6 Reception of Ethernet Frames [1], page 1132.
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— — — — — — — — — — — TPC ZPF PFR RXF TXF

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

— — — PRCEF — — MPDE — — RE TE — ILB RTM DM PRM

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

ETHERC Mode Register (ECMR)

Address(es): 000C 0100h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 PRM Promiscuous
Mode

0: ETHERC performs normal operation R/W

1: ETHERC performs promiscuous mode operation

b1 DM Duplex Mode 0: Half-duplex transfer is specified. R/W

1: Full-duplex transfer is specified.

b2 RTM Transmission/
Reception Rate

0: 10 Mbps R/W

1: 100 Mbps

b3 ILB Internal Loop
Back Mode

0: Normal data transmission/reception is performed. R/W

1: Data loopback is performed inside the MAC in
the ETHERC when DM � 1.

b4 — Reserved This bit is always read as 0. The write value
should always be 0.

R/W

b5 TE Transmission
Enable

0: Transmitting function is disabled. R/W

1: Transmitting function is enabled.

b6 RE Reception
Enable

0: Receiving function is disabled. R/W

1: Receiving function is enabled.

b8, b7 — Reserved These bits are always read as 0. The write value
should always be 0.

R/W

b9 MPDE Magic Packet™
Detection Enable

0: Magic Packet™ detection is not enabled. R/W

1: Magic Packet™ detection is enabled.

Figure 9.7 Ethernet Mode Control Register [1], page 1113.—Continued
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BIT SYMBOL BIT NAME DESCRIPTION R/W

b11,
b10

— Reserved These bits are always read as 0. The write value
should always be 0.

R/W

b12 PRCEF CRC Error Frame
Reception
Enable

0: A frame with a CRC error is received as a frame
with an error.

R/W

1: A frame with a CRC error is received as a frame
without an error.

b15 to
b13

— Reserved These bits are always read as 0. The write value
should always be 0.

R/W

b16 TXF Operating Mode
for Transmitting
Port Flow
Control

0: PAUSE frame detection is disabled.
(Automatic PAUSE frame is not transmitted)

R/W

1: Flow control for the transmitting port is enabled.
(Automatic PAUSE frame is transmitted as
required)

b17 RXF Operating Mode
for Receiving
Port Flow
Control

0: PAUSE frame detection is disabled R/W

1: Flow control for the receiving port is enabled

b18 PFR PAUSE Frame
Receive Mode

0: PAUSE frame is not transferred to EDMAC R/W

1: PAUSE frame is transferred to EDMAC

b19 ZPF PAUSE Frame
Usage with
TIME � 0 Enable

0: Control of a PAUSE frame whose TIME
parameter value is 0 is disabled

R/W

1: Control of a PAUSE frame whose TIME
parameter value is 0 is enabled

b20 TPC PAUSE Frame
Transmission

0: PAUSE frames are transmitted even within
PAUSE periods.

R/W

1: PAUSE frames are not transmitted within
PAUSE periods.

b31 to
b21

— Reserved These bits are always read as 0. The write value
should always be 0.

R/W

Figure 9.7 Ethernet Mode Control Register [1], page 1113.
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initialization process, after a reset in most cases. The operating mode setting must not be
changed while the transmitting and receiving functions are enabled. To switch the operat-
ing mode, return the ETHERC and the EDMAC to their initial states by means of the soft-
ware reset bit (SWR) in the EDMAC mode register (EDMR) of the EDMAC before mak-
ing settings again.

PRM Bit (Promiscuous Mode): Setting the PRM bit enables all Ethernet frames to be re-
ceived. “All Ethernet frames” means all receivable frames, irrespective of any differences
or the enabled/disabled status of destination address, broadcast address, multicast bit, etc.

RTM Bit (Transmission/Reception Rate): This bit specifies the transmission and recep-
tion bit rate when RMII is selected.

TE Bit (Transmission Enable): If a switch is made from transmitting function enabled
(TE � 1) to disabled (TE � 0) while a frame is being sent, the transmitting function will
be enabled until transmission of the corresponding frame is completed.

RE Bit (Reception Enable): If a switch is made from receiving function enabled
(RE � 1) to disabled (RE � 0) while a frame is being received, the receiving function will
be enabled until reception of the corresponding frame is completed.

MPDE Bit (Magic Packet™ Detection Enable): This bit enables or disables Magic
Packet™ detection by hardware to allow activation from the Ethernet.

ZPF Bit (PAUSE Frame Usage with TIME � 0 Enable): When the ZPF bit is set to 0,
the next frame is not transmitted until the time specified by the Timer value has elapsed. On
receiving a PAUSE frame with a Timer value of 0, the PAUSE frame is discarded.

When the ZPF bit is cleared to 0 and the data size in the receive FIFO becomes smaller
than the setting of the flow control, then start the FIFO threshold setting register (FCFTR)
of the EDMAC. This operation needs to be completed before the Timer value elapses or an
automatic PAUSE frame with a Timer value of 0 is transmitted. On receiving a PAUSE
frame with a Timer value of 0, the transmission wait state is canceled.

Receive Frame Length Register (RFLR): The maximum frame length which can be re-
ceived by the RX63N can be set in the Receive Frame length Register. The RFLR should
only be set when receive function is disabled.

RFL[11:0] Bits (Receive Frame Length 11 to 0): These bits denote the value for the
maximum frame length in bytes. If the received data were to exceed this value it would re-
sult in a frame length error and the part of data that exceeds the specified length would be
discarded.
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Ethernet Controller Status Register (ECSR): The ECSR register represents the status
in the Ethernet controller. Each state is notified to the CPU by interrupts, and the
EESR.ESI bit in the EESR register (ETHERC/EDMAC status register) of the EDMAC in-
dicates which interrupt has been generated. These interrupt sources can be enabled or dis-
abled in the ETHERC Interrupt Permission Register (ECSIPR).

ICD Bit (Illegal Carrier Detection): This bit is set to 1 if the PHY-LSI detects an illegal
carrier on the line. In such a case the PHY-LSI sends a signal to the RX63N which results
in the setting of this bit.

LCHNG Bit (Link Signal Change): This bit indicates that the ET_LINKSTA signal in-
put from the PHY-LSI has changed from high to low or low to high. The current Link state
is indicated by the LNKSTA pin status bit (LMON) in the PHY status register (PSR).
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— — — — — — — — — — — — — — — —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

— — — —

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

Receive Frame Length Register (RFLR)

Address(es): 000C 0108h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b11 to b0 RFL[11:0] Receive Frame
Length 11 to 0

000h to 5EEh: 1,518 bytes R/W

5EFh: 1,519 bytes

5F0h: 1,520 bytes

: :

7FFh: 2,047 bytes

800h to FFFh: 2,048 bytes

b31 to b12 — Reserved These bits are always read as 0. The write
value should always be 0.

R/W

RFL[11:0]

Figure 9.8 Receive Length Frame Register [1], page 1115.
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PSRTO Bit (PAUSE Frame Retransmit Retry Over): This bit indicates whether the re-
transmit count for retransmitting a PAUSE frame when flow control is enabled has ex-
ceeded the retransmit upper limit set in the automatic PAUSE frame retransmit count
register (TPAUSER).

— — — — — — — — — — — — — — — —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

— — — — — — — — — — BFR PSRTO — LCHNG MPD ICD

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

ETHERC Status Register (ECSR)

Address(es): 000C 0110h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 ICD Illegal Carrier
Detection

0: PHY-LSI has not detected an illegal carrier on
the line

R/W

1: PHY-LSI has detected an illegal carrier on the
line

b1 MPD Magic Packet™
Detection

0: Magic Packet™ has not been detected R/W

1: Magic Packet™ has been detected

b2 LCHNG Link Signal
Change

0: Change in the LINKSTA signal has not been
detected

R/W

1: Change in the LINKSTA signal has been
detected (high to low or low to high)

b3 — Reserved This bit is always read as 0. The write value
should always be 0.

R/W

b4 PSRTO PAUSE Frame
Retransmit
Retry Over

0: PAUSE frame retransmit count has not
exceeded the upper limit

R/W

1: PAUSE frame retransmit count has exceeded
the upper limit

b5 BFR Continuous
Broadcast
Frame
Reception

0: Continuous reception of broadcast frames
has not been detected.

R/W

1: Continuous reception of broadcast frames
has been detected.

b31 to b6 — Reserved These bits are always read as 0. The write value
should always be 0.

R/W

Figure 9.9 Ethernet Controller Status Register [1], page 1116.
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9.4 ETHERNET DIRECT MEMORY ACCESS CONTROLLER

The RX63N Group has an on-chip direct memory access controller (EDMAC) directly
connected to the Ethernet controller (ETHERC).

RX63N

Internal bus

Transmit
buffer

Transmit
descriptor

Receive
descriptor

Receive
buffer

External memory

External
bus
interface

ETHERC

Internal
bus

interface

EDMAC
Transmit

FIFO

Receive
FIFO

Descriptor
information

Transmit DMAC

Descriptor
information

Receive DMAC

Figure 9.10 Configuration of EDMAC Buffers and Descriptors [1], page 1143.

This reduces the load on the CPU, thus enabling efficient data transmission and reception.
The EDMAC controls most of the buffer management by using descriptors. The EDMAC
reads the descriptors, which holds the control information. The descriptors corresponding
to each buffer hold the buffer pointers and other information. The EDMAC reads transmit
data from the transmit buffer and writes receive data to the receive buffer according to the
control information. By arranging such multiple descriptors continuously (i.e., making a
descriptor list), data can be transmitted or received sequentially.

A transmit descriptor list and a receive descriptor list should be created in memory
space by the communication program prior to transmission and reception. The start ad-
dresses of these lists should be set in the transmit descriptor list start address register and
the receive descriptor list start address register. The start addresses of the descriptor lists
should be placed on the address boundaries in accordance with the descriptor length spec-
ified in the EDMAC mode register (EDMR). Here, the start address of the transmit buffer
can be placed on a longword, word, or byte boundary.
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EDMAC Mode Register (EDMR): The operating mode of the EDMAC can be set in the
EDMR register. Setting this register during transmission or reception might result in wrong
values. Therefore, this register should be set after reset at initialization. While the transmis-
sion or reception function is enabled, it is prohibited from modifying the operating mode.

— — — — — — — — — — — — — — — —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

— — — — — — — — — DE — — — SWR

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

EDMAC Mode Register (EDMR)

Address(es): 000C 0000h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 SWR Software Reset [Writing] R/W

0: Disabled

1: Internal hardware is reset*1

[Reading]

Read as 0.

b3 to b1 — Reserved These bits are read as 0. The write value should be 0. R/W

b5, b4 DL[1:0] Transmit/Receive
Descriptor Length

b5 b4 R/W

0 0: 16 bytes

0 1: 32 bytes

1 0: 64 bytes

1 1: 16 bytes

b6 DE Big Endian Mode/
Little Endian Mode*2

0: Big endian mode (longword access) R/W

1: Little endian mode (longword access)

b31 to b7 — Reserved These bits are read as 0. The write value should be 0. R/W

Notes: 1. Registers other than TDLAR, RMFCR, TFUCR, and RFOCR are reset.
2. This setting is effective for received data and data for transmission. It does not apply to descriptors or registers
(support is only for big endian).

DL[1:0]

Figure 9.11 EDMAC Mode Register [1], page 1144.
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EDMAC Transmit Request Register (EDTRR): This register issues transmit directives
to the EDMAC.After having transmitted one frame, the EDMAC reads the next descriptor.
If the transmit descriptor active bit in this descriptor is set (active), the EDMAC continues
transmission. Otherwise, the EDMAC clears the TR bit and stops the transmit DMAC
operation.

— — — — — — — — — — — — — — — —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

— — — — — — — — — — — — — — — TR

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

EDMAC Transmit Request Register (EDTRR)

Address(es): 000C 0008h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 TR Transmit
Request

0: Transmission-halted state
Writing 0 does not stop transmission. Termination of
transmission is controlled by the active bit of the
transmit descriptor.

R/W

1: Transmission start
The EDMAC starts reading the target descriptor and
sends a frame whose transmission active bit is set to 1.

b31 to b1 — Reserved These bits are read as 0. The write value should be 0. R/W

Figure 9.12 EDMAC Transmit Request Register [1], page 1145.

EDMAC Receive Request Register (EDRRR): This register is used to issue receive di-
rectives to the EDMAC. Setting the Receive Request bit of this register enables the re-
ceiving function, and the EDMAC reads the receive descriptor. After data has been re-
ceived for the receive buffer size, the EDMAC reads the next receive descriptor and
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Transmit Descriptor List Start Address Register (TDLAR): TDLAR specifies the start
address of the transmit descriptor list. TDLAR must not be modified during transmission.
The transmission halted state results in the EDTRR.TR bit being set to zero. In this case
TDLAR can be updated to continue transmission. Depending on the descriptor length
specified in EDMR.DL[1:0], the lower bits of the register are set to zero.

EDMAC Receive Request Register (EDRRR)

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 RR Receive
Request

0: Receiving function is disabled*1 R/W

1: Receive descriptor is read, and the EDMAC
becomes ready to receive

b31 to b1 — Reserved These bits are read as 0. The write value should be 0. R/W

Note 1. If the receiving function is disabled during frame reception, write-back is not performed
successfully to the receive descriptor. Following pointers to read a receive descriptor become
abnormal and the EDMAC cannot operate successfully. In this case, to make EDMAC reception
enabled again, execute a software reset by the EDMR.SWR bit.
To disable the EDMAC receiving function without executing a software reset, specify the ECMR.RE
bit in the ETHERC. Next, after the EDMAC has completed the reception and write-back to the
receive descriptor has been confirmed, disable the receiving function using EDRRR.

Figure 9.13 EDMAC Receive Request Register [1], page 1146.

— — — — — — — — — — — — — — — —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

— — — — — — — — — — — — — — — RR

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

Address(es): 000C 0010h

becomes ready for frame reception. If the receive descriptor active bit of that receive de-
scriptor is set to 0 (inactive), the EDMAC clears the Receive Request bit and stops the re-
ceive DMAC operation.
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Receive Descriptor List Start Address Register (RDLAR): The register specifies the
start address of the receive descriptor list. The RDLAR must not be modified during recep-
tion. Depending on the Descriptor length specified in the EDMR.DL[1:0], the lower bits of
the register are set to zero.

Transmit Descriptor List Start Address Register (TDLAR)

BIT SYMBOL BIT NAME DESCRIPTION R/W

b31 to b0 TDLA[31:0] Transmit Descriptor
Start Address

16-byte boundary: TDLA[3:0] = 0000b R/W

32-byte boundary: TDLA[4:0] = 00000b

64-byte boundary: TDLA[5:0] = 000000b

Figure 9.14 Transmit Descriptor List Start Address Register [1], page 1147.

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

Address(es): 000C 0018h

TDLA[31:0]

TDLA[31:0]

Receive Descriptor List Start Address Register (RDLAR)

BIT SYMBOL BIT NAME DESCRIPTION R/W

b31 to b0 RDLA[31:0] Receive Descriptor
Start Address

16-byte boundary: RDLA[3:0] = 0000b R/W

32-byte boundary: RDLA[4:0] = 00000b

64-byte boundary: RDLA[5:0] = 000000b

Figure 9.15 Receive Descriptor List Start Address Register [1], page 1148.

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

Address(es): 000C 0020h

RDLA[31:0]

RDLA[31:0]
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9.5 RENESAS ETHERNET DRIVER API

The Renesas Driver provides application functions for using the Ethernet module on the
board. The zero copy Ethernet driver uses circular buffers to transmit and receive Ethernet
Frames using the Ethernet Direct MemoryAccess Controller (EDMAC) frame reception and
transmission complete interrupts. These functions have an additional suffix _ ZC. Functions
also do the same job without using circular buffers. Let us see the functions available.

R_Ether_Open_ZC :
Format

int32_t R_Ether_Open_ZC(uint32_t ch, uint8_t mac_addr[], void **buf);

Parameters

ch—Specifies the Ethernet Controller channel number.
mac_addr—Specifies the MAC address of EtherC.
buf—Points to the buffer pointer used by the stack.

Return Values

R_ETHER_OK(0) , R_ETHER_ERROR(-1)

This function initializes the Ethernet controller and the direct memory access controller sub-
systems. The Ethernet Direct MemoryAccess Controller descriptors and buffers are set up for
initial use. The MAC address is used to initialize the MAC address registers in the Ethernet
Controller. The pointer to buffer pointer is initialized with the first available transmit buffer.
This provides a data buffer to the stack for transmitting data. By default, the physical device is
configured to auto-negotiate mode. If there is only one Ethernet channel, then the channel num-
ber is set to zero. If there are two Ethernet channels, then 0 and 1 are used as channel numbers.

R_Ether_Close_ZC :
Format

int32_t R_Ether_Close_ZC(uint32_t ch);

Parameters

ch—Specifies the Ethernet Controller channel number.

Return Values

R_ETHER_OK(0) , R_ETHER_ERROR(-1)
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This function disables transmit and receive functionality of the Ethernet Controller. If there
is only one Ethernet channel, then the channel number is set to zero. If there are two Eth-
ernet channels, then 0 and 1 are used as channel numbers.

R_Ether_Read_ZC:
Format

int32_t R_Ether_Read_ZC(uint32_t ch, void **buf);

Parameters

ch—Specifies the EtherC channel number.
buf—Points to the buffer pointer used by the stack.

Return Values

Returns the number of bytes received. A zero value indicates no data is received.

This function receives data into the application receive buffer. The driver’s buffer pointer of
the read data is returned in the parameter buffer. Returning the pointer allows the operation
to be performed with zero-copy.

The return value shows the number of received bytes. If no data is available at the
time of the call, a zero value is returned. The direct memory access hardware operates in-
dependent of the function and reads data off the Ethernet link into a buffer pointed to by
the receive descriptor. It updates the status of the receive descriptor as new data is
processed.

The buffer pointed to by the Ethernet Direct Memory Access Controller-Receive
Descriptor is statically allocated by the driver. If there is only one Ethernet channel, then
the channel number is set to zero. If there are two Ethernet channels, then 0 and 1 are used
for the channel numbers.

R_Ether_Write_ZC:
Format

int32_t R_Ether_Write_ZC(uint32_t ch, void **buf, uint32_t len);

Parameters

ch—Specifies the EtherC channel number.
buf—Points to the buffer pointer used by the stack.
len—Ethernet frame length.
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Return Values

R_ETHER_OK (0)
R_ETHER_ERROR (�1)

The function transmits data from the application transmit buffer. It moves transmit data to
a buffer pointed to by the transmit E-DMAC descriptor. It updates the status of the transmit
descriptor as new data is processed. Data written is transmitted by the Controller. If there is
only one Ethernet channel, then the channel number is set to zero. If there are two Ethernet
channels, then 0 and 1 are used for the channel numbers.

9.5.1 Example 1: Transmitting Ethernet Frames

Let us see an example of transmitting data using the Renesas Ethernet Driver functions.
The structure s_frame defines an Ethernet frame which contains information which is to be
used, such as the Destination MAC address protocol. The program transmits ten frames on
channel zero. Initial settings are done by R_Ether_Open(). If this function does not return
an error, then the ten frames are transmitted in the for loop using R_Ether_Write(). Finally
when the transmission completes R_Ether_Close() disables the controller.

1. #include "iodefine.h"
2. #include "r_ether.h"
3. #pragma section ETH_BUFF
4. typedef struct{
5. uint8_t frame[BUFSIZE];
6. int32_t len;
7. uint8_t wk[12];
8. } USER_BUFFER;
9. USER_BUFFER recv[10];

10. #pragma section
11. extern void main(void);
12. static uint8_t s_frame[] = {
13. 0xff,0xff,0xff,0xff,0xff,0xff, //Destination MAC address
14. 0x00,0x01,0x02,0x03,0x04,0x05, //Source MAC address

(00:01:02:03:04:05)
15. 0x08,0x06, //Type (ARP)
16. 0x00,0x01, //+—H/W type = Ethernet
17. 0x08,0x00, //+—Protocol type = IP
18. 0x06,0x04, //+—HW/protocol address length
19. 0x00,0x01, //+—OPCODE = request
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20. 0x00,0x01,0x02,0x03,0x04,0x05, //+—Source MAC address
(00:01:02:03:04:05)

21. 0xc0,0xa8,0x00,0x03, //+—Source IP address
(192.168.0.3)

22. 0x00,0x00,0x00,0x00,0x00,0x00, //+—Inquiry MAC address
23. 0xc0,0xa8,0x00,0x05, //+—Inquiry IP

address(192.168.0.5)
24. };
25. static uint8_t mac_addr[6] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05};
26. void SampleEthernetTransmission(void);
27. void SampleEthernetReception(void);
28. void main(void) {
29. SampleEthernetTransmission();
30. while(1);
31. }
32. void SampleEthernetTransmission(void) {
33. int32_t i;
34. int32_t ret;
35. //==== Ethernet initial setting ====
36. ret = R_Ether_Open(0, mac_addr);
37. if( ret == R_ETHER_OK ) {
38. //==== 10-frame transmission start ====
39. for( i=0; i<10; i++ ) {
40. //——Transmission ——
41. ret = R_Ether_Write( 0, s_frame, sizeof(s_frame) );
42. if( ret != R_ETHER_OK ) {
43. break;
44. }
45. }
46. }
47. //Check transmission completion
48. while(EDMAC.EDTRR.BIT.TR != 0);
49. //==== Ethernet transmission and reception stop ====
50. R_Ether_Close(0);
51. }

9.5.2 Example 2: Receiving Ethernet Frames

Similar to the function for transmitting Ethernet frames, the SampleEthernetReception()
function receives the ten Ethernet frames. The Ethernet Modules must be initialized by
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R_Ether_Open(). If successfully initialized, the for loop receives ten frames using
R_Ether_Read(), and finally R_Ether_Close is used to disable the Ethernet Module.

1. void SampleEthernetReception(void) {
2. int32_t i;
3. int32_t ret;
4. //==== Ethernet initial setting ====
5. ret = R_Ether_Open(0, mac_addr);
6. if( ret == R_ETHER_OK ) {
7. //==== Start reception of 10 frames ====
8. for( i=0; i<10; i++ ) {
9. //-- Reception --

10. recv[i].len = R_Ether_Read(0, recv[i].frame);
11. if( recv[i].len == 0 ) {
12. i--;
12. }
13. }
14. }
15. //==== Ethernet transmission/reception halted ====
16. R_Ether_Close(0);
17. }

9.6 RECAP

Ethernet is a standard for networking technologies defined as IEEE 802.3. Ethernet net-
works can be configured in a point to point, bus, or star topology. The star topology, which
requires a network switch in the center of the network, is the prevalent method. The
RX63N comes with an 802.3x compliant Ethernet MAC capable of 10/100 Mbps as well
as an Ethernet DMA controller. The EDMAC controls most of the buffer management by
using descriptors. A transmit descriptor list and a receive descriptor list should be created
in memory space by the communication program prior to transmission and reception. The
Renesas Driver for the Ethernet Peripheral provides application functions for using the
Ethernet module on the board. These functions are used either by an application written by
the user or by another layer of abstraction called a stack.
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9.8 EXERCISES

1. How do you identify the MAC address of your RX63N board?
2. Write the code to read the MAC address of your RX63N board and assign a default

address if the original is not appropriate.
3. How do you identify the IP address of your RX63N board? What steps are fol-

lowed to assign an IP address to the board?
4. How to initialize the Ethernet transmission/reception on RX63N?
5. Using the code from the examples, write the additional code needed to transmit a

100 Kbyte file to the receiving device at IP address (192.168.0.10).
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10.1 LEARNING OBJECTIVES

Controller Area Network (CAN) is an asynchronous serial communication protocol which
follows ISO 11898 standards and is widely accepted in automobiles due to its real time
performance, reliability, and compatibility with a wide range of devices. CAN is a two
wire differential bus with data rates of up to 1 Mbps. Its robust, low cost, and versatile tech-
nology make CAN a good choice in other applications where inter-processor communica-
tion or elimination of excessive wiring is needed. Some of the areas it is widely used are in-
dustrial machinery, avionics, medical equipment, and home automation.

In this chapter the reader will learn:

� What is a CAN bus.
� Why use a CAN bus.
� Transmitting and receiving using a CAN bus.

10.2 THEORY OF CAN PROTOCOL

Controller Area Network is a serial communication protocol which is mainly used for re-
ducing wired interconnections in a vehicle. Some of the benefits in implementing the CAN
protocol in automobiles are:

� Reduced wired interconnections
� Low cost implementation
� Speed, reliability, and error resistance
� Worldwide acceptance

The main characteristics of the CAN protocol are:

� Multi master hierarchy
� Priority based bus access

CAN Bus
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� Baud rate up to 1 Mbps/sec
� Error detection and fault confinement

An embedded systems designer needs to carefully analyze and assess technologies when
building a system. The CAN bus meets many important characteristics of a simple yet de-
pendable communication protocol for many embedded system applications:

� Real Time Control: The CAN bus can be used in hard real-time systems since it
has low latency and a built-in priority structure.

� Reliability/Robustness: The bus is robust since it uses differential signaling, which
amounts to built-in noise immunity. It also supports error recovery since the proto-
col implements retransmission if error checking detects a transmission was not
successful.

� Flexibility of messaging: Many different devices can be attached to the bus, and
these devices can use peer to peer or multicast messaging.

� Simplicity: It is easy to add new nodes to the CAN bus and is easy to program if
you use an API.

� Economy: The bus wiring cost is low because it consists of only two wires that can
be several meters long. The interface hardware cost is low and is supported by
many vendors. Since the hardware handles the low level protocol, no software is
needed for lower level data communication.

� Scalability: It is easy to expand a network—simply attach a node using two wire
connections. Nodes can even be added while the bus is active.

� Availability: There are many microcontrollers and interface parts that support
CAN, and many APIs and debugging tools readily available.

10.2.2 CAN Bus Details

A CAN bus is a half-duplex, two wire differential bus. The two lines, CAN_L and CAN_H,
form the communication bus for the nodes to transmit data or information. The logic levels
used on the bus are dominant and recessive levels, where dominant level is referred when

and recessive level is referred when . The dominant level always
overrides the recessive level and this concept is used to implement the bus arbitration.

The voltage levels on the CAN bus varies from 1.5 volts to 3.5 volts. The logic levels
are calculated as the voltage difference between the two lines.

Formula 10.1

If the difference voltage is 2 volts, it is considered as a dominant level and if it is 0
volts, it is considered as a recessive level.

(Vdiƒƒ)

Vdiƒƒ � VCANH � VCANL

TTL � 5VTTL � 0V
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In the CAN protocol, nodes communicate data or information through messages termed
as frames. A frame is transmitted on to the bus only when the bus is in an idle state. There
are four different types of frames which are used for communication over the CAN bus.

� Data Frame—Used to send data
� Remote Frame—Used to request data
� Error Frame—Used to report an error condition
� Overload Frame—Used to request a delay between two data or remote frames

The first two frames, Data and Remote, are generated by the user (i.e., when they use anAPI).
The other two are typically generated by an underlying system and are not user generated.

The frames transmitted from one node will be received by all the other nodes on the
network using message broadcasting. The user sets up what frames are to be received and
sent. Message filtering, which is then provided automatically by the CAN controller hard-
ware, decides whether the received frame is relevant to that node or not. If any error oc-
curs due to reception or transmission, an error frame will be transmitted on the bus to let
the network know of the error. Since the error frame starts with six dominant bits, it will
have the highest priority when the bus is idle. As soon as the error is detected, the CAN
protocol implements the fault confinement techniques to overcome the error. The fault
confinement feature in the CAN protocol differentiates between a temporary error and a
permanent failure of a node. If the error is due to permanent failure of the node, it auto-
matically detaches the defective node from the bus without causing any problems to the
network.

10.2.3 Different CAN Bus Standards

There are several CAN physical layer and other standards:

� ISO 11898–1: CAN Data Link Layer and Physical signaling.
� ISO 11898–2: CAN High-Speed Medium Access Unit: ISO 11898–2 uses a two-

wire balanced signaling scheme. It is the most used physical layer in car power-
train applications and industrial control networks.

� ISO 11898–3: CAN Low-Speed, Fault-Tolerant, Medium-Dependent Interface.
� ISO 11898–4: CAN Time-Triggered Communication: ISO 11898–4 standard de-

fines the time-triggered communication on CAN (TTCAN). It is based on the CAN
data link layer protocol providing a system clock for the scheduling of messages.

� ISO 11898–5: CAN High-Speed Medium Access Unit with Low-Power Mode.
� ISO 11898–6: CAN High-Speed Medium access unit with selective wake-up

functionality.
� ISO 11992–1: CAN fault-tolerant for truck/trailer communication.
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� ISO 11783–2: 250 kb/s, Agricultural Standard: ISO 11783–2 uses four unshielded
twisted wires; two for CAN and two for terminating bias circuit (TBC) power and
ground. This bus is used on agricultural tractors. This bus is intended to provide
inter-connectivity with any implementation adhering to the standard.

10.2.4 Types of Frames and Their Architectures

As mentioned earlier, a CAN provides four different types of message frames for commu-
nication. The architecture of each frame is discussed in this section.

Data and Remote Frame

Data and Remote frames are user requested (e.g., by an API).The architecture of the data
and the remote frame are exactly the same. A data frame has higher priority than a remote
frame. Each data and remote frame starts with a Start of Frame (SOF) field and ends with an
End of Frame (EOF) field. Figure 10.1 shows the architecture of data and remote frames.

SOF Identifier RTR Control Data CRC ACK EOF

1
dominant
bit
(logic 0)

11 or 29-
Bits

1-Bit 6-Bits 0-8 Bytes 15-Bits 2-Bits 7
recessive
bits
(logic 1)

Figure 10.1 Architecture of data and remote frame.

The following are the fields in data and remote frame:

� SOF field (1 bit)—Indicates the beginning of the frame. A single dominant bit rep-
resents a start of a frame. It is also used for data transfer synchronization.

� Arbitration Field—This contains two sub fields, Message Identifier and RTR field.
▫ Message Identifier (11/29 bits)—This field contains a message ID for each

frame which is either 11 (Standard ID) or 29 (Extended ID) bits. No two mes-
sage frames in the CAN network should have the same message ID. A message
ID which has a low decimal value is considered as a high priority message.

▫ Remote Transmission Request (RTR) (1 bit)—The RTR field distinguishes a
data frame from a remote frame.
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� Control Field (6 bits)—This contains two sub fields, the IDE and the DLC field, as
well as a reserved bit.
▫ Identifier Extension (IDE) bit (1 bit)—This bit indicates the format of the mes-

sage ID in the frame, either a standard 11-bit format or extended 29-bit format.
▫ Reserved (1 bit).
▫ Data Length Code (DLC) field (4 bits)—This field is used to set the amount of

data being transferred from one node to another node. In a remote frame, these
bits represent the amount of data it is requesting.

� Data Field—This field contains the actual data and it is not applicable for a remote
frame.

� CRC field (16 bits)—The CRC field consists of the CRC Sequence and a CRC
Delimiter bit.
▫ CRC Sequence field (15 bits)—This 15-bit field contains the frame check se-

quence without the stuffing bits.
▫ CRC Delimiter bit (1 bit)—This bit is used to provide processing time for the

CRC Sequence field.
� ACK field (2 bits)—The ACK field consists of a 1-bit Acknowledgement Slot field

and an Acknowledgment Delimiter bit (which is always recessive).
� EOF field (7 bits)—Indicates the end of the frame. A 7-bit continuous recessive bit

represents the end of frame.

A node uses a data frame to transmit data to any other node on the network. The RTR field de-
termines whether the message frame should act as a data frame or a remote frame. When the
RTR bit is set to dominant level, then the message frame will act as a data frame.A maximum
of eight bytes of data can be transferred using a single data frame. Each data frame will be as-
signed a unique message ID during which the node decides whether the data is relevant or not.

A remote frame is used to request a data frame from any node on the network. When
the RTR bit is set to a recessive level, then the message frame will act as a remote frame.
While requesting data from a node, the length of the data field in the control field (DLC
bits) of the remote frame should be the same as the requesting data frame, otherwise a bus
collision occurs. As soon as the remote frame is accepted by a node, a data frame will be
transmitted on to the bus with the requested data. When two or more nodes on the network
request the same message at the same time, a bus collision occurs.

Error Frame

An error frame is transmitted onto the bus whenever a transmission or reception error oc-
curs due to a faulty node or bus problems. An error frame consists of three fields:

� Error flag (6 bits)—It is six dominant bits which indicates the transmitting or re-
ceiving error on the bus.
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� Error Delimiter (8 bits)—It is represented as a sequence of eight recessive bits. Af-
ter transmitting the error flag each node transmits a single recessive bit and waits
for the bus level to change to recessive. Only after the bus level is recessive, the re-
maining seven recessive bits will be sent onto the bus.

� Interframe Space (3 bits)—It is represented as the minimum space between any
type (data, remote, error, overload) of frame and a following data or remote frame.
It contains three recessive bits.

The error delimiter and the interframe space are used to synchronize the nodes to the error
frame transmitted onto the bus.

Overload Frame

The overload frame takes the same form as the error frame but the overload frame is used
to request a delay between the transmission of the next data or remote frame. It consists of
two fields, an Overload flag and an Overload delimiter.

� Overload flag (6 bits)—It contains six dominant bits which indicates the transmit-
ting or receiving error on the bus.

� Overload Delimiter (8 bits)—It is represented as a sequence of eight recessive bits.
After transmitting the error flag each node transmits a single recessive bit and
waits for the bus level to change to recessive. Only after the bus level is recessive
will the remaining seven recessive bits be sent onto the bus.

� Interframe Space (3 bits)—It is represented as minimum space between frames of
any type (data, remote, error, overload) and a following data or remote frame. It
transmits three consecutive recessive bits on to the bus. When the Interframe space
is being transmitted, no node on the network is allowed to transmit any of the
frames except the overload frame.

10.2.5 Bus Arbitration

In a single bus communication protocol, when two or more nodes request access to the bus
then a bus arbitration technique must be implemented. Usually bus access will be given to
a node with a high priority. The bus arbitration technique also avoids data collisions as long
as no two nodes transmit the same ID.

The CAN protocol provides a non-destructive bus arbitration mechanism. It assigns a
recessive level to the bus only if all the nodes on the bus output a recessive level and it as-
signs a dominant level if any one of the nodes on the network output a dominant level.
When a dominant bit and a recessive bit request access for the bus, the dominant bit is
given the access as it is considered as the high priority. The bus arbitration on a CAN net-
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work follows an AND gate logic as shown in Table 10.1. Note that there is no loss of time
during arbitration—the dominant address just over runs the higher address.

TABLE 10.1 Bus Arbitration on CAN Bus.

NODE 1 NODE 2 BUS LOGIC LEVEL

Dominant Dominant Dominant

Dominant Recessive Dominant

Recessive Dominant Dominant

Recessive Recessive Recessive

When transmitting a frame onto the bus, bus access to a node will be given based upon the
message ID of the frame. As the dominant level is considered high priority, the message ID
with more dominant bits is considered a high priority message. When the bus is idle, the
bus access will be assigned to the node which transmits a message with a higher priority.

10.2.6 Message Broadcasting

The CAN protocol is based on a message broadcasting mechanism in which the frames
transmitted from one node are received by every node on the network. The receiving nodes
will only react to the data that is relevant to them. Messages in the CAN are not acknowl-
edged due to an unnecessary increase of traffic. However, the receiving node checks for the
frame consistency and acknowledges the consistency. If the acknowledge is not received
from any or all the nodes of the network, the transmitting node posts an error message to
the bus. If any of the nodes are unable to decode the transmitted message due to internal
malfunction or any other problem, the entire bus will be notified of the error and the node
re-transmits the frame. If there is an internal malfunction in a node, that particular node re-
ports an error for each frame it receives. Due to this, most bandwidth of the network will be
allocated to error frames as they have higher priority (starts with six consecutive dominant
bits). To overcome this problem the CAN protocol supports a bus off state in a node, in
which the node will be detached from the bus if it reports an error for more than a prede-
fined value. The bus off state of a node is implemented to avoid the breakdown of the net-
work due to a single node.

While broadcasting data frames on the bus, each node on the bus receives every data
frame transmitted on to the bus. As the CAN protocol does not support IDs for the nodes
and the receiver does not know the information of the transmitter of the frame, each data
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frame goes through an acceptance filtering process at the receiving node, which is depend-
ent on the message ID (standard or extended) of the frame.

The process of data requesting in the CAN protocol is carried out by the remote frame.
The RTR bit in a frame decides whether the frame is a remote frame or data frame. When
the RTR bit is set to recessive level the frame will act as a remote frame. When a node is re-
questing a data frame from another node, the message identifier section (ID bits) and the
data length section (DLC bits) in the remote frame should be of the same value as that in
the data frame that is requested, otherwise an error will be reported on the bus.

10.2.7 Data Transfer Synchronization

Each node in the CAN network will have different oscillators running at slightly different
frequencies (0.5 percent crystal accuracy), so to make all the nodes work synchronously
while transferring data the CAN protocol uses the falling edge of the SOF bit (transition
from recessive to dominant bus level).

The bit coding used in the CAN bus is a Non-Return-to-Zero principle in which the bit
level remains constant during the entire bit time, which creates a node synchronization
problem during the transmission of larger bit blocks of same polarity. To overcome this
problem the CAN protocol uses a bit stuffing mechanism.

Bit Stuffing: The CAN protocol allows only five consecutive bits of the same polarity be-
tween the SOF bit and the Data field. If more than five consecutive bits of the same polar-
ity are transmitted on to the bus it will be considered as an error condition. So to transmit
data with more than five consecutive bits of the same polarity the CAN protocol inserts a
complementary bit of opposite polarity at the transmitter end, and at the receiver end the
filtering should be performed to get rid of the stuffed bit. Bit stuffing is applied only in data
and remote frames and it is not applicable after CRC field.

10.2.8 Error Detection and Fault Confinement

The CAN protocol implements a series of error detection mechanisms which contributes to
the high level of reliability and error resistance. It also implements fault confinement
mechanisms for proper function of the network. The error detection mechanisms imple-
mented by the hardware are:

� Bit monitoring—Transmitter compares each bit that is transmitted onto the bus
with the data it is transmitting and reports an error if there is a change in the data
transmitted.
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� Checksum check—Every data and remote frame has a 15-bit CRC field which car-
ries the checksum of the frame and is used to detect errors at the receiver.

� Bit stuffing—The CAN protocol allows only five consecutive bits of the same po-
larity. Bit stuffing is implemented during transmission of more than five consecu-
tive bits of the same polarity. If more than five consecutive bits of the same polar-
ity are transmitted, the bus takes it as an error frame as the first six bits of the error
frame are dominant bits.

� Frame check—Each transmitting and receiving node checks for the consistency of
the frames.

� Acknowledge check—Each receiving node transmits a frame consistency ac-
knowledge to the transmitting node.

Whenever an error occurs on the bus, each node on the network receives the error frame
and the transmitting node serves the error by re-transmitting the frame.

The CAN protocol implements fault confinement techniques to ensure that the
communication on the network never fails. Consider a situation in which a node has an
internal malfunction due to electrical disturbances and transmits an error frame for
every frame it receives. For serving these kind of errors, the CAN protocol is supplied
with two counters, a transmit error counter and a receive error counter. The correspon-
ding counter is incremented each time a failure in the transmission/reception occurs.
The counter is decremented whenever there is a successful transmission/reception. The
counter value does not decrement when the value is zero. Based upon the values of the
two counters the CAN nodes will have three states: Error active, Error passive, and Bus
off state.

� Error active state—Every node after reset starts with this state in which it trans-
mits an error flag (six consecutive dominant bits) whenever it receives an error
frame.

� Error passive state—A node enters into this state when a receive error counter or
transmit error counter value is equal to or greater than 127. When the node is in er-
ror passive state, it transmits an error flag with six consecutive recessive bits.

� Bus off state—A node enters into this state when a transmit error counter value in-
creases more than 255.

To confirm the CAN error state, either poll the CAN status register, or use the CAN er-
ror interrupt. If Error Passive is reached, notify user with, for example, LED. If Bus Off
is reached, stop the application from communicating, and wait until the Error Active
state is reached. When (or if) this is detected, reinitialize CAN from scratch and restart
the CAN application. As long as you do not go to the Bus Off state, you can and should
communicate. This is one of the benefits of using CAN—it is robust with error recover

10.ES_Conrad_RX63N_Advanced_CH10.qxd:RX63N Advanced  3/4/14  11:59 AM  Page 241



242 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

mechanisms. The simplest way to check for Bus Off is to poll once every main program
loop.

Should a node go into the Bus Off state, use the CAN error interrupt or poll with the
Check Error function once every cycle in the main routine check the node state. If the
node has reached Bus Off state a certain number of times within a certain time period,
you may want to send a warning message to the user (i.e., light an LED). If the Bus Off
state is reached, stop communication and continue polling to see when the peripheral
has returned to the normal Error Active state. When the node has recovered, it is impor-
tant to reinitialize the CAN peripheral and the application to make sure the slots are in
a known state.

10.2.9 Different CAN Bus Standards

There are several CAN physical layer and other standards:

� ISO 11898–1: CAN Data Link Layer and Physical signaling.
� ISO 11898–2: CAN High-Speed Medium Access Unit: ISO 11898–2 uses a two-

wire balanced signaling scheme. It is the most used physical layer in car power-
train applications and industrial control networks.

� ISO 11898–3: CAN Low-Speed, Fault-Tolerant, Medium-Dependent Interface.
� ISO 11898–4: CAN Time-Triggered Communication: ISO 11898–4 standard

defines the time-triggered communication on CAN (TTCAN). It is based on the
CAN data link layer protocol providing a system clock for the scheduling of
messages.

� ISO 11898–5: CAN High-Speed Medium Access Unit with Low-Power Mode.
� ISO 11898–6: CAN High-Speed Medium access unit with selective wake-up

functionality.
� ISO 11992–1: CAN fault-tolerant for truck/trailer communication.
� ISO 11783–2: 250 kb/s, Agricultural Standard: ISO 11783–2 uses four unshielded

twisted wires; two for CAN and two for terminating bias circuit (TBC) power and
ground. This bus is used on agricultural tractors. This bus is intended to provide
inter-connectivity with any implementation adhering to the standard.

10.3 BASIC CONCEPTS

The RX63N/RX631 Group implements three channels of the CAN (Controller Area
Network) module that complies with the ISO11898–1 Specifications. The CAN module
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transmits and receives both formats of messages, namely the standard identifier (11 bits)
(identifier is hereafter referred to as ID) and extended ID (29 bits).

Internal peripheral bus 2

CAN-related register

Message box

Acceptance
filter

ID priority
transmission

controller

Timer

Protocol
controller

Baud rate
prescaler

(BRP)

Interrupt
generator

CRXi

CTXi

fCANCLK

fCAN

Peripheral module clock
(PCLK)

CANMCLK
EXTAL

CCLKS
CANi reception complete interrupt

CANi transmission complete interrupt

CANi receive FIFO interrupt

CANi transmit FIFO interrupt

CANi error interrupt

BRP: Bit in the BCR register
CCLKS: Bit in the BCR register
fCANCLK: CAN communication clock
fCAN: CAN system clock

Figure 10.2 Block Diagram of CAN Module (i � 0 to 2) [1], page 1477.

� CRXi and CTXi CAN input and output pins.
� Protocol controller: Handles CAN protocol processing such as bus arbitration, bit

timing at transmission and reception, stuffing, and error handling.
� Message box: Consists of thirty-two mailboxes which can be configured as either

transmit or receive mailboxes. A unique individual ID, a data length code, a data
field (8 bytes), and a time stamp is provided for each mailbox.

� Acceptance filter: Performs filtering of received messages. MKR0 to MKR7 are
used for the filtering process.

� Timer:Used for the time stamp function. The timer value when a message is stored
into the mailbox is written as the time stamp value.

(i � 0 to 2):
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� Interrupt generator: It generates the following interrupts according to the condi-
tion met:

CANi reception complete interrupt
CANi transmission complete interrupt
CANi receive FIFO interrupt
CANi transmit FIFO interrupt
CANi error interrupt

TABLE 10.2 Pin Configuration [1], page 1478.

PIN NAME I/O FUNCTION

CRX0 Input Pin for receiving data

CTX0 Output Pin for transmitting data

CRX1 Input Pin for receiving data

CTX1 Output Pin for transmitting data

CRX2 Input Pin for receiving data

CTX2 Output Pin for transmitting data

10.3.1 Registers

There are thirty-two mailboxes per channel, along with setup registers in the RX63N
processor for configuring the CAN bus. These mailboxes can be operated in either “Nor-
mal mode” or “First in First out (FIFO) mode” by setting up the corresponding registers.

� Normal mailbox mode: In which all thirty-two mailboxes can be configured to
either transmission or reception mailboxes. Beginners should use this mode until
they become more familiar with CAN bus use.

� FIFO mailbox mode: In which twenty-four mailboxes can be configured to either
transmission or reception mailboxes. In the remaining eight mailboxes, the first
four mailboxes can be configured as FIFO transmission and the other four mail-
boxes are configured as FIFO reception mailboxes.

All data to be transmitted are first stored in the transmission mailbox and all data received
is stored in the reception mailbox. All thirty-two mailboxes can be used for either trans-
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mission or reception. A status register is available in the RX63N which records the status
of all the events that occur in a particular node.

Control Register (CTLR)

— — RBOC SLPM TSRC TPM MLM MBM

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0Value after reset:

Control Register (CTLR)

Address(es): CAN0.CTLR 0009 0840h, CAN1.CTLR 0009 1840h, CAN2.CTLR 0009 2840h

BOM[1:0] CANM[1:0] TSPS[1:0] IDFM[1:0]

Figure 10.3 CAN control register [1], page 1481.

For information on various fields and register functions refer to [1], page 1481.

Bit Configuration Register (BCR)

— —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

— — — — — — — — — — CCLKS

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

Bit Configuration Register (BCR)

Address(es): CAN0.BCR 0009 0844h, CAN1.BCR 0009 1844h, CAN2.BCR 0009 2844h

TSEG2[2:0]SJW[1:0]

TSEG1[3:0] BRP[9:0]

Figure 10.4 Bit Configuration Register (BCR) [1], page 1485.

For information on various fields and register functions refer to [1], page 1485.
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For information on various fields and register functions refer to [1], page 1487.

Mask Invalid Register (MKIVLR)

— — —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

x x x x x x x x x x x x x x x xValue after reset:

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x x x x x x x x xValue after reset:

Mask Register k (MKRk) (k � 0 to 7)

EID[17:0]

SID[10:0] EID[17:0]

Figure 10.5 Mask Register [1], page 1487.

x: Undefined

MB31 MB30 MB29 MB28 MB27 MB26 MB25 MB24 MB23 MB22 MB21 MB20 MB19 MB18 MB17 MB16

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

x x x x x x x x x x x x x x x xValue after reset:

MB15 MB14 MB13 MB12 MB11 MB10 MB9 MB8 MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x x x x x x x x xValue after reset:

Mask Invalid Register (MKIVLR)

Address(es): CAN0.MKIVLR 0009 0428h, CAN1.MKIVLR 0009 1428h, CAN2.MKIVLR 0009 2428h

Figure 10.6 Mask invalid register [1], page 1489.

x: Undefined

Each bit in MKIVLR corresponds to a mailbox. Bit (i) in MKIVLR corresponds to mail-
box (i) (MBi). When a bit is set to 1, the relevant acceptance mask register becomes invalid
for the corresponding mailbox. When a mask invalid bit is set to 1, a message is received
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by the corresponding mailbox only if the receive message ID matches the mailbox ID ex-
actly. The MKIVLR should be written to in the CAN reset or CAN halt mode.

Mailbox Register j (MBj) (j � 0 to 31)

Figure 10.7 shows the CAN data frame configuration. The value after reset of the CANi
mailbox is undefined. MBj should be written to only when the related MCTLj
is 00h and the corresponding mailbox is not processing an abort request.

(j � 0 to 31)

SID10 to
SID6

SID5 to
SID0

EID17 to
EID16

EID15 to
EID8

EID7 to
EID0

DLC3 to
DLC1 DATA0 DATA1 . . . DATA7

Figure 10.7 CAN data frame configuration [1], page 1490.

The previous value of each mailbox is retained unless a new message is received.

IDE RTR —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

x x x x x x x x x x x x x x x xValue after reset:

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x x x x x x x x xValue after reset:

Address(es): CAN0.MB0 to CAN0.MB63 0009 0200h to 0009 03FFh, CAN1.MB0 to CAN1.MB63 0009 1200h to 0009 13FFh,
CAN2.MB0 to CAN2.MB63 0009 2200h to 0009 23FFh

EID[17:0]

SID[10:0] EID[17:0]

Figure 10.8 SID and EID bit setting of MBj [1], page 1491.

x: Undefined

— — — — — — — — — — — —

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x x x x x x x x xValue after reset:

DLC[3:0]

Figure 10.9 DLC bit setting of MBj [1], page 1490.

x: Undefined

For information on various fields and register functions refer to [1], page 1490.
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Mailbox Interrupt Enable Register (MIER)

MB31 MB30 MB29 MB28 MB27 MB26 MB25 MB24 MB23 MB22 MB21 MB20 MB19 MB18 MB17 MB16

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

x x x x x x x x x x x x x x x xValue after reset:

MB15 MB14 MB13 MB12 MB11 MB10 MB9 MB8 MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x x x x x x x x xValue after reset:

Mailbox Interrupt Enable Register (MIER)

Address(es): CAN0.MIER 0009 042Ch, CAN1.MIER 0009 142Ch, CAN2.MIER 0009 242Ch

Figure 10.10 Mailbox interrupt enable register (MIER) [1], page 1491.

x: Undefined

Each bit corresponds to interrupt enabling or disabling of that mailbox (MB[0]-MB[31]).

Message Control Register j (MCTLj) (j 0 to 31)�

Message Control Register j (MCTLj) (j = 0 to 31)

Address(es): CAN0.MCTL0 to CAN0.MCTL31 0009 0820h to 0009 083Fh,
CAN1.MCTL0 to CAN1.MCTL31 0009 1820h to 0009 183Fh,
CAN2.MCTL0 to CAN2.MCTL31 0009 2820h to 0009 283Fh

� Transmit mode (when the TRMREQ bit is 1 and the RECREQ bit is 0)

� Receive mode (when the TRMREQ bit is 0 and the RECREQ bit is 1)

TRMRE
Q

RECRE
Q — ONESH

OT — TRMAB
T

TRMAC
TIVE

SENTD
ATA

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0Value after reset:

TRMRE
Q

RECRE
Q — ONESH

OT — MSGL
OST

INVALD
ATA

NEWD
ATA

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0Value after reset:

Figure 10.11 MCTL bit settings for transmit/receive mode [1], page 1495.
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For information on various fields and register functions refer to [1], page 1495.

Status Register (STR)

— RECST TRMST BOST EPST SLPST HLTST RSTST EST TABST FMLST NMLST TFST RFST SDST NDST

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

Status Register (STR)

Address(es): CAN0.STR 0009 0842h, CAN1.STR 0009 1842h, CAN2.STR 0009 2842h

Figure 10.12 Status register [1], page 1504.

For information on various fields and register functions refer to [1], page 1504.

10.3.2 Reception and Transmission

When a mailbox is configured as a receive mailbox or a one-shot receive mailbox, note the
following:

� Before a mailbox is configured as a receive mailbox or a one-shot receive mailbox,
set MCTLj to 00h.

� A received message is stored into the first mailbox that matches the condition ac-
cording to the result of receive-mode setting and acceptance filtering. Upon decid-
ing the mailbox to store the received message, the mailbox with the smaller num-
ber has higher priority.

� In CAN operation mode, when the CAN module transmits a message whose ID
matches with the ID/mask set of a mailbox configured to receive messages, the
CAN module never receives the transmitted data. In self-test mode, however, the
CAN module will receive its transmitted data. In this case, the CAN module re-
turns ACK.

When configuring a mailbox as a transmit mailbox or a one-shot transmit mailbox, note the
following:

� Before a mailbox is configured as a transmit mailbox or a one-shot transmit mail-
box, ensure that MCTLj is 00h and that there is no pending abort process.
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Table 10.3 lists how to make the CAN communication mode settings.

Reception

This example shows the operation of overwriting the first message when the CAN module
receives two consecutive CAN messages which match the receiving conditions of MCTLj

. Figure 10.13 shows an operation example of data frame reception in over-
write mode.

1. When an SOF is detected on the CAN bus, the RECST bit in STR is set to 1 (re-
ception in progress) if the CAN module has no message ready to start transmission.

2. The acceptance filter processing starts at the beginning of the CRC field to select
the receive mailbox.

3. After a message has been received, the NEWDATA bit in MCTLj for the receive
mailbox is set to 1 (a new message is being stored or has been stored to the mail-
box). The INVALDATA bit in MCTLj is set to 1 (a message is being updated) at
the same time, and then the INVALDATA bit is set to 0 (message valid) again after
the complete message is transferred to the mailbox.

(j � 0 to 31)

TABLE 10.3 Settings for CAN Receive and Transmit Modes [1], page 1528.

MCTLJ.
TRMREQ

MCTLJ.
RECREQ

MCTLJ.
ONESHOT COMMUNICATION MODE OF MAILBOX

0 0 0 Mailbox disabled or transmission being aborted.

0 0 1 Can be configured only when transmission or
reception from a mailbox programmed in one-shot
mode is aborted.

0 1 0 Configured as a receive mailbox for a data frame or a
remote frame.

0 1 1 Configured as a one-shot receive mailbox for a data
frame or a remote frame.

1 0 0 Configured as a transmit mailbox for a data frame or
a remote frame.

1 0 1 Configured as a one-shot transmit mailbox for a data
frame or a remote frame.

1 1 0 Do not set.

1 1 1 Do not set.

j � 0 to 31
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4. When the interrupt enable bit in MIER for the receive mailbox is 1 (interrupt en-
abled), the CANi reception complete interrupt request is generated. This inter-
rupt (CANi reception complete interrupt) is generated when the INVALDATA
bit is set to 0.

5. After reading the message from the mailbox, the NEWDATA bit needs to be set to
0 by a program.

6. In overwrite mode, if the next CAN message has been received into a mailbox whose
NEWDATA bit is still set to 1, the MSGLOST bit in MCTLj is set to 1 (message has
been overwritten). The new received message is transferred into the mailbox. The
CANi reception complete interrupt request is generated the same as in step 4.

Figure 10.14 shows the operation example of data frame reception in overrun mode. This
example shows the operation of overrunning the second message when the CAN module
receives two consecutive CAN messages which match the receiving conditions of MCTLj

.
Steps 1 to 5 are the same as in overwrite mode.

7. In overrun mode, if the next CAN message has been received before the NEW-
DATA bit in MCTLj is set to 0, the MSGLOST bit in MCTLj is set to 1 (message
has been overrun). The new received message is discarded and a CANi error inter-
rupt request is generated if the corresponding interrupt enable bit in EIER is set
to 1 (interrupt enabled).

Transmission

Figure 10.15 shows an operation example of data frame transmission.

1. When a TRMREQ bit in MCTLj is set to 1 (transmit mailbox) in the
bus-idle state, the mailbox scan processing starts to decide the highest-priority
mailbox for transmission. Once the transmit mailbox is decided, the TRMACTIVE
bit in MCTLj is set to 1 (from the acceptance of a transmission request to the com-
pletion of transmission, or error/arbitration-lost), the TRMST bit in STR is set to
1 (transmission in progress), and the CAN module starts transmission.

2. If other TRMREQ bits are set, the transmission scan processing starts with the
CRC delimiter for the next transmission.

3. If transmission is completed without losing arbitration, the SENTDATA bit in MCTLj
is set to 1 (transmission completed) and the TRMACTIVE bit is set to 0 (transmission
is pending or transmission is not requested). If the interrupt enable bit in MIER is 1
(interrupt enabled), the CANi transmission complete interrupt request is generated.

4. When requesting the next transmission from the same mailbox, set bits SENTDATA
and TRMREQ to 0, then set the TRMREQ bit to 1 after checking that bits
SENTDATA and TRMREQ have been set to 0.

(j � 0 to 31)

(j � 0 to 31)

252 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER
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10.3.3 Example 1: Initialization of CAN Bus

The following code shows how to initialize the CAN communications:

1. int CANInit() {
2. int i,j;
3. SYSTEM.PRCR.WORD = 0xA502;
4. SYSTEM.MSTPCRB.BIT.MSTPB0 = 0;
5. SYSTEM.PRCR.WORD = 0xA500;
6. CAN0.CTLR.BIT.SLPM = 0;
7. CAN0.CTLR.BIT.CANM = 1;
8. CAN0.CTLR.BIT.BOM = 0;
9. CAN0.CTLR.BIT.MBM = 0;

10. CAN0.CTLR.BIT.IDFM = 0;
11. CAN0.CTLR.BIT.MLM = 1;
12. CAN0.CTLR.BIT.TPM = 0;
13. CAN0.CTLR.BIT.TSPS = 3;
14.
15. //Setting up Baud Rate
16. CAN0.BCR.BIT.BRP = 19; //Baud Rate to 100kbps
17. //fCANCLK = 48M/20 = 2.4M
18. CAN0.BCR.BIT.TSEG1 = 14; //Tq = TSEG1 + TSEG2 + SJW =

fCANCLK/Baud Rate
19. CAN0.BCR.BIT.TSEG2 = 7; //TSEG2 < TSEG1
20. CAN0.BCR.BIT.SJW = 1;
21. CAN0.MKIVLR.LONG = 0xFFFFFFFF;
22. CAN0.CTLR.BIT.CANM = 2
23. //Configuring Mailboxes in CAN halt mode
24. for (i = 0; i < 32; i++) {
25. CAN0.MB[i].ID.LONG = 0x00;
26. CAN0.MB[i].DLC = 0x00;
27. for (j = 0; j < 8; j++)
28. CAN0.MB[i].DATA[j] = 0x00;
29. for (j = 0; j < 2; j++)
30. CAN0.MB[i].TS = 0x00;
31. }
32. CAN0.CTLR.BIT.CANM =0;
33. CAN0.CTLR.BIT.TSRC = 1;
34. if (CAN0.STR.BIT.EST)
35. return 0;
36. if (CAN0.EIFR.BYTE)
37. return 0;
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38. CAN0.EIFR.BYTE = 0x00;
39. if (CAN0.ECSR.BYTE)
40. return 0;
41. CAN0.ECSR.BYTE = 0x00;
42. //Setting Up PORTS
43. SYSTEM.PRCR.WORD = 0xA50B;
44. MPC.PWPR.BYTE = 0x00;
45. MPC.PWPR.BYTE = 0x40;
46. PORT3.PMR.BIT.B3 = 0;
47. PORT3.PDR.BIT.B3 = 0;
48. PORT3.PMR.BIT.B2 = 0;
49. PORT3.PDR.BIT.B2 = 0;
50. MPC.P32PFS.BYTE = 0x10;
51. MPC.P33PFS.BYTE = 0x10;
52. PORT3.PMR.BIT.B3 = 1;
53. PORT3.PMR.BIT.B2 = 1;
54. PORT3.PDR.BIT.B3 = 0;
55. PORT3.PDR.BIT.B2 = 1;
56. MPC.PWPR.BYTE = 0x80;
57. //End of Setting Up Ports
58. CAN0.CTLR.BIT.CANM = 2;
59. CAN0.MIER.LONG = 0x00;
60. //Set the Rx Mailbox.
61. CAN0.MCTL[rxmbx].BYTE = 0;
62. CAN0.MB[rxmbx].ID.BIT.SID = 0x001;
63. CAN0.MB[rxmbx].ID.BIT.RTR = 0;
64. CAN0.MB[rxmbx].ID.BIT.IDE = 0;
65. CAN0.MCTL[rxmbx].BYTE |= 0x40;
66. CAN0.MKR[1].BIT.SID = 0x7FF;
67. CAN0.MKIVLR.LONG & = ~(0x0010);
68. CAN0.CTLR.BIT.CANM = 0;
69. //Set the TX Mailbox*/
70. txframe.id = 1;
71. txframe.dlc = 8;
72. for(i = 0; i < 8; i++)
73. txframe.data[i] = i;
74. CAN0.MCTL[txmbx].BYTE = 0;
75. CAN0.MB[txmbx].ID.BIT.SID = 1;
76. CAN0.MB[txmbx].ID.BIT.IDE = 0;
77. CAN0.MB[txmbx].DLC = 0x8;
78. CAN0.MB[txmbx].ID.BIT.RTR = 0;
79. for (i = 0; i < 8; i++)
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80. CAN0.MB[txmbx].DATA[i] = txframe.data[i];
81. CAN0.MCTL[mbox_nr].BIT.TX.TRMREQ = 1;
82. return 1;
83. }

Line 3 shows how the user disables the write protect option in the protect register. Line 4
enables the CAN by setting the MSTPB0 to 0 in the Module Stop Control Register B
(MSTPRB). Line 6 to line 13 is used to set and reset the bits of the Control Register
(CTLR); line 6 Exits the CAN sleep mode by setting SLPM bit to 0, line 7 selects the CAN
reset mode, line 8 selects the Reset mode. Line 8 does the function of selecting Normal
mode in the Bus Off Recovery mode, line 9 selects the normal mailbox mode. Line 10 se-
lects the Standard ID for CAN; line 11 sets the MLM bit to 1 to select Overrun mode. In
line 12 the TPM bit is set to 0, the ID priority transmit mode is selected and the transmis-
sion priority complies with the CAN bus arbitration rule. Line 13 selects the prescaler for
the timestamp, and updates every eight times.

Lines 16 through 20 are used to set the Bit Configuration Register (BCR). Line 16 sets
the Baud Rate to 100 Kbps; line 18 and line 19 select the bit timing, the ranges are

(time quantum) to 16 Tq, to 8 Tq and to 4 Tq
(For a more detailed explanation refer 10.4.5). Line 20 selects the Resynchronization Jump
Width Control bit to 1 to select 4 Tq of bit timing range. Line 21 invalidates the mask by
setting all the bits of the Mask Invalid Register to 1, line 22 selects the CAN halt mode by
setting the CTLR.CANM[1:0] bits to 2.

Line 24 runs a for loop to select all the thirty-two mailboxes IDs and Data Length to 0
bytes and line 30 sets the DATA bit of each mailbox to 0. Line 32 selects the CAN Operate
mode. Line 33 resets the time stamp counter (TSRC) in the Control Register. Line 34
checks for any CAN errors and returns 0 if the Error Status Flag (EST) is set. Line 36
checks for all the eight sources of the interrupts of the EIFR; if this is true then it detects an
error and returns 0. Line 38 sets all the bits of the EIFR register to 0, line 39 checks if any
bit is set in the ECSR register and returns 0 indicating it failed. Line 41 sets the PRCR reg-
ister to write protect off mode.

Lines 44 and 45 set the Write Protect Register, lines 46 through 49 set the CRX0 as the
output and CTX0 as the input for the transmission and the reception. Lines 50 and 51 set
the Pin Function Control Registers for CTX0 and CRX0 in the registers in the multifunc-
tion pin controller (MPC). Lines 52 through 55 are used to select the input and output for
the CAN bus (for the CRX0 and CTX0). Line 58 sets the CAN halt mode for the function.
Line 59 is used to disable the interrupts on the mailboxes since we are using polling.

Line 61 clears the message mailbox control register; line 62 sets the STD ID number
for the mailboxes. The RTR bit in MBj selects a data frame or a remote frame, line 63 se-
lects the data frame. Line 64 selects the standard ID. Line 65 configures the Message Mail-
box Control Register for the reception. Line 67 is used to set the Mask Invalidate Register
to such that the acceptance mask register is valid only for the mailboxes 16 to 23. Line 68
sets the CAN in the Operate CAN mode.

SJW � 1 TqTSEG2 � 2 TqTSEG1 � 4 Tq
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Lines 70 and 71 set the TX ID and the number of data bits in the Transmission frame.
Lines 72 and 73 are used to initialize the data that has to be sent. Line 74 resets the Mes-
sage Mailbox Control for CAN0. Line 75 sets the Standard ID to 1 to compare the received
messages with the corresponding mailbox ID. Line 76 disables the Extended ID messages’
transmission; line 77 selects the number of data bytes that needs to be transmitted (8). Line
78 disables the Remote frame transmission. Line 80 initializes the mailbox’s data with the
frame transmission data. Line 81 enables transmission.

10.3.4 Example 2: Reception and Transmission

Reception

1. int rxpoll(int mailboxno) {
2. int polling = 0x80;
3. while ((CAN0.MCTL[mailboxno].BIT.RX.INVALDATA) && polling)
4. polling—;
5. if (polling == 0)
6. //Still updating mailbox. Come back later.
7. return 0;
8. else {
9. if (CAN0.MCTL[mailboxno].BIT.RX.NEWDATA == 1)

10. return 1;
11. }
12. }
13. void rxread(int mailboxno ,int sid) {
14. int i;
15. rxframe.id = CAN0.MB[mailboxno].ID.BIT.SID;
16. rxframe.dlc = CAN0.MB[mailboxno].DLC;
17. for(i = 0; i < rxframe.dlc; i++)
18. rxframe.data[i] = CAN0.MB[mailboxno].DATA[i];
19. if (CAN0.MCTL[mailboxno].BIT.RX.MSGLOST)
20. CAN0.MCTL[mailboxno].BIT.RX.MSGLOST = 0;
21. CAN0.MCTL[mailboxno].BIT.RX.NEWDATA = 0;
22. }

Explanation

In the function rxpoll, line 3 checks if the message has been received by checking the invalid
bit in message control register j (MCTLj) for a particular mailbox. The INVALDATA bit in
MCTLj is set to 1 (message is being updated) at the same time, and then the INVALDATA bit
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is set to 0 (message valid) again after the complete message is transferred to the mailbox. Af-
ter the reception, line 9 checks the availability of data in the mailbox and returns 1, indicating
that the message has been received.

In the function rxread, line 13 defines a function to read received data for a particular
mailbox number and a standard ID. Line 15 copies the standard id number of reception and
line 16 copies the number of bytes (indicating by the DLC) of data into a variable. Line 18
copies the data for processing from the DATA field in a particular mailbox. Line 19 checks
if the message has been lost by checking the MSGLOST bit in the MCTLj register. Line 20
resets the MSGLOST bit for notification and line 21 resets the NEWDATA bit to 0 to en-
able detection of later receptions.

Transmission

1. void CANTX(CANtxrx *txf,int txbx) {
2. int i;
3. CAN0.MCTL[mbox_nr].BIT.TX.TRMREQ = 0;
4. CAN0.MCTL[mbox_nr].BIT.TX.SENTDATA = 0;
5. for(i = 0; i < 8; i++)
6. CAN0.MB[txbx].DATA[i] = txf -> data[i];
7. CAN0.MCTL[mbox_nr].BIT.TX.TRMREQ = 1;
8. }
9. int check_sent(int mbxnr) {

10. if (CAN0.MCTL[mbxnr].BIT.TX.SENTDATA == 0)
11. return 1;
12. else {
13. CAN0.MCTL[mbox_nr].BIT.TX.TRMREQ = 0;
14. CAN0.MCTL[mbox_nr].BIT.TX.SENTDATA = 0;
15. return 0;
16. }
17. }

Explanation

In the function CANTX, line 3 disables transmission for a particular mailbox and line 4 re-
sets the SENTDATA bit in the MCTLj register to 0. Line 5 runs a loop eight times to ini-
tialize the data into the registers for transmission. Line 6 sets the data for transmission into
DATA registers of the mailboxes. Line 7 enables transmission.

In the function check_sent, line 10 checks for the outcome of completion of the
transmission by checking the SENTDATA bit in the MCTLj register and returns 1 if the
transmission is not complete. Line 13 and line 14 sets SENTDATA and TRMREQ to 0 for
the availability of the next transmission.
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10.3.5 Main Function

The following structure imitates the frame received from the CAN bus. It is used to store
Data, ID, and DLC.

1. typedef struct {
2. uint32_t id;
3. uint8_t dlc;
4. uint8_t data[8];
5. } CANtxrx;

We will use this structure in the main program:

1. #include <stdint.h>
2. #include <stdbool.h>
3. #include <stdio.h>
4. #include <machine.h>
5. #include "platform.h"
6. typedef struct {
7. uint32_t id;
8. uint8_t dlc;
9. uint8_t data[8];

10. } CANtxrx;
11. int rxint = 0, txint = 0;
12. //Receive Mailbox number:4 Transmit Mailbox number:1
13. #define txmbx 1
14. #define rxmbx 4
15. //function Prototypes
16. void rxread(int mailboxno ,int sid);
17. int caninit();
18. void CANTX(CANtxrx *txf,int txbx);
19. void checkbusy(int txbx);
20. int check_sent(int mbxnr);
21. int rxpoll(int mailboxno);
22. void rxread(int mailboxno ,int sid);
23. CANtxrx rxframe,txframe;
24.
25. void main() {
26. int i;
27. char l0[] = " ", l1[] = " ", l2[] = " ", l3[] = " ",

l4[] = " ", l5[] = " ",
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28. l6[] = " ", l7[] = " ", super[] = " ";
29. lcd_initialize();
30. lcd_clear();
31. interrupts();
32. i = caninit();
33. if(i == 0)
34. while(1);
35. CANTX( &txframe,txmbx);
36. for(i = 0x100; i > 0; i—)
37. nop();
38. //LCDDISPLAY("Transmission Initiated.");
39. //while(check_sent(txmbx));
40. while(1) {
41. if(txint == 1) {
42. txint = 0;
43. sprintf(l0, "%2X", txframe.data[0]);
44. sprintf(l1, "%2X", txframe.data[1]);
45. sprintf(l2, "%2X", txframe.data[2]);
46. sprintf(l3, "%2X", txframe.data[3]);
47. sprintf(l4, "%2X", txframe.data[4]);
48. sprintf(l5, "%2X", txframe.data[5]);
49. sprintf(l6, "%2X", txframe.data[6]);
50. sprintf(l7, "%2X", txframe.data[7]);
51. sprintf(super, "%2s%2s%2s%2s", l0, l1, l2, l3);
52. lcd_display(LCD_LINE2, "TxData");
53. lcd_display(LCD_LINE3, super);
54. sprintf(super, "%2s%2s%2s%2s", l4, l5, l6, l7);
55. lcd_display(LCD_LINE4, super);
56. }
57. if(rxint == 1) {
58. rxread(rxmbx ,1);
59. if(rxframe.id == 1) { //lcd
60. sprintf(l0, "%2X", rxframe.data[0]);
61. sprintf(l1, "%2X", rxframe.data[1]);
62. sprintf(l2, "%2X", rxframe.data[2]);
63. sprintf(l3, "%2X", rxframe.data[3]);
64. sprintf(l4, "%2X", rxframe.data[4]);
65. sprintf(l5, "%2X", rxframe.data[5]);
66. sprintf(l6, "%2X", rxframe.data[6]);
67. sprintf(l7, "%2X", rxframe.data[7]);
68. sprintf(super, "%2s%2s%2s%2s", l0, l1, l2, l3);
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69. lcd_display(LCD_LINE5, "RxData");
70. lcd_display(LCD_LINE6, super);
71. sprintf(super, "%2s%2s%2s%2s", l4, l5, l6, l7);
72. lcd_display(LCD_LINE7, super);
73. txframe.id = rxframe.id;
74. txframe.dlc = rxframe.dlc;
75. for(i = 0; i < rxframe.dlc; i++)
76. txframe.data[i] = rxframe.data[i] + 2;
77. CANTX( &txframe,txmbx);
78. }
79. rxint = 0;
80. }
81. }
82. }

Lines 13 and 14 define the transmit mailbox (1) and receive mailbox (4). Line 23 has
two structure elements for transmission and reception. Lines 27 and 28 have the LCD
manipulation declarations. Line 35 sends the contents of the CAN tx buffer through the
CAN bus. When transmission is over the txint variable becomes 1 and the string manip-
ulation procedure begins for LCD from line 41 to 56. When the reception is done, the
rxint variable becomes 1 and the string manipulation begins for the LCD from 59 to 72.
From line 73 to 77 the code does the work of adding 2 to the received data and trans-
mitting it again.

10.4 ADVANCED CONCEPTS

The CAN module has the following four operating modes:

� CAN reset mode
� CAN halt mode
� CAN operation mode
� CAN sleep mode

Figure 10.16 shows the transition between CAN operating modes.

10.4.1 CAN Reset Mode

CAN reset mode is provided for the CAN communication configuration. When the
CTLR.CANM[1:0] bits are set to 01b or 11b, the CAN module enters CAN reset mode.
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CPU reset

CANM[1:0] 5 01b or 11b
when SLPM 5 0

SLPM 5 1

SLPM 5 1

CANM[1:0], SLPM, BOM[1:0], RBOC: Bits in the CTLR register

CANM[1:0] 5 00b

When BOM[1:0] 5 00b or 11b
(no halt request) and 11
consecutive recessive bits are
detected 128 times or RBOC 5 1

When
CANM[1:0] 5 10b,
SLPM 5 0

CANM[1:0]
5 10b

CANM[1:0]
5 01b, 11b

CANM[1:0]
5 00b

CANM[1:0]
5 01b, 11b

TEC . 255

CANM[1:0]
5 01b, 11b

CANM[1:0] 5 10b

CANM[1:0] 5 10b*1

Note 1. The transition timing from the bus-off state to CAN halt mode depends on the setting of the CTLR.BOM[1:0] bits.
When the CTLR.BOM[1:0] bits are 01b, the state transition timing is immediately after entering the bus-off state.
When the CTLR.BOM[1:0] bits are 10b, the state transition timing is at the end of the bus-off state.
When the CTLR.BOM[1:0] bits are 11b, the state transition timing is at the setting of the CTLR.CANM[1:0] bits to 10b
(CAN halt mode).

Note 2. Change the CTLR.SLPM bit to set or cancel CAN sleep mode.

CAN reset mode

CAN halt mode

CAN operation modeCAN sleep mode*2

CAN operation mode
(bus-off state)

Figure 10.16 Transition between CAN operating modes [1], page 1518.

Then, the STR.RSTST bit is set to 1. Do not change the CTLR.CANM[1:0] bits until the
RSTST bit is set to 1. Set the BCR before exiting the CAN reset mode to any other modes.

10.4.2 CAN Halt Mode

CAN halt mode is used for mailbox configuration and test mode setting. When the
CTLR.CANM[1:0] bits are set to 10b, CAN halt mode is selected. Then the STR.HLTST
bit is set to 1. Do not change the CTLR.CANM[1:0] bits until the HLTST bit is set to 1. All
registers except for bits RSTST, HLTST, and SLPST in STR remain unchanged when the
CAN enters CAN halt mode.

Do not change the CTLR (except for bits CANM[1:0] and SLPM) and EIER in the
CAN halt mode. The BCR can be changed in the CAN halt mode only when listen-only
mode is selected for automatic baud rate detection.
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10.4.3 CAN Sleep Mode

CAN sleep mode is used for reducing current consumption by stopping the clock supply to
the CAN module. After a reset from an MCU pin or a software reset, the CAN module
starts from the CAN sleep mode.

When the SLPM bit in CTLR is set to 1, the CAN module enters CAN sleep mode.
Then, the SLPST bit in STR is set to 1. Do not change the value of the SLPM bit until the
SLPST bit is set to 1. The other registers remain unchanged when the CAN module enters
CAN sleep mode.

Write to the SLPM bit in CAN reset mode and CAN halt mode. Do not change any
registers (except for the SLPM bit) during the CAN sleep mode. Read operation is still al-
lowed. When the SLPM bit is set to 0, the CAN module is released from the CAN sleep
mode. When the CAN module exits the CAN sleep mode, the other registers remain un-
changed.

10.4.4 CAN Operation Mode

The CAN operation mode is used for CAN communication. When the CANM[1:0] bits
in CTLR are set to 00b, the CAN module enters the CAN operation mode. Then bits
RSTST and HLTST in STR are set to 0. Do not change the value of the CANM[1:0] bits
until bits RSTST and HLTST are set to 0. If eleven consecutive recessive bits are de-
tected after entering the CAN operation mode, the CAN module is in the following
states:

� The CAN module becomes an active node on the network, thus enabling transmis-
sion and reception of CAN messages.

� Error monitoring of the CAN bus, such as receive and transmit error counters, is
performed.

During the CAN operation mode, the CAN module may be in one of the following three
sub-modes, depending on the status of the CAN bus.

� Idle mode: Transmission or reception is not being performed.
� Receive mode: A CAN message sent by another node is being received.
� Transmit mode: A CAN message is being transmitted. The CAN module receives

a message transmitted by the local node simultaneously when self-test mode 0
(TSTM[1:0] bits in or self-test mode 1 (TSTM[1:0] is
selected.

Figure 10.17 shows the sub-modes of CAN operation mode.

bits � 11b)TCR � 10b)
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10.4.5 CAN Communication Speed Setting

The following description explains about the CAN communication speed setting.

CAN Clock Setting

The CAN module has a CAN clock selector. The CAN clock can be set by the CCLKS bit
and the BRP[9:0] bits in BCR. Figure 10.18 shows a block diagram of the CAN clock
generator.

Transmission
starts

Transmission
completed

Reception
completed

SOF
detected

Lost in arbitration

Idle mode
STR.TRMST 5 0
STR.RECST 5 0

Transmit mode
STR.TRMST 5 1
STR.RECST 5 0

Receive mode
STR.TRMST 5 0
STR.RECST 5 1

Figure 10.17 Sub-modes of CAN operation mode [1], page 1521.

Peripheral module clock
(PCLK)

PLL
frequency

synthesizer
Frequency

divider
Baud rate
prescaler
1/(P 1 1)

CCLKS
fCAN fCANCLK

P 5 0 to 1023

EXTAL

CCLKS: Bit in the BCR register
fCAN: CAN system clock
P: Value selected by BRP[9:0] bits in BCR (P 5 0 to 1023)
fCANCLK: CAN communication clock (fCANCLK 5 fCAN/(P 1 1))

0
1

Figure 10.18 CAN clock generator [1], page 1523.
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Bit Timing Setting

The bit time consists of the following three segments. Figure 10.19 shows the bit timing.

SS TSEG1 TSEG2

Bit time

Sample point

The range of each segment:

Setting of TSEG1 and TSEG2:

Bit time 5 8 Tq to 25 Tq
SS 5 1 Tq
TSEG1 5 4 Tq to 16 Tq
TSEG2 5 2 Tq to 8 Tq
SJW 5 1 Tq to 4 Tq
TSEG1 . TSEG2 $ SJW

Figure 10.19 Bit timing [1], page 1523.

Bit Rate

The bit rate depends on the division value of fCAN (CAN clock), the division value of the
baud rate prescaler, and the number of Tq for 1 bit of time.

Note 1: Baud rate prescaler division (P: 0 to 1023).
P: Setting of the BRP[9:0] bits in BCR.

10.4.6 Acceptance Filtering and Masking Functions

The acceptance filtering function and the masking function allows the user to select and re-
ceive messages with a specified range of multiple IDs for mailboxes. Registers MKR0 to
MKR7 can perform masking of the standard ID and the extended ID of 29 bits.

� MKR0 corresponds to mailboxes [0] to [3]
� MKR1 corresponds to mailboxes [4] to [7]

value � P � 1

�
ƒCANCLK

Number of Tq of 1 bit time

Bit rate [bps] �
ƒCAN

Baud rate prescaler division value*1 X number of Tq of 1 bit time
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� MKR2 corresponds to mailboxes [8] to [11]
� MKR3 corresponds to mailboxes [12] to [15]
� MKR4 corresponds to mailboxes [16] to [19]
� MKR5 corresponds to mailboxes [20] to [23]
� MKR6 corresponds to mailboxes [24] to [27] in normal mailbox mode and the re-

ceive FIFO mailboxes [28] to [31] in FIFO mailbox mode.
� MKR7 corresponds to mailboxes [28] to [31] in normal mailbox mode and the re-

ceive FIFO mailboxes [28] to [31] in FIFO mailbox mode.

TABLE 10.4 Bit Rate Examples [1], page 1521.

fCAN 50 MHz 48 MHz 40 MHz 32 MHz

BIT
RATE

NUMBER OF
Tq P � 1

NUMBER OF
Tq P � 1

NUMBER OF
Tq P � 1

NUMBER OF
Tq P � 1

1 Mbps 10Tq 5 8Tq 6 10Tq 4 8Tq 4

25Tq 2 12Tq 4 20Tq 2 16Tq 2

16Tq 3

500 kbps 10Tq 10 8Tq 12 10Tq 8 8Tq 8

25Tq 4 12Tq 8 20Tq 4 16Tq 4

16Tq 6

250 kbps 10Tq 20 8Tq 24 10Tq 16 8Tq 16

25Tq 8 12Tq 16 20Tq 8 16Tq 8

16Tq 12

125 kbps 10Tq 40 8Tq 48 10Tq 32 8Tq 32

25Tq 16 12Tq 32 20Tq 16 16Tq 16

16Tq 24

83.3 kbps 10Tq 60 8Tq 72 8Tq 60 8Tq 48

25Tq 24 12Tq 48 10Tq 48 16Tq 24

16Tq 36 16Tq 30

20Tq 24

33.3 kbps 10Tq 150 8Tq 180 8Tq 150 8Tq 120

25Tq 60 12Tq 120 10Tq 120 10Tq 96

16Tq 90 20Tq 60 16Tq 60

20Tq 48
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The MKIVLR disables acceptance filtering individually for each mailbox. The IDE bit in
MBj is valid when the IDFM[1:0] bits in CTLR are 10b (mixed ID mode). The RTR bit in
MBj selects a data frame or a remote frame. In FIFO mailbox mode, normal mailboxes
(mailboxes [0] to [23]) use the single corresponding register among MKR0 to MKR5 for
acceptance filtering. Receive FIFO mailboxes (mailboxes [28] to [31]) use two registers
MKR6 and MKR7 for acceptance filtering. Also, the receive FIFO uses two registers,
FIDCR0 and FIDCR1, for ID comparison. Bits EID[17:0], SID[10:0], RTR, and IDE in
MB28 to MB31 for the receive FIFO are disabled.

Since acceptance filtering depends on the result of two logic AND operations, two
ranges of IDs can be received into the receive FIFO. MKIVLR is disabled for the
receive FIFO. If both the standard ID and extended ID are set in the IDE bits in
FIDCR0 and FIDCR1 individually, both ID formats are received. If both the data frame
and remote frame are set in the RTR bits in FIDCR0 and FIDCR1 individually, both
data and remote frames are received. When combination with two ranges of IDs is not
necessary, set the same mask value and the same ID into both the FIFO ID and the mask
register.

10.4.7 CAN Interrupts

The CAN module provides the following CAN interrupts for each channel. Table 10.5 lists
CAN interrupts.

� CANi reception complete interrupt (mailboxes 0 to 31) [RXMi]
� CANi transmission complete interrupt (mailboxes 0 to 31) [TXMi]
� CANi receive FIFO interrupt [RXFi]
� CANi transmit FIFO interrupt [TXFi]
� CANi error interrupt [ERSi]

There are eight types of interrupt sources for the CANi error interrupts. These sources can
be determined by checking EIFR.

� Bus error
� Error-warning
� Error-passive
� Bus-off entry
� Bus-off recovery
� Receive overrun
� Overload frame transmission
� Bus lock
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TABLE 10.5 CAN Interrupts [1], page 1532.

MODULE
INTERRUPT
SYMBOL INTERRUPT SOURCE SOURCE FLAG

CANi ERSi Bus lock detected EIFR.BLIF

Overload frame transmission detected EIFR.OLIF

Overrun detected EIFR.ORIF

Bus-off recovery detected EIFR.BORIF

Bus-off entry detected EIFR.BOEIF

Error-passive detected EIFR.EPIF

Error-warning detected EIFR.EWIF

Bus error detected EIFR.BEIF

RXFi Receive FIFO message received (MIER[29] � 0) RFCR.RFUST[2:0]

Receive FIFO warning (MIER[29] � 1)

TXFi Transmit FIFO message transmission
completed (MIER[25] � 0)

TFCR.TFUST[2:0]

FIFO last message transmission
completed (MIER[25] � 1)

RXMi Mailbox [0] to [31] message received MCTL0.NEWDATA to
MCTL31.NEWDATA

TXMi Mailbox [0] to [31] message transmission
completed

MCTL0.SENTDATA to
MCTL31.SENTDATA

10.5 COMPLEX EXAMPLES

Using Interrupts

1. #pragma interrupt tx_ISR(vect = VECT_CAN0_TXM0, enable)
2. void tx_ISR(void) {
3. txint = 1;
4. if(check_sent(txmbx) == 0);
5. txint = 1;
6. }
7. #pragma interrupt rx_ISR(vect = VECT_CAN0_RXM0, enable)
8. void rx_ISR(void) {
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9. if(rxpoll(4) == 1))
10. rxint = 1;
11. }
12. void interrupts() {
13. IEN(CAN0, TXM0) = 1;
14. IPR(CAN0, TXM0) = 2;
15. //Configure CAN Rx interrupt.
16. IEN(CAN0, RXM0) = 1;
17. IPR(CAN0, RXM0) = 2;
18. CAN0.MIER.LONG = 0x00000000;
19. ICU.IPR[18].BIT.IPR = 2;
20. }

10.6 CAN BUS APPLICATION PROGRAMMING INTERFACE

Now that you have seen the methods to use the CAN bus registers on the RX63N, you can
appreciate the work Renesas has done to provide an application programming interface
(API) for the same functionality. The software and documentation can be downloaded
from Renesas. This section includes only a small part of what is provided in the Applica-
tion Note RX600 Series CAN Application Programming Interface, Rev. 2.03 [2].

The software download includes three files:

� r_can_api.hcontains the definitions of the APIs, #defines, and data structures.
This file should be used as-is and should not be changed.

� r_can_api.ccontains the actual CAN code. This file should be used as-is and
should not be changed.

� config_r_can_api.hcontains a convenient location to change configurable defini-
tions for the CAN APIs, like determining if you will use polling or interrupts, set-
ting baud rates, and identifying CAN channel pins.

The CAN API includes functions in four major groups:

� Initialization, port and peripheral control—initialize the CAN peripheral regis-
ters and configure the CAN and transceiver ports.

� Send—set up a mailbox to transmit and to check that it was sent successfully.
� Receive—set up a mailbox to receive and to retrieve a message.
� Error check—check the CAN bus status of the node.

This code is an example of using the APIs to create a system where sends and receives use
interrupts to set status bits and the main program sends/consumes data.
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The CAN Bus initialization (lines 1 to 21) configure the mailboxes and baud rate. Note
that the specific baud rate values were set in the config_r_can_api.h file and used in
R_CAN_Create.

1. uint32_t initCAN(void) {
2. uint32_t init_status = R_CAN_OK;
3. init_status = R_CAN_Create(can_channel);
4. if (init_status != R_CAN_OK) {
5. lcd_display(LCD_LINE8, "Error");
6. return init_status;
7. }
8. R_CAN_PortSet(can_channel, ENABLE); //Normal Run Mode
9. //Enter Mailboxes into Halt mode

10. init_status |= R_CAN_Control(can_channel, HALT_CANMODE);
11. init_status |= R_CAN_RxSet(can_channel, CANBOX_RX, rx_id,

DATA_FRAME);
12. R_CAN_RxSetMask(can_channel, CANBOX_RX, 0x7FF);
13. tx_dataframe.id = tx_id;
14. tx_dataframe.dlc = 4;
15. for(int i = 0; i < tx_dataframe.dlc; i++) {
16. tx_dataframe.data[i] = 0x00;
17. }
18. init_status |= R_CAN_Control(can_channel, OPERATE_CANMODE);
19. rx_dataframe.id = rx_id;
20. return init_status;
21. }
22.

The three interrupt service routines (lines 23 to 45) are used to set global status variables
instead of relying on CAN polling API functions like R_CAN_Txcheck. The third interrupt
service routine is configured to capture spurious CAN errors.

23. #pragma interrupt CAN0_TXM0_ISR(vect = VECT_CAN0_TXM0, enable)
24. void CAN0_TXM0_ISR(void) {
25. uint32_t api_status = R_CAN_OK;
26. api_status = R_CAN_TxCheck(can_channel, CANBOX_TX);
27. if (R_CAN_OK == api_status) {
28. tx_sentdata_flag = 1;
29. }
30. }
31.
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32. #pragma interrupt CAN0_RXM0_ISR(vect = VECT_CAN0_RXM0, enable)
33. void CAN0_RXM0_ISR(void) {
34. uint32_t api_status = R_CAN_OK;
35. api_status = R_CAN_RxPoll(can_channel, CANBOX_RX);
36. if (R_CAN_OK == api_status) rx_newdata_flag = 1;
37.
38. }
39.
40. //The APIs set this interrupt up regardless of your settings.
41. //It must be included or the errors will cause unwanted

interrupts
42. #pragma interrupt CAN_ERS_ISR(vect = VECT_ICU_GROUPE0, enable)
43. void CAN_ERS_ISR(void) {
44. nop();
45. }

The CAN Bus send/receive example below does nothing more than receive four bytes of
character data, increment each character by the value 1, and send these changed characters.
Lines 46 through 59 set up our main program. The infinite while loop (from lines 67 to 94)
runs two major tasks: display successfully transmitted data (lines 68 to 77); and receive,
then transmit data (lines 78 through 93). Note that the actual reception of data is performed
in line 81, and the actual transmission of data is performed in line 92.

46. #include <machine.h>
47. #include "platform.h"
48. #include "config_r_can_rapi.h"
49. #include "r_can_api.h"
50.
51. uint32_t initCAN(void);
52.
53. can_frame_t tx_dataframe;
54. can_frame_t rx_dataframe;
55. uint32_t can_channel = 0;
56. uint32_t tx_sentdata_flag = 0;
57. uint32_t rx_newdata_flag = 0;
58. uint32_t tx_id = 0x001;
59. uint32_t rx_id = 0x001;
60.
61. void main(void) {
62. uint32_t can_status = R_CAN_OK;
63. uint8_t disp_buf[13] = {0};
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64. lcd_initialize();
65. lcd_clear();
66. can_status = initCAN();
67. while(1) {
68. if(tx_sentdata_flag == 1) {
69. tx_sentdata_flag = 0;
70. lcd_display(LCD_LINE2, "Tx OK ");
71. sprintf((char *)disp_buf, "%02X%02X%02X%02X",
72. tx_dataframe.data[0],
73. tx_dataframe.data[1],
74. tx_dataframe.data[2],
75. tx_dataframe.data[3] );
76. lcd_display(LCD_LINE3, disp_buf);
77. }
78. if(rx_newdata_flag == 1) {
79. rx_newdata_flag = 0;
80. lcd_display(LCD_LINE4, "Rx OK. Read:");
81. can_status = R_CAN_RxRead(can_channel,

CANBOX_RX,&rx_dataframe);
82. sprintf((char *)disp_buf, "%02X%02X%02X%02X",
83. rx_dataframe.data[0],
84. rx_dataframe.data[1],
85. rx_dataframe.data[2],
86. rx_dataframe.data[3] );
87. lcd_display(LCD_LINE5, disp_buf);
88. tx_dataframe.data[0] = rx_dataframe.data[0] + 1;
89. tx_dataframe.data[1] = rx_dataframe.data[1] + 1;
90. tx_dataframe.data[2] = rx_dataframe.data[2] + 1;
91. tx_dataframe.data[3] = rx_dataframe.data[3] + 1;
92. R_CAN_TxSet(can_channel, CANBOX_TX, &tx_dataframe,

DATA_FRAME);
93. }
94. }
95. }

10.7 RECAP

This chapter reviewed the general theory and implementation of the CAN bus. We started
by covering the theory behind the CAN protocol, its message formats and standards along
with its application fields and benefits. Then we covered the CAN module in the RX63N
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microprocessor and the registers used to implement CAN bus communication on it. The
basic concepts and examples give the full process of setting up the CAN bus and its related
registers and mailboxes for transmission and reception. The advanced concepts covered the
modes of operation of the CAN bus along with how to change the speed of communication
and using the CAN bus with interrupts.

10.8 REFERENCES

[1] Renesas Electronics, Inc. (February, 2013). RX63N Group, RX631 Group User’s Manual: Hardware,

Rev 1.60.

[2] Renesas Electronics, Inc. (March, 2013). Application Note: RX600 Series CAN Application Programming

Interface, Rev. 2.03

10.9 EXERCISES

1. Write the code to set the bus to transmit at a baud rate as 500 kbps.
2. Write the code to set the bus to transmit the baud rate as 125 kbps.
3. Configure the CAN bus to send data with mailbox number 1 with Extended ID.
4. Write the code to transmit a 4-byte data on the CAN bus.
5. Write a code to transmit “Renesas Rulz!!” through the CAN bus of the RX63N

and display it on the LCD on the reception board.
6. Write a code to receive 8-byte data from the terminal and transmit the inverted data

through the CAN bus.
7. Connect three RX63N boards with standard IDs of 1, 2, and 3 and configure them

to transmit frames. They should receive frames and store only the ones which have
their respective IDs.

8. Take the X,Y, and Z co-ordinates from the accelerometer of the RX63N board and
transfer it through the CAN bus using CAN interrupts.
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11.1 LEARNING OBJECTIVES

Embedded systems are expected to work correctly, however, it is very difficult to completely
test a system in all conceivable environments. Hence embedded system designers usually rely
on a watchdog timer (WDT) to reset the processor if the program runs out of control. They
also use a brownout (or low-voltage) detector to hold the processor in reset if the supply volt-
age is too low for correct operation. In this chapter the reader will learn:

� How to use the watchdog timer
� Brownout condition
� How to avoid brownout

11.2 BASIC CONCEPTS OF WATCHDOG TIMERS

Embedded systems must be able to cope with both hardware and software anomalies to be
truly robust. In many cases, embedded devices operate in total isolation and are not acces-
sible to an operator. Manually resetting a device in this scenario when its software “hangs”
is not possible. In extreme cases, this can result in damaged hardware, a significant cost
impact, or worse yet, create a human safety risk. A watchdog timer is a hardware timing
device that triggers a system reset, or similar operation, after a designated amount of time
has elapsed. A watchdog timer can be either a stand-alone hardware component or built
into the processor itself. To avoid a reset, an application must periodically reset the watch-
dog timer before the specified interval elapses.

Note that a watchdog can also be useful in determining if other peripheral devices of
the embedded system are functioning correctly. For example, if the system relies on a pe-
ripheral's regular activity, and that activity stops, the watchog can be useful in reseting the
system to a state where it can report such inactivity and possibly correct it.

11.3 WATCHDOG TIMER IN RX63N

TheWatchdog Timer (WDT) in the RX63N microcontroller is a 14-bit timer which outputs
an overflow signal (WDTOVF) if the timer overflow occurs during general program flow,

Watchdog Timer and Brownout
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and it can also be set up to reset the processor whenever the overflow signal occurs. The
watchdog timer can also be used as an interval timer which generates an interrupt each
time the counter overflows.

11.3.1 Register Description

The WDT has two start modes:

� Auto-start mode, in which counting automatically starts after release from the re-
set state.

� Register start mode, in which counting is started by refreshing the WDT (writing
to the register).

TheWDT control/status register (WDTCSR) is used for selecting the timer operation and clock
source for the timer. TheWDT reset control register (WDTRCR) is used to reset the timer.

ITEM SPECIFICATIONS

Count source Peripheral clock (PCLK)

Clock division ratio Divide by 4, 64, 128, 512, 2,048, or 8,192

Counter operation Counting down using a 14-bit down-counter

Conditions for
starting the
counter

� Counting automatically starts after a reset (auto-start mode)
� Counting is started by refreshing the WDTRR register (writing 00h and then
FFh) (register start mode)

Conditions for
stopping the
counter

� Pin reset (the down-counter and registers return to their initial values)
� A counter underflows or a refresh error is generated
Count restarts automatically in auto-start mode, or by refreshing the counter
in register start mode.

Window function Window start and end positions can be specified (refresh-permitted and
refresh-prohibited periods)

Reset-output
sources

� Down-counter underflows
� Refreshing outside the refresh-permitted period (refresh error)

Interrupt request
output sources

� A non-maskable interrupt (WUNI) is generated by an underflow of the
down-counter

� Refreshing outside the refresh-permitted period (refresh error)

Reading the
counter value

The down-counter value can be read by the WDTSR register.

TABLE 11.1 Specifications of WDT [1], page 1080–1081.
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ITEM SPECIFICATIONS

Output signal
(internal signal)

� Reset output
� Interrupt request output

Auto-start mode
(controlled by the
option function
select register 0
(OFS0))

� Selecting the clock frequency division ratio after a reset (OFS0.WDTCKS[3:0]
bits)

� Selecting the time-out period of the watchdog timer (OFS0.WDTTOPS[1:0] bits)
� Selecting the window start position in the watchdog timer
(OFS0.WDTRPSS[1:0] bits)

� Selecting the window end position in the watchdog timer
(OFS0.WDTRPES[1:0] bits)

� Selecting the reset output or interrupt request output (OFS0.WDTRSTIRQS bit)

Register start mode
(controlled by the
WDT registers)

� Selecting the clock frequency division ratio after refreshing
(WDTCR.CKS[3:0] bits)

� Selecting the time-out period of the watchdog timer (WDTCR.TOPS[1:0] bits)
� Selecting the window start position in the watchdog timer
(WDTCR.RPSS[1:0] bits)

� Selecting the window end position in the watchdog timer
(WDTCR.RPES[1:0] bits)

� Selecting the reset output or interrupt request output (WDTRCR.RSTIRQS bit)

TABLE 11.1 Specifications of WDT [1], page 1080–1081.—Continued

Interrupt request (WUNI)

WDT reset output

Interrupt control circuit

Reset control circuit

14-bit down-counterWDT control circuit

Internal peripheral bus 2

PCLK

W
D

TR
CR

W
D

TS
R

W
D

TC
R

W
D

TR
ROption function select register 0

(OFS0)

PCLK/4
PCLK/64

PCLK/128
PCLK/512

PCLK/2048
PCLK/8192

WDTRR: WDT refresh register
WDTCR: WDT control register
WDTSR: WDT status register
WDTRCR: WDT reset control register

Clock
frequency
divider

Figure 11.1 Block diagram of WDT [1], page 1081.
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WDT Refresh Register (WDTRR): TheWDTRR is an 8-bit register which refreshes the
down-counter of the WDT. The WDT down counter is refreshed by writing 00h and then
writing FFh to WDTRR (refresh operation) within the refresh-permitted period.

After the down counter has been refreshed, it starts counting down from the value selected
by setting theWDT time-out period selection bits (OFS0.WDTTOPS [1:0]) in option func-
tion select register 0 in auto-start mode. In register start mode, counting down starts from
the value selected by setting the time-out period selection bits (WDTCR.TOPS[1:0]) in the
WDT control register by the first refresh operation after release from the reset state.

WDT Control Register (WDTCR): TheWDT Control Register is a 16-bit register which
is used to select the clock source for the timer and type of operation of the timer.

b7 b6 b5 b4 b3 b2 b1 b0

1 1 1 1 1 1 1 1Value after reset:

WDT Refresh Register (WDTRR)

Address(es): 0008 8020h

BIT DESCRIPTION R/W

b7 to b0 The down-counter is refreshed by writing 00h and then writing FFh to
this register

R/W

Figure 11.2 WDT Refresh Register [1], page 1082.

— — — — — —

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1Value after reset:

WDT Control Register (WDTCR)

Address(es): 0008 8022h

RPSS[1:0] RPES[1:0] CKS[3:0] TOPS[1:0]

Figure 11.3 WDT Control Register [1], page 1083.
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The bits of the WDTCR are set for the following functionality:

� TOPS[1:0] Bits: These bits are used to select the time-out period from among
1024, 4096, 8192, and 16384 cycles.

� CKS[3:0] Bits: These bits are used to select clock division ratio by 4, 64, 128,
512, 2048, and 8192.

� RPES[1:0] Bits: These bits are used to select window end position. The window
start position should be a value greater than the window end position.

� RPSS[1:0] Bits: These bits are used to select window start position.

TABLE 11.2 Bit Description of WDTCR [1], page 1083.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b1, b0 TOPS[1:0] Time-Out
Period
Selection

b1 b0 R/W

0 0: 1,024 cycles (03FFh)

0 1: 4,096 cycles (0FFFh)

1 0: 8,192 cycles (1FFFh)

1 1: 16,384 cycles (3FFFh)

b3, b2 — Reserved These bits are read as 0 and cannot be modified. R

b7 to b4 CKS[3:0] Clock Division
Ratio Selection

b7 b4 R/W

0 0 0 1: PCLK/4

0 1 0 0: PCLK/64

1 1 1 1: PCLK/128

0 1 1 0: PCLK/512

0 1 1 1: PCLK/2048

1 0 0 0: PCLK/8192

Other settings are prohibited.

b9, b8 RPES[1:0] Window End
Position
Selection

b9 b8 R/W

0 0: 75%

0 1: 50%

1 0: 25%

1 1: 0% (window end position is not specified)

b11, b10 — Reserved These bits are read as 0 and cannot be modified. R

b13, b12 RPSS[1:0] Window Start
Position
Selection

b13 b12 R/W

0 0: 25%

0 1: 50%

1 0: 75%

1 1: 100% (window start position is not specified)

b15, b14 — Reserved These bits are read as 0 and cannot be modified. R
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WDT Status Register (WDTSR): The 16-bit WDT Status Register gives the status of the
timer. The specific bit values are as follows:

� CNTVAL[13:0] Bits (Down-Counter Value): These 14 read bits give the value of
the down counter, but the read value may differ from the actual count by a value of
one count.

� UNDFF Flag (Underflow Flag): This bit is set to 1 when a down counter has un-
derflowed. The value 0 indicates that the down counter has not underflowed. Writ-
ing 0 to the UNDFF flag sets the value to 0. Writing 1 has no effect.

� REFEF Flag (Refresh Error Flag): This bit is set to 1 when a refresh error has
occurred. The value 0 indicates that no refresh error has occurred. REFEF flag is
cleared by writing 0 to it. Writing 1 has no effect.

REFEF UNDFF

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

WDT Status Register (WDTSR)

Address(es): 0008 8024h

CNTVAL[13:0]

Figure 11.4 WDT Status Register [1], page 1086.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b13 to b0 CNTVAL[13:0] Down-Counter
Value

Value counted by the down-counter R

b14 UNDFF Underflow Flag 0: No underflow occurred R(/W)*1

1: Underflow occurred

b15 REFEF Refresh Error Flag 0: No refresh error occurred R(/W)*1

1: Refresh error occurred

Note 1. Only 0 can be written to clear the flag.

WDT Reset Control Register (WDTRCR): The WDT Reset Control Register
(WDTRCR) is an 8-bit register used for control of the down counter and reset or interrupt
request output. Writing to the WDT control register (WDTCR) or WDT reset control reg-
ister (WDTRCR) is only possible once between the release from the reset state and the first
refresh operation.
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Control over Writing to the WDTCR and WDTRCR Registers: Writing to the WDT
control register (WDTCR) orWDT reset control register (WDTRCR) is only possible once
between the release from the reset state and the first refresh operation.

11.4 ADVANCED CONCEPTS OF THE WATCHDOG TIMER

TheWDT has two different count operations depending on the start mode selected: Regis-
ter start mode or auto-start mode. Users select the WDT start mode by setting the WDT
start mode selection bit OFS0.WDTSTRT in the option function select register 0.

When the register start mode OFS0.WDTSTRT bit is 1, the WDT control register
(WDTCR) andWDT reset control register (WDTRCR) are enabled, and counting is started
by refreshing (writing) the WDT refresh register (WDTRR).

When the auto-start mode OFS0.WDTSTRT bit is 0; the OFS0 register is enabled, and
counting automatically starts after reset.

11.4.1 Register Start Mode

The WDT register start mode is selected by setting OFS0.WDTSTRT bit to 1, and the
WDTCR andWDTRCR are enabled. After cancelling from the reset, set the clock division
ratio, window start and end positions, time-out period in theWDTCR register, and the reset
output or interrupt request output in theWDTRCR register. Then, refresh the down counter
to start counting down from the value selected by setting the time-out period selection bits
(WDTCR.TOPS[1:0]). Figure 11.6 shows an example of operation under these conditions.

RSTIR
QS — — — — — — —

b7 b6 b5 b4 b3 b2 b1 b0

1 0 0 0 0 0 0 0Value after reset:

WDT Reset Control Register (WDTRCR)

Address(es): 0008 8026h

Figure 11.5 WDT Reset Control Register [1], page 1087.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b6 to b0 — Reserved These bits are read as 0 and cannot be
modified.

R

b7 RSTIRQS Reset Interrupt
Request Selection

0: Non-maskable interrupt request output is
enabled

R/W

1: Reset output is enabled
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Counter value

RES# pin

Control
register

(WDTCR)

(1) Initial value
(2) Set value Writing to the

register is valid.

Counting starts

Status �ag
cleared

Status �ag
cleared

Counting starts Counting starts

Refresh errorRefresh errorUnder�ow

Writing to the
register is invalid.

Writing to the
register is invalid.

Refresh
the counter
Active: High

H
L

(1) (2) (2) (2)

H
L

H
L

H

H
L

Refresh error
�ag

Active: High

Under�ow �ag
Active: High

Interrupt request
(WUNI)

Active: Low

Reset output
from WDT

Active: High

100%

75%

50%

25%

0%

Refresh-
prohibited

period

Refresh-
permitted

period

Refresh-
permitted

period

Figure 11.6 Operation example in register start mode [1], page 1089.

11.4.2 Auto-Start Mode

TheWDT auto-start mode is selected by setting the OFS0.WDTSTRT bit to 0 in the option
function select register 0, and when the WDT control register (WDTCR) and WDT reset
control register (WDTRCR) are disabled. Within the reset state the clock division ratio,
window start and end positions, time-out period, and reset output or interrupt request out-
put are set by the option function select register (OFS0). When the reset state is canceled,
the down counter automatically starts counting down from the value selected by the WDT
time-out period selection bits (OFS0.WDTTOPS[1:0]).

Figure 11.7 shows an example of operation under these conditions.
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Counter value

RES# pin

Down-Counter
control pin

Counting starts

Status �ag
cleared

Status �ag
cleared

Counting starts Counting starts

Refresh errorRefresh errorUnder�ow

Refresh
the counter

Active: H

H
L

H
L

H
L

H
L

L

Refresh error
�ag

Active: High

Under�ow �ag
Active: High

Interrupt request
(WUNI)

Active: Low

Reset output
from WDT

Active: High

100%

75%

50%

25%

0%

Refresh-
permitted

period

Counting starts

Refresh-
prohibited

period

Refresh-
prohibited

period

Figure 11.7 Operation in auto-start mode [1], page 1090.

Control over Writing to the WDTCR and WDTRCR Registers

Writing to the WDT control register (WDTCR) or WDT reset control register (WDTRCR)
is only possible once between the release from the reset state and the first refresh operation.
After a refresh operation (counting starts) or by writing to WDTCR or WDTRCR, the pro-
tection signal in theWDT becomes 1 to protectWDTCR andWDTRCR against subsequent
attempts at writing. This protection is released by the reset source of the WDT. With other
reset sources, the protection is not released.

11.5 INDEPENDENT WATCHDOG TIMER (IWDT)

The independent watchdog timer is used to detect a program entering into runaway con-
ditions. The IWDT has a 14-bit down counter, and can be set up so that the chip is reset
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by a reset output when counting down from the initial value causes an underflow of the
counter. Alternatively, generation of an interrupt request is selectable when the counter
underflows. The initial value for counting can be restored to the down counter by re-
freshing its value. The interval over which refreshing is possible can also be selected.
Refreshing the counter during this interval will restore its initial value for counting,
while attempting to refresh the counter beyond this interval leads to the output of a re-
set or interrupt request. The refresh interval can be adjusted and used to detect the pro-
gram entering runaway conditions. The IWDT stops counting after an underflow or an
attempt at refreshing the counter beyond the allowed interval. Counting is restarted by
refreshing the counter when the IWDT is in register start mode. When the IWDT is in
auto-start mode, counting is restarted automatically after output of the reset or interrupt
request.

The IWDT has two start modes similar to WDT:

1. Auto-start mode, in which counting automatically starts after release from the re-
set state.

2. Register start mode, in which counting is started by refreshing the IWDT (writing
to the register).

ITEM SPECIFICATIONS

Count source*1 IWDT-dedicated clock (IWDTCLK)

Clock division
ratio

Division by 1, 16, 32, 64, 128, or 256

Counter
operation

Counting down using a 14-bit down-counter

Conditions for
starting the
counter

� Counting automatically starts after a reset (auto-start mode)
� Counting is started by refreshing the IWDTRR register (writing 00h and then FFh)
(register start mode)

Conditions for
stopping the
counter

� Pin reset (the down-counter and other registers return to their initial values)
� A counter underflows or a refresh error is generated
Count restarts automatically in auto-start mode, or by refreshing the counter in
register start mode

Window
function

Window start and end positions can be specified (refresh-permitted and
refresh-prohibited periods)

Reset-output
sources

� Down-counter underflows
� Refreshing outside the refresh-permitted period (refresh error)

Interrupt request
output sources

� A non-maskable interrupt (WUNI) is generated by an underflow of the down-counter
� When refreshing is done outside the refresh-permitted period (refresh error)

TABLE 11.3 Specifications of IWDT [1], page 1095.
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ITEM SPECIFICATIONS

Reading the
counter value

The down-counter value can be read by the IWDTSR register.

Output signal
(internal signal)

� Reset output
� Interrupt request output
� Sleep-mode count stop control output

Auto-start mode
(controlled by
the option
function select
register 0 (OFS0))

� Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits)
� Selecting the time-out period of the watchdog timer (OFS0.IWDTTOPS[1:0] bits)
� Selecting the window start position in the watchdog timer (OFS0.IWDTRPSS[1:0] bits)
� Selecting the window end position in the watchdog timer (OFS0.IWDTRPES[1:0] bits)
� Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit)
� Selecting the down-count stop function at transition to sleep mode, software standby
mode, deep software standby mode, or all-module clock stop mode
(OFS0.IWDTSLCSTP bit)

Register start
mode (controlled
by the IWDT
registers)

� Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits)
� Selecting the time-out period of the watchdog timer (IWDTCR.TOPS[1:0] bits)
� Selecting the window start position in the watchdog timer (IWDTCR.RPSS[1:0] bits)
� Selecting the window end position in the watchdog timer (IWDTCR.RPES[1:0] bits)
� Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit)
� Selecting the down-count stop function at transition to sleep mode, software standby
mode, deep software standby mode, or all-module clock stop mode
(IWDTCSTPR.SLCSTP bit)

Note 1. Set the count source so that the peripheral module clock frequency ≥ 4 x (the count source clock divided
frequency).

TABLE 11.3 Specifications of IWDT [1], page 1095.—Continued

To use the IWDT, two clocks (peripheral clock (PCLK) and IWDT-dedicated clock
(IWDTCLK)) should be supplied so that the IWDT continues to function when the PCLK
stops (see Figure 11.8). The bus interface and registers operate with PCLK, and the 14-bit
down counter and control circuits operate with IWDTCLK. Signal lines between the
blocks operating with the PCLK and IWDTCLK are connected through synchronization
circuits.

11.5.1 Register Description

IWDT Refresh Register (IWDTRR): The IWDTRR refreshes the down counter of the
IWDT. The down counter of the IWDT is refreshed by writing 00h and then writing FFh to
IWDTRR (refresh operation) within the refresh-permitted period. After the down counter
has been refreshed, it starts counting down from the value selected by the IWDT time-
out period selection bits (OFS0.IWDTTOPS[1:0]) in option function select register 0 in
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Interrupt request (WUNI)

IWDT reset output

Interrupt control circuit

Reset control circuit

Clock control circuit

14-bit down-counterIWDT control circuit

Internal peripheral bus 2

IWDTCLK

IW
D

TC
ST

PR

IW
D

TR
CR

IW
D

TS
R

IW
D

TC
R

IW
D

TR
R

Option function select register 0
(OFS0)

Count stop control output in
sleep mode

IWDTCLK
IWDTCLK/16
IWDTCLK/32
IWDTCLK/64

IWDTCLK/128
IWDTCLK/256

IWDTRR: IWDT refresh register
IWDTCR: IWDT control register
IWDTSR: IWDT status register
IWDTRCR: IWDT reset control register
IWDTCSTPR: IWDT count stop control register

Clock
frequency

divider

Figure 11.8 Block diagram of IWDT [1], page 1096.

auto-start mode. In register start mode, counting down starts from the value selected by set-
ting the time-out period selection bits (TOPS[1:0]) in the IWDT control register
(IWDTCR) in the first refresh operation after release from the reset state. When 00h is
written, the read value is 00h.When a value other than 00h is written, the read value is FFh.

b7 b6 b5 b4 b3 b2 b1 b0

1 1 1 1 1 1 1 1Value after reset:

IWDT Refresh Register (IWDTRR)

Address(es): 0008 8030h

BIT DESCRIPTION R/W

b7 to b0 The down-counter is refreshed by writing 00h and then writing FFh to
this register

R/W

Figure 11.9 Bit description of IWDTRR [1], page 1097.
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IWDT Control Register (IWDTCR): The IWDTCR is a 16-bit register. There are some re-
strictions on writing to the IWDTCR register. In auto-start mode, the settings in the IWDTCR
register are disabled, and the settings in the option function select register 0 (OFS0) are en-
abled. The bit setting made to the IWDTCR register can also be made in the OFS0 register.

— — — — — —

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1Value after reset:

IWDT Control Register (IWDTCR)
Address(es): 0008 8032h

RPSS[1:0] RPES[1:0] TOPS[1:0]CKS[3:0]

Figure 11.10 Bit description of IWDTCR [1], page 1098.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b1, b0 TOPS[1:0] Time-Out
Period
Selection

b1 b0 R/W

0 0: 1,024 cycles (03FFh)

0 1: 4,096 cycles (0FFFh)

1 0: 8,192 cycles (1FFFh)

1 1: 16,384 cycles (3FFFh)

b3, b2 — Reserved These bits are read as 0 and cannot be modified. R

b7 to b4 CKS[3:0] Clock Division
Ratio Selection

b7 b4 R/W

0 0 0 0: IWDTCLK

0 0 1 0: IWDTCLK/16

0 0 1 1: IWDTCLK/32

0 1 0 0: IWDTCLK/64

1 1 1 1: IWDTCLK/128

0 1 0 1: IWDTCLK/256

Other settings are prohibited.

b9, b8 RPES[1:0] Window End
Position
Selection

b9 b8 R/W

0 0: 75%

0 1: 50%

1 0: 25%

1 1: 0% (window end position is not specified)

b11, b10 — Reserved These bits are read as 0 and cannot be modified. R

b13, b12 RPSS[1:0] Window Start
Position
Selection

b13 b12 R/W

0 0: 25%

0 1: 50%

1 0: 75%

1 1: 100% (window start position is not specified)

b15, b14 — Reserved These bits are read as 0 and cannot be modified. R
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REFEF UNDFF

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

IWDT Status Register (IWDTSR)

Address(es): 0008 8034h

CNTVAL[13:0]

Figure 11.11 Bit description of IWDTSR [1], page 1101.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b13 to b0 CNTVAL[13:0] Down-Counter
Value

Value counted by the down-counter R

b14 UNDFF Underflow Flag 0: No underflow occurred R(/W)*1

1: Underflow occurred

b15 REFEF Refresh Error Flag 0: No refresh error occurred R(/W)*1

1: Refresh error occurred

Note 1. Only 0 can be written to clear the flag.

� CNTVAL[13:0] Bits (Down-Counter Value): Read these bits to confirm the
value of the down counter, but note that the read value may differ from the actual
count by a value of one count.

� UNDFF Flag (Underflow Flag): Read this bit to confirm whether or not an un-
derflow has occurred in the down counter. The value 1 indicates that the down
counter has underflowed. The value 0 indicates that the down counter has not un-
derflowed.Write 0 to the UNDFF flag to set the value to 0.Writing 1 has no effect.

� REFEF Flag (Refresh Error Flag): Read this bit to confirm whether or not a re-
fresh error (performing a refresh operation during a refresh-prohibited period) has
occurred. The value 1 indicates that a refresh error has occurred. The value 0 indi-
cates that no refresh error has occurred. Write 0 to the REFEF flag to set the value
to 0. Writing 1 has no effect.

IWDT Reset Control Register (IWDTRCR): The IWDTRCR is an 8-bit reset control
register. There are some restrictions on writing to the IWDTRCR register. In auto-start
mode, the IWDTRCR register settings are disabled, and the settings in the option function
select register 0 (OFS0) enabled. The bit setting mode to the IWDTRCR register can also
be made in the OFS0 register.
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RSTIR
QS — — — — — — —

b7 b6 b5 b4 b3 b2 b1 b0

1 0 0 0 0 0 0 0Value after reset:

IWDT Reset Control Register (IWDTRCR)

Address(es): 0008 8036h

Figure 11.12 Bit description of IWDTRCR [1], page 1102.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b6 to b0 — Reserved These bits are read as 0 and cannot be
modified.

R

b7 RSTIRQS Reset Interrupt
Request Selection

0: Non-maskable interrupt request output is
enabled

R/W

1: Reset output is enabled

IWDT Count Stop Control Register (IWDTCSTPR): The IWDTCSTPR is an 8-bit
register. In auto-start mode, the settings in the IWDTCSTPR register are ignored, and the
settings in the option function select register 0 (OFS0) take effect. The bit setting mode to
the IWDTCSTPR register can also be made in the OFS0 register.

SLCST
P — — — — — — —

b7 b6 b5 b4 b3 b2 b1 b0

1 0 0 0 0 0 0 0Value after reset:

IWDT Count Stop Control Register (IWDTCSTPR)

Address(es): 0008 8038h

Figure 11.13 Bit description of IWDTCSTPR [1], page 1102.

BIT SYMBOL BIT NAME DESCRIPTION R/W

b6 to b0 — Reserved These bits are read as 0 and cannot be modified. R

b7 SLCSTP Sleep-Mode
Count Stop
Control

0: Count stop is disabled R/W

1: Count is stopped at a transition to sleep mode,
software standby mode, deep software standby
mode, or allmodule clock stop mode

11.ES_Conrad_RX63N_Advanced_CH11.qxd:RX63N Advanced  3/4/14  11:58 AM  Page 289



290 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

11.6 EXAMPLES

The following code explains the setting of the watchdog timer mode:

1. void wdt_init(void) {
2. WDT.WDTRCR.BYTE = 0x80;
3. ICU.NMIER.BIT.WDTEN = 1;
4. WDT.WDTCR.WORD = 0x3383;
5. WDT.WDTSR.WORD = 0x0000;
6. }

Code Explanation: In line 1 the watchdog timer function is initialized. In line 2 the
WDTRCR register is set to a value of 0x80 and Reset (and not NMI) output is enabled. In
line 3 the Non-Maskable Interrupt (NMI) with the watchdog is used by unmasking it using
the Non-Maskable Interrupt Enable Register (NMIER). In line 4 the WDTC register is
used to set PCLK � 48 MHz and the timeout period � 134,217,728/48,000,000 � 2.796
seconds. In line 5 the WDT Status register is set to zero for clearing the refresh error and
underflow flags.

The watchdog timer needs to be refreshed to keep it from counting down to zero and un-
derflowing. Historically, this was called “kicking the dog,” but we now use the more positive
phrase called “feeding the dog.”A simple function to do this is shown in the following code:

1. void wdt_feed_watchdog(void) {
2. WDT.WDTRR = 0x00;
3. WDT.WDTRR = 0xFF;
4. }

In the above code we are feeding the watchdog by writing 00h and then writing FFh to
WDTRR within the refresh-permitted period. The watchdog timer’s registers are intention-
ally more difficult to write to than most other processor registers. This makes it harder for
a runaway rogue program to disable the watchdog.

1. void main() {
2. int i;
3. ENABLE_LEDS;
4. while(1) {
5. Init_WDT(void);
6. ALL_LEDS_OFF();
7. for(i = 0; i < 10000000; i++) {
8. i--; //This is a "infinite loop" software bug
9. }
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10. ALL_LEDS_ON();
11. WDT.WDTRR = 0x00;
12. WDT.WDTRR = 0xFF;
13. }
14. }

In the above program, the desired effect would be for the LEDs to switch on and switch off
with some delay, but due to the software bug the program enters into an infinite loop which
eventually causes the overflow of the watchdog timer—and the overflow causes the inter-
nal reset of the microcontroller. If there is no infinite loop, the count of the watchdog timer
is reset frequently to prevent the overflow.

11.7 BASIC CONCEPTS OF BROWNOUT CONDITION

11.7.1 How Brownout Occurs

A brownout condition in a microcontroller occurs when the supply voltage for the micro-
controller temporarily goes below a threshold value (Vdet). Below this threshold value, the
microcontroller may malfunction. There is also a blackout condition in which the micro-
controller will have a total loss of electricity. In a brownout condition, some operations
may work, but in a blackout condition none of the operations will be active.

11.7.2 Automatically Detecting a Brownout Condition

The main purpose of automatically detecting the brownout condition is to prevent the cor-
ruption of processor critical information.Whenever the brownout condition is detected, the
internal reset from the voltage detection circuit should keep the processor in reset condition
until the voltage increases above the threshold value (Vdet).

The RX63N MCU has three low-voltage detection (LVD) circuits based on analog
comparators which are voltage detection 0, voltage detection 1, and voltage detection 2.
The voltage detection circuit (LVDA) monitors the voltage level input to the VCC pin us-
ing a program. The multiple detection levels allow the user to run interrupt service routines
which could, for example, save critical data to EEPROM and properly shutdown the sys-
tem before MCU goes into reset.

In voltage detection 0, whether to enable or disable the reset of voltage monitoring
0 can be selected after the reset using the option function select register 1 (OFS1).

In voltage detection 1 and voltage detection 2, the detection voltage is set using the
voltage detection level select register (LVDLVLR). Reset of voltage monitoring 0, reset/
interrupt of voltage monitoring 1, and reset/interrupt of voltage monitoring 2 can be used.

11.ES_Conrad_RX63N_Advanced_CH11.qxd:RX63N Advanced  3/4/14  11:58 AM  Page 291



292 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

ITEM
VOLTAGE

MONITORING 0
VOLTAGE

MONITORING 1
VOLTAGE

MONITORING 2

VCC
monitoring

Monitored
voltage

Vdet0 Vdet1 Vdet2

Detected
event

Voltage drops
past Vdet0

Voltage rises or drops
past Vdet1

Voltage rises or drops
past Vdet2

Detection
voltage

One level fixed Specify voltage using
LVDLVLR.LVD1LVLR[3:0]
bits

Specify voltage using
LVDLVLR.LVD2LVL[3:0]
bits

Monitoring
flag

None LVD1SR.LVD1MON
flag: Monitors whether
voltage is higher or
lower than Vdet1

LVD2SR.LVD2MON
flag: Monitors whether
voltage is higher or
lower than Vdet2

LVD1SR.LVD1DET flag:
Vdet1 passage
detection

LVD2SR.LVD2DET flag:
Vdet2 passage
detection

Process
upon
voltage
detection

Reset Voltage
monitoring 0 reset

Voltage monitoring 1
reset

Voltage monitoring 2
reset

Reset when
Vdet0 > VCC CPU
restart after
specified time
with VCC > Vdet0

Reset when Vdet1 >
VCC CPU restart
timing selectable:
after specified time
with VCC > Vdet1 or
Vdet1 > VCC

Reset when Vdet2 >
VCC CPU restart
timing selectable:
after specified time
with VCC > Vdet2 or
Vdet2 > VCC

Interrupt No interrupt Voltage monitoring 1
interrupt

Voltage monitoring 2
interrupt

Non-maskable
interrupt

Non-maskable
interrupt

Interrupt request
issued when Vdet1 >
VCC and VCC >
Vdet1 or either

Interrupt request
issued when Vdet2 >
VCC and VCC >
Vdet2 or either

Digital
filter

Enable/
Disable
switching

Digital filter
function not
available

Available Available

Sampling
time

— 1/n LOCO frequency
� 2 (n: 1, 2, 4, 8)

1/n LOCO frequency
� 2 (n: 1, 2, 4, 8)

TABLE 11.4 Voltage Detection Circuit Specifications: [1], Page 227.
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11.8 RECAP

A watchdog timer is one of the tools in the microcontroller, which gets the system out of
unexpected errors or infinite loops. The watchdog timer count is refreshed frequently so
that the overflow does not occur in the general flow of the program.When the overflow oc-
curs, it implies that the timer count has been not refreshed and the program is not function-
ing in the way it should. So the watchdog timer resets the system whenever it overflows.

11.9 REFERENCES

[1] Renesas Electronics, Inc. (February, 2013). RX63N Group, RX631 Group User’s Manual: Hardware,

Rev 1.60.

11.10 EXERCISES

1. List the registers used to set up the WDT and describe the importance of the
registers.

2. List the registers used to set up the IWDT and describe the importance of the
registers.

3. What registers are used to write data into WDTTRCR, WDTTCNT, and
WDTTCSR registers?

4. Draw a flowchart explaining when and how aWDT resets the system.
5. Write pseudo code to reset the microcontroller when a brownout condition occurs.
6. Write a C code to set WDT to operate with a 48 MHz clock.
7. Write the Code to set up the WDT to reset the microcontroller every 1 s.
8. Write the Code to set up the IWDT to reset the microcontroller every 1 s.
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12.1 LEARNING OBJECTIVES

In today’s world of battery-operated devices, the proper use of the low-power/sleep modes
provided in most embedded microcontrollers is critical in design success. The RX63N mi-
crocontroller has several functions, such as the capability to switch clock frequencies and
the ability to stop modules to reduce its power consumption. Intelligent switching between
a normal mode and a low power mode can significantly improve the battery life.

In this chapter the reader will learn:

� The startup process of the RX63N microcontroller.
� The general concept of low power consumption.
� How to switch the microcontroller into various low power modes.

12.2 RX63N STARTUP PROCESS

When the RX63N microcontroller starts in power-on mode, several initial settings must be
configured in order to ensure its correct operation. This RX63N Demonstration Kit board
(YRDKRX63N) is shipped with a user boot program that is stored in on-chip flash memory
and set up with factory predefined specifications. The processor can be set to several operat-
ing modes based on pins 1 and 2 of the Switch 5 on the board. The available modes are
single-chip, USB boot mode, and user boot mode. The RX63N is initially set to boot into
single chip mode, which initially runs the startup code [1].

When the board is powered-on, several functions are executed based on the startup
code prior to executing the main function. As shown in Figure 12.1, some of the steps in-
clude setting the clock, interrupts, and time capture control registers.

Upon powering up or resetting the board, a program counter points to the location in
memory containing the functions defined in resetprg.c code, which can be found in the
High-performance Embedded Workshop (HEW) inside all RX63N projects (the tool
chain e2 studio has a similar mechanism). This program configures the microcontroller
prior to the main program call.

Processor Settings and Running
in Low Power Modes

12.ES_Conrad_RX63N_Advanced_CH12.qxd:RX63N Advanced  3/5/14  7:56 AM  Page 295



296 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER

Consider the start-up function starting on the following page. Lines 12 through 22 configure
the floating point unit, by initializing the FPSW register. Line 24 calls the operating fre-
quency setup function. Lines 50 through 81 initialize the clocks based on the input clock
frequency of 12 MHz. The default frequencies are shown in Table 12.1.

Power on

Set the stack pointers (USP and ISP)

Set floating point status word

Set the clock

Set up the C runtime environment

Board specific hardware setup
(Configuring the IO pins)

Set the interrupts

Call the user main function

Figure 12.1 Initial settings performed by startup code before calling user main() function.

TABLE 12.1 Default Clock Frequencies found in resetprg.c.

PLL Frequency 192 MHz

Internal Clock Frequency 96 MHz

Peripheral Clock Frequency 48 MHz

USB Clock Frequency 48 MHz

External Bus Clock Frequency 24 MHz
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Lines 25 and 26 initialize the C runtime environment and the I/O library respectively.
Line 30 calls the hardware setup function shown in the hwsetup.c code below. In the
hardware setup code, all the ports, interrupts, and peripherals are configured/enabled.
Note that leaving unused IO pins floating should be avoided. Keeping them unused may
lead to false recognition of pin as input pin due to induced noise. These pins should be
handled as described in the hardware manual [1, p.630]. Lines 30 through 32 change the
microcontroller from supervisor mode to user mode in order to protect some of the setup
registers. Lines 38 through 41 enable the bus error interrupt in order to catch any at-
tempts to access illegal/reserved areas of memory. Finally, in line 43 the main function is
called, in which you should never return due to the infinite loop required in the main
function.

1. #include <machine.h>
2. void main(void);
3. static void operating_frequency_set(void);
4.
5. void PowerON_Reset_PC(void) {
6. #if RENESAS_VERSION >= 0x01010000
7. set_intb((void *) sectop("C$VECT"));
8. #else
9. set_intb((unsigned long) sectop("C$VECT"));

10. #endif
11.
12. #ifdef ROZ
13. #define _ROUND 0x00000001
14. #else
15. #define _ROUND 0x00000000
16. #endif
17. #ifdef DOFF
18. #define _DENOM 0x00000100
19. #else
20. #define _DENOM 0x00000000
21. #endif
22. set_fpsw(FPSW_init | _ROUND | _DENOM);
23.
24. operating_frequency_set();
25. _INITSCT();
26. _INIT_IOLIB();
27. hardware_setup();
28. nop();
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29. set_psw(PSW_init);
30. #if RUN_IN_USER_MODE == 1
31. #if RENESAS_VERSION >= 0x01010000
32. chg_pmusr() ;
33. #else
34. Change_PSW_PM_to_UserMode();
35. #endif
36. #endif
37.
38. IR(BSC,BUSERR) = 0;
39. IPR(BSC,BUSERR) = 0x0F;
40. IEN(BSC,BUSERR) = 1;
41. BSC.BEREN.BIT.IGAEN = 1;
42.
43. main();
44.
45. _CLOSEALL();
46. while(1){};
47. }
48.
49. void operating_frequency_set(void){
50. volatile unsigned int i;
51. SYSTEM.PRCR.WORD = 0xA50B;
52. SYSTEM.SOSCCR.BYTE = 0x00;
53. SYSTEM.MOSCWTCR.BYTE = 0x0D;
54. SYSTEM.PLLWTCR.BYTE = 0x04;
55. SYSTEM.PLLCR.WORD = 0x0F00;
56. SYSTEM.MOSCCR.BYTE = 0x00;
57. SYSTEM.PLLCR2.BYTE = 0x00;
58. for(i = 0; i < 0x168; i++){
59. nop() ;
60. }
61. SYSTEM.SCKCR2.WORD = 0x0031;
62. SYSTEM.SCKCR3.WORD = 0x0400;
63. SYSTEM.PRCR.WORD = 0xA500;
64. }
65.
66. #if RUN_IN_USER_MODE == 1
67. #if RENESAS_VERSION < 0x01010000
68.
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69. static void Change_PSW_PM_to_UserMode(void) {
70. MVFC PSW,R1
71. OR #00100000h,R1
72. PUSH.L R1
73. MVFC PC,R1
74. ADD #10,R1
75. PUSH.L R1
76. RTE
77. NOP
78. NOP
79. }
80. #endif
81. #endif

The following code is an excerpt taken from the hwsetup.c file, which is included in all
projects that are created using HEW. As you can see in lines 3–5, the hardware setup func-
tion calls other functions that configure the I/O ports and interrupts, and enables the pe-
ripheral modules. If certain peripherals or interrupts need to be enabled on restart, the re-
spective functions in the following code could be altered by adding the correct code.

1. #include <stdint.h>
2. void hardware_setup(void) {
3. output_ports_configure();
4. interrupts_configure();
5. peripheral_modules_enable()
6. }
7. void output_ports_configure(void) {
8. SYSTEM.PRCR.WORD = 0xA50B;
9. MPC.PWPR.BIT.B0WI = 0;

10. MPC.PWPR.BIT.PFSWE = 1;
11. MSTP(EDMAC) = 0;
12. PORT0.PODR.BYTE = 0x00;
13. PORT0.PDR.BYTE = 0x2F;
14. .
15. .
16. .
17. .
18. PORTJ.PODR.BYTE = 0x08;
19. PORTJ.PDR.BYTE = 0x28;
20. }
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21. void interrupts_configure(void){};
22. void peripheral_modules_enable(void){};

12.3 BASIC CONCEPTS OF LOW POWER CONSUMPTION

12.3.1 Introduction to the Concept of Low Power Consumption

Power consumption is an important aspect in the design of any embedded system.
Devices that are remotely operated with little or no human interaction are unlikely to
have easily replaceable batteries. For example, a radio collar used to track a wild ani-
mal’s location would not have an easily replaceable battery but would be tuned to last as
long as possible to allow maximum use of the collar. The inability to either recharge or
replace the batteries in some portable devices has highlighted the need for reducing
power consumption when possible while still allowing the system to accomplish the
given tasks. The idea is to perform the desired tasks as quickly as possible or with as lit-
tle power consumption as possible.

The power consumption of a processor over a given interval is the sum of the power
consumed in both active and standby modes. Most microcontrollers are based on CMOS
logic in which power is consumed when the transistors are switched. The average power
consumed when switching a microcontroller transistor can be defined in terms of the
switching frequency (ƒ) as . This formula shows that the power consumption de-
pends upon the switching frequency (clock), load capacitance, and the supply voltage [2].
Leakage also plays a role in power consumption. This power loss is much smaller than the
losses consumed by switching frequencies.

Embedded systems normally have peripherals that perform some of the work for them
and, upon completion, give the information to the processor to compute the results and act
on them. During this time of waiting for a peripheral to respond, the processor can be put
to sleep to help save power and then awake when the results are ready. Several peripherals
often remain unused for a given instance of time, and they can be powered off. If the pe-
ripheral is not being used, turning off its power extends battery life. An equivalent concept
can be seen in today’s laptop computers, which comes with the feature of sleep mode or hi-
bernation. In these modes, all the processes are suspended and the states of all the
processes as well as the OS are stored in laptop’s RAM/Hard Drive. The operation screen,
hard drive, and other peripherals are suspended. After pressing any key board key or mov-
ing the mouse, the laptop will “wake up” from the sleep mode restoring its previous state
from RAM/Hard Drive.

The RX63N microcontroller has several functions for reducing power consumption,
including switching off clock signals to reduce power consumption; BCLK and SDCLK

P � ƒCV2
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output control functions; functions for stopping modules (peripherals); and functions for
low power consumption in normal operation and transitions to and from low power con-
sumption states [1].

12.3.2 Various Processor Settings to Achieve Low Power Consumption

In order to reduce power consumption in an embedded system, the designer must deter-
mine the minimum required speed and adjust the clock accordingly. The RX63N micro-
controller has several different clocks that can be altered. When the SCKCR.FCK[3:0],
ICK[3:0], BCK[3:0], PCKA[3:0], and PCKB[3:0] bits are set, the clock frequency for each
related function changes. The CPU, DMAC, DTC, ROM, and RAM operate on the clock
specified by the ICK[3:0] bits. Peripheral modules operate on the clock specified by the
PCKA[3:0] or the PCKB[3:0] bits. The flash memory interface, either the ROM or
E2 DataFlash, operates on the clock specified by the FCK[3:0] bits. The external bus oper-
ates on the clock specified by the BCK[3:0] bits [1]. Refer to the following section for the
clock division settings for each register. Several other modes and functions are discussed in
the following section, including the module stop function and various other lower operat-
ing power consumption control modes.

12.3.3 Overview: Various Low Power Consumption Modes

The Renesas RX63N microcontroller has four different low power modes. They are sleep
mode, all module clock stop mode, software standby mode, and deep software standby
mode—listed in descending order of power consumption. This processor can enter into
any of these modes by setting certain registers and then executing a WAIT instruction. It
can come out of a low power mode through the use of interrupts. Not all interrupts can
cancel all low power modes. Refer to Section 12.4 for additional information about each
mode.

12.3.4 Processor Settings: Various Registers Used

The following pages from the RX63N hardware manual [1] summarize the most important
start-up registers to configure.
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Address(es): 0008 000Ch
Standby Control Register (SBYCR)

SSBY OPE — — — — — — — — — — — — — —

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BIT SYMBOL BIT NAME DESCRIPTION R/W

b13 to b0 — Reserved These bits are read as 0. The write value should be 0. R/W

b14 OPE Output
Port
Enable

0: In software standby mode or deep software standby mode, the address bus
and bus control signals are set to the high-impedance state.

R/W

1: In software standby mode or deep software standby mode, the address
bus and bus control signals retain the output state.

b15 SSBY Software
Standby

0: Shifts to sleep mode or all-module clock stop mode after the WAIT
instruction is executed

R/W

1: Shifts to software standby mode after the WAIT instruction is executed

OPE Bit (Output Port Enable)
The OPE bit specifies whether to retain the output of the address bus and bus control signals (CS0# to CS7#, RD#, WR0# to
WR3#, WR#, BC0# to BC3#, ALE, CKE, SDCS#, RAS#, CAS#, WE#, and DQM0 to DQM3) in software standby mode or deep
software standby mode, or to set the output to the high-impedance state.

SSBY Bit (Software Standby)
The SSBY bit specifies the transition destination after the WAIT instruction is executed.

When the SSBY bit is set to 1, the LSI enters software standby mode after execution of the WAIT instruction. When the
LSI returns to normal mode after an interrupt has initiated release from software standby mode, the SSBY bit remains 1.

Write 0 to this bit to clear it.
When the oscillation stop detection function enable bit (OSTDCR.OSTDE) is 1, setting of the SSBY bit is invalid. Even if the

SSBY bit is 1, the LSI will enter sleep mode or all module clock stop mode on execution of the WAIT instruction.

Value after reset:

Figure 12.2 Standby Control Register Settings [2], p.281.

12.3.5 Functions: Description of Operation in Different Functions

Multi-clock functionality is the ability to utilize several different clocks, and therefore
different clock speeds, in order to help lower power consumption. Peripherals in the
RX63N operate on one of the two clocks, either PCLKA or PCLKB. Depending on the
peripherals used and the speed needed, the board has the ability to run peripherals at the
same time but possibly at different speeds, thus saving power by reducing clock switch-
ing. A clock is available for the memory unit (RAM and ROM) and the CPU, as well as
a clock for flash memory and the external bus. Without all these different clocks, all the
units would run at the highest speed, even though some of the peripherals and/or mem-
ory accesses may not need to operate at the highest speed, thus wasting unnecessary
power. Refer to Section 12.4.1 for an example of setting some of the clocks to operate
at different speeds.
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ACSE — MSTPA
29

MSTPA
28

MSTPA
27 — — MSTPA

24
MSTPA
23 — — — MSTPA

19 — MSTPA
17 —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1Value after reset:

MSTPA
15

MSTPA
14

MSTPA
13

MSTPA
12

MSTPA
11

MSTPA
10

MSTPA
9 — — — MSTPA

5
MSTPA

4 — — — —

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Value after reset:

Module Stop Control Register A (MSTPCRA)
Address(es): 0008 0010h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b3 to b0 — Reserved These bits are read as 1. The write value should be 1. R/W

b4 MSTPA4 8-Bit Timer 3/2
(Unit 1) Module
Stop

Target module: TMR3/TMR2 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b5 MSTPA5 8-Bit Timer 1/0
(Unit 0) Module
Stop

Target module: TMR1/TMR0 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b8 — Reserved This bit is read as 1. The write value should be 1. R/W

b9 MSTPA9 Multifunction
Timer Pulse Unit 2
Module Stop

Target module: MTU (MTU0 to MTU5) R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b10 MSTPA10 Programmable
Pulse Generator
(Unit 1) Module
Stop

Target module: PPG1 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b11 MSTPA11 Programmable
Pulse Generator
(Unit 0) Module
Stop

Target module: PPG0 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b12 MSTPA12 16-Bit Timer Pulse
Unit 1 (Unit 1)
Module Stop

Target module: TPU unit 1 (TPU6 to TPU11) R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b13 MSTPA13 16-Bit Timer Pulse
Unit 0 (Unit 0)
Module Stop

Target module: TPU unit 0 (TPU0 to TPU5) R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b14 MSTPA14 Compare Match
Timer (Unit 1)
Module Stop

Target module: CMT unit 1 (CMT2, CMT3) R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

Figure 12.3 Module Stop Control Register A Settings [1], pages 282–283.—Continues
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BIT SYMBOL BIT NAME DESCRIPTION R/W

b15 MSTPA15 Compare Match
Timer (Unit 0)
Module Stop

Target module: CMT unit 0 (CMT0, CMT1) R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b16 — Reserved This bit is read as 1. The write value should be 1. R/W

b17 MSTPA17 12-bit A/D
Converter (Unit 1)
Module Stop

Target module: S12AD1 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b18 — Reserved This bit is read as 1. The write value should be 1. R/W

b19 MSTPA19 D/A Converter
Module Stop

Target module: DA R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b22 to b20 — Reserved These bits are read as 1. The write value should be 1. R/W

b23 MSTPA23 10-bit A/D
Converter Module
Stop

Target module: AD R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b24 MSTPA24 Module Stop A24 Writing to and reading from this bit is enabled. When a
transition to all-module clock stop mode is made, be sure
that 1 has been written to this bit.

R/W

b26, b25 — Reserved These bits are read as 1. The write value should be 1. R/W

b27 MSTPA27 Module Stop A27 Writing to and reading from this bit is enabled. When a
transition to all-module clock stop mode is made, be sure
that 1 has been written to this bit.

R/W

b28 MSTPA28 DMA Controller/
Data Transfer
Controller Module
Stop

Target module: DMAC/DTC R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b29 MSTPA29 EXDMA Controller
Module Stop

Target module: EXDMAC R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b30 — Reserved This bit is read as 1. The write value should be 1. R/W

b31 ACSE All-Module Clock
Stop Mode Enable

0: All-module clock stop mode is disabled R/W

1: All-module clock stop mode is enabled

ACSE Bit (All-Module Clock Stop Mode Enable)
The ACSE bit enables or disables a transition to all-module clock stop mode.

With the ACSE bit set to 1, when the CPU executes the WAIT instruction with the SBYCR.SSBY bit,
MSTPCRA, MSTPCRB, and MSTPCRC satisfying specified conditions, the LSI enters all-module clock stop mode.
For details, see section 11.6.2, All-Module Clock Stop Mode.

Whether to stop the 8-bit timers or not can be selected by the MSTPA5 and MSTPA4 bits.
When the MSTPCRA.ACSE bit � 0 while the SBYCR.SSBY � 0, a transition to sleep mode is made after

the WAIT instruction is executed.

Figure 12.3 Module Stop Control Register A Settings [1], pages 282–283.—Continued
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MSTPB
31

MSTPB
30

MSTPB
29

MSTPB
28

MSTPB
27

MSTPB
26

MSTPB
25

MSTPB
24

MSTPB
23 — MSTPB

21
MSTPB
20

MSTPB
19

MSTPB
18

MSTPB
17

MSTPB
16

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Value after reset:

MSTPB
15 — — — — — — MSTPB

8 — — — MSTPB
4 — MSTPB

2
MSTPB

1
MSTPB

0

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Value after reset:

Module Stop Control Register B (MSTPCRB)
Address(es): 0008 0014h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b0 MSTPB0 CAN Module 0
Module Stop*1

Target module: CAN0 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b1 MSTPB1 CAN Module 1
Module Stop*1

Target module: CAN1 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b2 MSTPB2 CAN Module 2
Module Stop*1

Target module: CAN2 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b3 — Reserved This bit is read as 1. The write value should be 1. R/W

b4 MSTPB4 Serial Communication
Interface SCId Module
Stop

Target module: SCId (SCI12) R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b7 to b5 — Reserved These bits are read as 1. The write value should be 1. R/W

b8 MSTPB8 Temperature Sensor
Module Stop

Target module: Temperature sensor R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b14 to b9 — Reserved These bits are always read as 1. The write value should always be 1. R/W

b15 MSTPB15 Ethernet Controller
DMAC Module Stop

Target module: EDMAC R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b16 MSTPB16 Serial Peripheral
Interface 1 Module
Stop

Target module: RSPI1 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b17 MSTPB17 Serial Peripheral
Interface 0 Module
Stop

Target module: RSPI0 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b18 MSTPB18 Universal Serial Bus
Interface (Port 1)
Module Stop*2

Target module: USB1 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

Figure 12.4 Module Stop Control Register B Settings [1], pages 284–285.—Continues
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BIT SYMBOL BIT NAME DESCRIPTION R/W

b19 MSTPB19 Universal Serial Bus
Interface (Port 0)
Module Stop*2

Target module: USB0 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b20 MSTPB20 I2C Bus Interface 1
Module Stop

Target module: RIIC1 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b21 MSTPB21 I2C Bus Interface 0
Module Stop

Target module: RIIC0 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b22 — Reserved This bit is read as 1. The write value should be 1. R/W

b23 MSTPB23 CRC Calculator
Module Stop

Target module: CRC R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b24 MSTPB24 Serial Communication
Interface 7 Module
Stop

Target module: SCI7 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b25 MSTPB25 Serial Communication
Interface 6 Module
Stop

Target module: SCI6 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b26 MSTPB26 Serial Communication
Interface 5 Module
Stop

Target module: SCI5 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b27 MSTPB27 Serial Communication
Interface 4 Module
Stop

Target module: SCI4 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b28 MSTPB28 Serial Communication
Interface 3 Module
Stop

Target module: SCI3 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b29 MSTPB29 Serial Communication
Interface 2 Module
Stop

Target module: SCI2 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b30 MSTPB30 Serial Communication
Interface 1 Module
Stop

Target module: SCI1 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

b31 MSTPB31 Serial Communication
Interface 0 Module
Stop

Target module: SCI0 R/W

0: The module-stop state is canceled

1: Transition to the module-stop state is made

Notes: 1. The MSTPBi bit should be rewritten while the oscillation of the clock controlled by MSTPBi is stabilized. For
entering software standby mode after rewriting the MSTPBi bit, wait for two CAN clock (fCANCLK) cycles after
rewriting, and execute the WAIT instruction (i � 0 to 2).

2. For entering software standby mode after rewriting the MSTPB1i bit, wait for two USB clock (UCLK) cycles after
rewriting, and execute the WAIT instruction. (i � 8, 9)

Figure 12.4 Module Stop Control Register B Settings [1], pages 284–285.—Continued
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Deep Standby Control Register (DPSBYCR)
Address(es): 0008 C280h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b1, b0 DEEPCUT
[1:0]

Deep Cut b1 b0 R/W

0 0: Power is supplied to the RAM (RAM0*1) and USB
resume detecting unit in deep software standby
mode

0 1: Power is not supplied to the RAM (RAM0*1) and
USB resume detecting unit in deep software
standby mode

1 0: Setting prohibited

1 1: Power is not supplied to the RAM (RAM0*1) and
USB resume detecting unit in deep software
standby mode.
In addition, LVD is stopped and the low power
consumption function in a power-on reset circuit
is enabled.

b5 to b2 — Reserved These bits are read as 0. The write value should be 0. R/W

b6 IOKEEP I/O Port
Retention

0: Deep software standby mode and I/O port retention
are canceled simultaneously.

R/W

1: The I/O port state is retained even after deep
software standby mode is canceled. Then, writing 0
to the IOKEEP bit cancels the I/O port retention.

b7 DPSBY Deep Software
Standby

SSBY b7 R/W

0 0: Transition to sleep mode or all-module clock stop
mode is made after the WAIT instruction is
executed

0 1: Transition to sleep mode or all-module clock stop
mode is made after the WAIT instruction is
executed

1 0: Transition to software standby mode is made
after the WAIT instruction is executed

1 1: Transition to deep software standby mode is
made after the WAIT instruction is executed

Note: 1. For the RAM address space, see Table 11.2.

DPSBY IOKEEP — — — —

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 1Value after reset:

DEEPCUT[1:0]

Figure 12.5 Deep Standby Control Register [1], page 294.—Continues
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Figure 12.5 Deep Standby Control Register [1], page 294.—Continued

DPSBYCR is not initialized by the internal reset signal that is the source to cancel the deep software standby
mode. For details, see Table 6.2, Targets to be Initialized by Each Reset Source.

DEEPCUT[1:0] Bits (Deep Cut)
The DEEPCUT[1:0] bits control the internal power supply to the RAM and USB resume detecting unit in deep
software standby mode. In addition, these bits control the state of LVD and power-on reset circuit in deep
software standby mode.

The internal power supply of RAM0 and USB resume detecting unit can be controlled by the setting of
the DEEPCUT[1:0] bits.

When a USB suspend/resume interrupt is used as a deep software standby mode canceling source, the
DEEPCUT[1:0] bits must be set to 00b.

When an LVD interrupt is used in deep software standby mode, the DEEPCUT[1:0] bits must be set to
00b or 01b.

For lower power consumption, set the DEEPCUT[1:0] bits to 11b so that the LVD is stopped and the low
power consumption function of the power-on reset circuit is enabled.

The internal power supply of RAM1 is stopped in deep software standby mode regardless of the setting
of the DEEPCUT[1:0] bits.

IOKEEP Bit (I/O Port Retention)
In deep software standby mode, I/O ports keep retaining the same states from software standby mode. The
IOKEEP bit specifies whether to keep retaining the I/O port states from deep software standby mode even
after deep software standby mode is canceled, or to cancel retaining the I/O port states.

DPSBY Bit (Deep Software Standby)
The DPSBY bit controls transitions to deep software standby mode.

When the WAIT instruction is executed while the SBYCR.SSBY and DPSBY bits are both 1, the LSI enters
deep software standby mode through software standby mode.

The DPSBY bit remains 1 when deep software standby mode is canceled by certain pins which are
sources of external pin interrupts (NM1, IRQ0-DS to IRQ15-DS, SCL2-DS, SDA2-DS, and CRXI-DS) or a
peripheral interrupt (RTC alarm, RTC interval, USB suspend/resume, voltage monitoring 1, or voltage
monitoring 2). Write 0 to this bit to clear it.

The setting of the DPSBY bit becomes invalid when the IWDT is in auto-start mode and the
OFS0.IWDTSLCSTP is 0 (counting continues) or the IWDT is in register start mode and the SLCSTP bit in
IWDTCSTPR is 0.

Instead, even when the SBYCR.SSBY bit is 1 and the DPSBY bit 1, the transition after the execution of a
WAIT instruction is to software standby mode.

The setting of the DPSBY bit becomes invalid when voltage monitoring 1 reset is enabled by the voltage
monitoring 1 circuit mode select bit (LVD1CR0.LVD1RI � 1) or when a voltage monitoring 2 reset is selected
by the voltage monitoring 2 circuit mode bit (LVD2CR0.LVD2RI � 1). In this case, even when the SBYCR.SSBY
bit is 1 and the DPSBY bit is 1, the transition after the execution of a WAIT instruction is to software standby
mode.
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PSTOP
1

PSTOP
0 — —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

— — — — — — — —

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

System Clock Control Register (SCKCR)
Address(es): 0008 0020h

BIT SYMBOL BIT NAME DESCRIPTION R/W

b3 to b0 — Reserved These bits should be set to 0001b. R/W

b7 to b4 — Reserved These bits should be set to 0001b. R/W

b11 to b8 PCKB[3:0] Peripheral Module
Clock B (PCLKB)
Select*1, *5

b11 b8 R/W

0 0 0 0: ×1/1

0 0 0 1: ×1/2

0 0 1 0: ×1/4

0 0 1 1: ×1/8

0 1 0 0: ×1/16

0 1 0 1: ×1/32

0 1 1 0: ×1/64

Settings other than above are prohibited.

b15 to b12 PCKA[3:0] Peripheral Module
Clock A (PCLKA)
Select*1, *5

b15 b12 R/W

0 0 0 0: ×1/1

0 0 0 1: ×1/2

0 0 1 0: ×1/4

0 0 1 1: ×1/8

0 1 0 0: ×1/16

0 1 0 1: ×1/32

0 1 1 0: ×1/64

Settings other than those listed above are prohibited.

FCK[3:0]

PCKA[3:0]PCKA[3:0] PCKB[3:0]

ICK[3:0] BCK[3:0]

Figure 12.6 System Clock Control Register [1], page 245.—Continues
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BIT SYMBOL BIT NAME DESCRIPTION R/W
b19 to b16 BCK[3:0] External Bus Clock

(BCLK) Select*1, *2 , *5
b19 b16 R/W

0 0 0 0: ×1/1

0 0 0 1: ×1/2

0 0 1 0: ×1/4

0 0 1 1: ×1/8

0 1 0 0: ×1/16

0 1 0 1: ×1/32

0 1 1 0: ×1/64

Settings other than above are prohibited.

b21 to b20 — Reserved These bits are always read as 0. The write value should
always be 0.

R/W

b22 PSTOP0 SDCLK Pin Output
Control

0: SDCLK pin output is enabled. R/W

1: SDCLK pin output is disabled. (Fixed high)

b23 PSTOP1 BCLK Pin Output
Control*3

0: BCLK pin output is enabled. R/W

1: BCLK pin output is disabled. (Fixed high)

b27 to b24 ICK[3:0] System
Clock (ICLK)
Select*1, *2, *4, *5

b27 b24 R/W

0 0 0 0: ×1/1

0 0 0 1: ×1/2

0 0 1 0: ×1/4

0 0 1 1: ×1/8

0 1 0 0: ×1/16

0 1 0 1: ×1/32

0 1 1 0: ×1/64

Settings other than above are prohibited.

b31 to b28 FCK[3:0] FlashIF
Clock (FCLK)
Select*1, *4, *5

b31 b28 R/W

0 0 0 0: ×1/1

0 0 0 1: ×1/2

0 0 1 0: ×1/4

0 0 1 1: ×1/8

0 1 0 0: ×1/16

0 1 0 1: ×1/32

0 1 1 0: ×1/64

Settings other than above are prohibited.

Notes: 1. The setting for division by one is prohibited if the PLL is selected.
2. Do not make a setting such that the ICLK runs at a lower frequency than the external bus clock.
3. When operation of the external bus clock is selected, the P53 I/O port pin function is not available because it is multiplexed on
the same pin as the BCLK pin function.

4. When the SCKCR3.CKSEL[2:0] bits are selecting the sub-clock oscillator in low-speed operating mode 2, division by 1 is the only
frequency division setting allowed for the ICLK and FCLK.

5. The setting for division by 1 or 2 is prohibited if the SCKCR3.CKSEL[2:0] bits are set to 010b (the main clock oscillator is selected)

Figure 12.6 System Clock Control Register [1], page 245.—Continued
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The module stop function has the capability to turn off the clocks for all peripherals or
for the peripherals not needed at any given time. This ability saves power of the unused
units. The unused units can drain power through unnecessary switching as well as leakage.
When the board is powered up most of the peripherals are disabled and prior settings must
be enabled. See Section 12.4 for more detail.

The SDCLK output control function has the ability to alter the clock that is used to
read the SDRAM. The SDCLK is an operating clock for the external bus controller [1].
This clock must not be set higher than the frequency of the system clock, ICLK. If the fre-
quency is set higher, the clock should be set to the same value as the ICLK. This clock
should be adjusted based on the maximum speed needed by the system in order to be able
to accomplish the memory accesses required for proper operation. If this clock is set to the
maximum frequency, power is wasted due to unnecessary switching during times of non-
use. Refer to Section 12.4 for examples of how to set this value.

12.4 BASIC EXAMPLES

12.4.1 Example 1: Setting the Multi Clock Function

The following code changes peripheral clocksA and B to different frequencies in order to al-
low them to run at different speeds. Line 2 removes the protection to the clock generation cir-
cuit register. Line 3 selects the PLL circuit to multiply the frequency from the 12 MHz oscil-
lator provided on the board by the factor that was set in reset program described. The PLL
circuit multiplies the input oscillator by 16 and sets it to . Line 4 sets
the peripheral clock A by dividing the PLL by 4 and setting it to .
Line 5 sets peripheral clock B by dividing the PLL by 8 and setting it to .
Line 6 turns the protection back on to the clock generation circuit registers.

1. void clockSetup() {
2. SYSTEM.PRCR.WORD = 0xA501;
3. SYSTEM.SCKCR3.WORD = 0x0400; //PLL Circuit(MP factor = 16)
4. SYSTEM.SCKCR.BIT.PCKA = 0x02;
5. SYSTEM.SCKCR.BIT.PCKB = 0x03;
6. SYSTEM.PRCR.WORD = 0xA500;
7. }

12.4.2 Example 2: Setting the Module Clock Function

The moduleStop function is the general format used to disable the clock for a specific
peripheral. As shown in the example, the first step is to enable the ability to modify the

192 � 8 � 24 MHz
192 � 4 � 48 MHz

12 � 16 � 192 MHz
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Module Stop Control Register by writing 0xA5xx to the write protect register. The upper
8 bits is the PRC key code, which decides what is prohibited or permitted for writing.
The lower bits (xx) are based on which registers are being modified. In line 2, the low
power registers are enabled. In line 3, the 12-bit A/D converter module is stopped. Last,
we ensure that the PRCR register is reset to disable writing to the low power registers in
case of a runaway program.

The all-module clock stop mode should be used to disable the clock for most of the pe-
ripherals. There are some exceptions; for example, the 8-bit timers must be explicitly
stopped. In line 8, writing to the registers related to low power mode is enabled. Line 9 en-
ables all-module clock stop mode. Line 10 verifies that the software standby bit is set to en-
ter all-module clock stop mode, it should be defaulted to this value. Line 11 write protects
those registers. Last, line 12 executes a wait statement that shifts to all-module clock stop
mode.

1. void moduleStop() {
2. SYSTEM.PRCR.WORD = 0xA502;
3. SYSTEM.MSTPCRA.BIT.MSTPA17 = 1;
4. SYSTEM.PRCR.WORD = 0xA500;
5. }
6.
7. void allModuleStop() {
8. SYSTEM.PRCR.WORD = 0xA502;
9. SYSTEM.MSTPCRA.BIT.ACSE = 1;

10. SYSTEM.SBYCR.SSBY = 0;
11. SYSTEM.PRCR.WORD = 0xA500;
12. wait();
13. }

12.4.3 Example 3: Setting the SDCLK Output Control Function

The following function is an example of how to set the SDRAM clock speed, as well as en-
able it. Line 2 turns off the write protection. Line 3 sets the external bus clock speed to
48 MHz, assuming the PLL circuit is selected and is outputting 192 MHz. Line 4 stops the
SDCLK so that line 5 can enable the SDCLK output. Line 6 starts the SDCLK output.
Line 7 turns the register protection back on.

1. void SDCLKSetup() {
2. SYSTEM.PRCR.WORD = 0xA501;

312 EMBEDDED SYSTEMS USING THE RENESAS RX63N MICROCONTROLLER
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3. SYSTEM.SCKCR.BIT.BCK = 0x02;
4. SYSTEM.SCKCR.BIT.PSTOP0 = 1;
5. SESTEM.PFBCR1.BIT.SDCLKE = 1;
6. SYSTEM.SCKCR.BIT.PSTOP0 = 0;
7. SYSTEM.PRCR.WORD = 0xA500;
8. }

12.5 ADVANCED CONCEPTS OF LOW POWER CONSUMPTION

Table 11.2 from the hardware manual [1, p. 256] clearly explains state of different periph-
erals in different low power modes.

12.5.1 Sleep Mode

In sleep mode the CPU stops operating but the contents of the CPU registers retain their
values. Peripherals can be kept awake or in operation in this mode. Sleep mode uses the
most power of all the low power modes but less power than the normal CPU operation.

To enter into Sleep Mode, first ensure that the interrupt to terminate this mode has
been set up correctly in order to allow cancelling sleep mode. To configure the inter-
rupt, enable the interrupt and set its priority level to the highest by setting the IPL[3:0]
bits of the PSW register in the CPU prior to executing a WAIT statement. This setting
causes the transition to sleep mode. Read the last I/O register to confirm the value writ-
ten was reflected.

Sleep mode can be canceled using any interrupt, as long as the interrupt was set up
prior to entering sleep mode. Sleep mode can be canceled by the reset pin, a power-on
reset, a voltage monitoring reset, or a reset caused by an IWDT underflow. The WDT
is stopped during sleep mode; therefore, it can be used in a program that uses WDT
without the worry of it being reset. It is possible to switch the clock source to return
from sleep mode. Refer to the Renesas Hardware Manual [1] on how to handle this
operation.

12.5.2 All-Module Clock Stop Mode

The all-module clock stop mode is a method of reducing power consumption on the
MCU/development board by disabling the bus controller, I/O ports, and most of the pe-
ripheral modules. The 8-bit timers, output port enable interrupts, the independent
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watchdog timer (IWDT), the power-on reset circuit, and the voltage detection circuits
are all left active. The remaining peripherals are turned off to prevent wasting clock cy-
cles and leakage. If the program is using the WDT, it is OK to place the processor in this
state as the WDT will stop counting. Since most embedded systems use a WDT, it
should stop counting during this mode. The all-module clock stop mode uses less power
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Reset state

Normal operation mode
(Program execution state)*6

Internal reset state

Sleep mode

All-module clock stop mode

Software standby
mode

Deep software
standby mode

WAIT instruction*1

All interrupts

WAIT instruction*1

Interrupt*2

WAIT instruction*1

Interrupt*3

RES# pin 5 High*5

Interrupt*4

*7

SBYCR.SSBY 5 0

SBYCR.SSBY 5 0
MSTPCRA.ACSE 5 1
MSTPCRA 5 FFFF FF[C-F]Fh
MSTPCRB 5 FFFF FFFFh
MSTPCRC[31:16] 5 FFFFh

SBYCR.SSBY 5 1

DPSBYCR.DPSBY 5 0

Low power consumption mode
(Program stopped state)

DPSBYCR.DPSBY 5 1

Refer to [2] for detail on notes 1-7.

Figure 12.7 State Machine for Low Power Modes [1], page 280.
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than the sleep mode since it disables all peripheral clocks, where in sleep mode only the
CPU clock is disabled.

Not all peripherals are enabled during power up. These peripherals must be enabled us-
ing the correct settings in the module stop control registers.

12.5.3 Software Standby Mode

Because one of its main functions is to stop the oscillator, software standby mode consid-
erably reduces power consumption. In this mode the CPU on-chip peripheral and the on-
chip oscillator functions stop. During this mode the contents of the CPU internal registers,
RAM data, on-chip peripheral functions, and the states of the I/O ports are maintained. The
WDT also stops counting and does not have to be disabled in this mode. This mode is a
good candidate for any processes that wait on an interrupt from an external process or pe-
ripheral prior to performing a task.

How to cancel this mode is important. It can be cancelled by an external pin inter-
rupt (the NMI or IRQ0-15), peripheral interrupt, RTC alarm, RTC Interval, IWDT, USB
suspend/resume, voltage monitoring, and resets.

12.5.4 Deep Software Standby Mode

The Deep Software Standby mode saves the most power. However, the data in the CPU
registers and most internal peripheral modules become undefined; therefore, needed data
may be possibly lost. Data in RAM0 may become undefined depending on the setting of
the DEPPCUT bits—a setting of ‘00’ retains data in RAM0. The reason for this loss is due
to the fact that the internal supply of power for these modules is stopped. In deep software
standby mode the CPU, internal peripheral modules, RAM1-3, and all functions of the os-
cillators are stopped. The WDT stops counting when the power supply and oscillators are
stopped. Similar to the Software Standby mode, the I/O port states are also maintained
when the power and oscillators are stopped.

Obviously, a designer must consider that there is a tradeoff between power savings and
start-up times when designing a system. For example, if a system is put in Deep Software
Standby Mode, the software should write all valuable data stored in RAM to non-volatile
memory before sleeping. Then some interrupting event (i.e. button press) can “wake up”
the processor and have the software re-load the RAM and reactivate all peripherals to the
“pre-sleep” state. Many embedded devices, like photocopiers and fax machines, use these
energy savings processes.

This mode is cancelled using external interrupt source pins (the NMI, IRQ0-DS to
IRQ15-DS, SCL2-DS, SDA2-DS or CRX1-DS), peripheral interrupts (RTC alarm, RTC
interval, USB suspend/resume, voltage monitoring), and a processor reset.
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Refer to the example in Section 12.6.3 for how to enter and cancel the Deep Software
Standby mode.

Table 11.2 from the hardware manual [1, p. 256] clearly explains the states of the dif-
ferent peripherals in these four low power modes.

12.6 ADVANCED CONCEPT EXAMPLES

12.6.1 Example 1: Sleep Mode

The following example shows how to enter sleep mode after a switch is pressed. Once in
low power mode, several types of interrupts can be used to cancel and return to sleep mode
operation. A timer is used to cancel the low power mode and return to standard operation.
Refer to Section 12.5.1 for more details.

1. #include <stdint.h>
2. #include <stdio.h>
3. #include <machine.h>
4. #include "platform.h"
5. #include "r_switches.h"
6. #include "mcu_mode.h"
7.
8. void tmrSetup(void);
9. volatile int switchPressed = 0;

10.
11. void main(void) {
12. int i;
13. lcd_initialize();
14. lcd_clear();
15. R_SWITCHES_Init();
16. while (1){
17. switchPressed = 0;
18. IR(ICU,IRQ8) = 0;
19. IEN(ICU,IRQ8) = 1;
20. lcd_display(LCD_LINE4, "Working");
21. lcd_display(LCD_LINE5, "Press SW1");
22. lcd_display(LCD_LINE6, "to sleep.");
23. while(!switchPressed);
24. lcd_display(LCD_LINE4, "Sleeping");
25. lcd_display(LCD_LINE5, "Timer will");
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26. lcd_display(LCD_LINE6, "awake.");
27. for(i = 0; i < 9800000; i++);
28. if(0x100000 & get_psw()) {
29. chg_pmsuper();
30. }
31. clrpsw_i();
32. IR(ICU,IRQ8 ) = 0;
33. IEN(ICU, IRQ8) = 0;
34. SYSTEM.SBYCR.BIT.SSBY = 0;
35. if(SYSTEM.SBYCR.WORD);
36. tmrSetup();
37. wait();
38. chg_pmusr();
39. for(i = 0; i < 9800000; i++);
40. }
41. }
42. void sw1_callback(void) {
43. switchPressed = 1;
44. }
45.
46. void tmrSetup(void) {
47. SYSTEM.PRCR.WORD = 0xA50B;
48. SYSTEM.MSTPCRA.BIT.MSTPA5 = 0;
49. TMR0.TCCR.BIT.CSS = 1;
50. TMR0.TCCR.BIT.CKS = 6;
51. TMR0.TCR.BIT.CCLR = 1;
52. TMR0.TCORA = 0xFF;
53. TMR1.TCCR.BIT.CSS = 3;
54. TMR1.TCR.BIT.OVIE = 1;
55. TMR1.TCNT = 0;
56. TMR0.TCNT = 0;
57. IEN(TMR1, OVI1) = 1;
58. ICU.IPR[173].BIT.IPR = 3;
59. }

Lines 1 through 6 contain all the header files that are included in order to complete the task
in the program. Line 8 declares the tmrSetup function prototype. Lines 12 and 13 then ini-
tialize and clear the LCD for use. Line 15 calls the function which sets the switch direction
and interrupt control. Line 18 clears the switch1, IRQ8, and pending interrupts. Line 19 en-
ables the interrupt associated with switch1 and the IRQ8. Lines 20 through 22 display LCD
messages prior to pressing the switch.
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Line 23 waits on a switch to be pressed. The switchPressed flag is set in the sw1_call-
back function from the ISR. Once a switch is pressed, lines 24 through 26 display the
“Sleeping Press SW1 to awake.” Line 27 is used to allow the processor hardware to latch
all settings into the registers prior to executing Line 28. Line 28 through 30 check the PSW
register for user mode. If in user mode, the mode is changed to supervisor mode. Line 31
disables all of the maskable interrupts in order to disable the interrupt and to cancel sleep
mode, for example, preventing the timer overflow from being triggered prior to entering
the low power mode. Line 32 clears any pending interrupt requests prior to entering low
power mode. Line 33 disables the switch interrupt while the timer is being used to cancel
the low power mode. Line 34 sets the software standby mode to 0, telling the controller to
switch into sleep mode once a wait statement is issued. Line 35 provides a force register
read to ensure the software standby mode selection has completed. Line 36 calls the timer
function that sets the timer to a predefined value for interruption. Line 37 tells the con-
troller to enter into low power mode and enable interrupts. Line 38 changes the processor
to user mode from supervisor mode. Line 39 provides a wait for the processor to stabilize
upon wake up.

12.6.2 Example 2: Software Standby Mode

The following example demonstrates the transition to software standby mode after a switch
is pressed. In this example the software standby mode is cancelled and returned to normal
operation using a switch press. Refer to Section 12.5.3, Software Standby Mode, for other
interrupts allowed to cancel this mode.

1. #include <stdint.h>
2. #include <stdio.h>
3. #include <machine.h>
4. #include "platform.h"
5. #include "r_switches.h"
6. #include "mcu_mode.h"
7.
8. void sw1_callback(void);
9.

10. volatile int switchPressed = 0;
11.
12. void main(void) {
13. int i;
14. lcd_initialize();
15. lcd_clear();
16. R_SWITCHES_Init();
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17. while(1) {
18. switchPressed = 0;
19. IR(ICU,IRQ8 ) = 0;
20. IEN(ICU, IRQ8) = 1;
21.
22. lcd_display(LCD_LINE4, "Working");
23. lcd_display(LCD_LINE5, "Press SW1");
24. lcd_display(LCD_LINE6, "for Software");
25. lcd_display(LCD_LINE7, "Standby.");
26.
27. while(!switchPressed);
28.
29. lcd_display(LCD_LINE4, "Software");
30. lcd_display(LCD_LINE5, "Standby");
31. lcd_display(LCD_LINE6, "Press SW1");
32. lcd_display(LCD_LINE7, "to awake");
33.
34. for(i = 0; i < 9800000; i++);
35. if(0x100000 & get_psw()) {
36. chg_pmsuper();
37. }
38. clrpsw_i();
39. IR(ICU,IRQ8 ) = 0;
40. IEN(ICU, IRQ8) = 1;
41. SYSTEM.SBYCR.BIT.SSBY = 1;
42. SYSTEM.SBYCR.BIT.OPE = 0;
43. SYSTEM.DPSBYCR.BIT.DPSBY = 0;
44. if(SYSTEM.OSTDCR.BYTE)
45. nop();
46. if(SYSTEM.SBYCR.WORD)
47. nop();
48. wait();
49. chg_pmusr();
50. for(i = 0; i < 9800000; i++);
51. }
52. }
53.
54. void sw1_callback(void) {
55. switchPressed = 1;
56. }
57.
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Lines 1 through 7 are the header files that are included in order to complete the task in the
program. Line 8 declares the switch1 callback function prototype. Lines 14 and 15 initial-
ize and clear the LCD for use. Line 16 calls the function which sets the switch direction
and interrupt controls. Line 19 is the code used to clear the switch1, IRQ8, and any pend-
ing interrupts. Line 20 enables the interrupt associated with the switch1, IRQ8.
Lines 20 through 22 display LCD messages prior to a switch being pressed. Line 27 waits
on a switch to be pressed. The switchPressed flag is set in the sw1_callback when that
function is executed in an interrupt service routine. Once a switch is pressed,
lines 29 through 32 display the “Software Standby.” Line 34 is used to allow the processor
hardware to latch all settings into the registers prior to executing line 35. Lines 35 through
36 check the PSW register for user mode. If in user mode, the mode is changed to supervi-
sor mode. Line 37 disables all the maskable interrupts to ensure the interrupt to cancel soft-
ware standby mode; for example, the switch press is not triggered prior to entering the low
power mode. Line 38 clears any pending interrupt requests prior to entering the low power
mode. Line 39 enables the switch interrupt that is used to cancel the software standby
mode. Line 40 sets the software standby mode to 1, telling the controller to switch into
software standby mode once a wait statement is issued. Line 42 determines whether or not
to enter deep software standby mode. Lines 44 through 46 are a force register read that en-
sure the software standby mode selection has completed. Line 47 tells the controller to en-
ter into the low power mode and enable interrupts. Line 49 changes the processor to user
mode from supervisor mode. Line 50 issues a wait for the processor to stabilize upon
wake up.

12.6.3 Example 3: Deep Software Standby Mode

The following example demonstrates switching the processor into the deep software
standby mode at a switch press. The Real Time Clock Alarm Interrupt cancels the current
mode and returns to normal operation. Refer to Section 12.5.4, Deep Software Standby
Mode, for other interrupts allowed to cancel this mode.

1. #include <stdint.h>
2. #include <stdio.h>
3. #include <machine.h>
4. #include "platform.h"
5. #include "r_switches.h"
6. #include "mcu_mode.h"
7.
8. void RTCSetup(void);
9. volatile int switchPressed = 0;

12.ES_Conrad_RX63N_Advanced_CH12.qxd:RX63N Advanced  3/5/14  7:57 AM  Page 320



CHAPTER 12 / PROCESSOR SETTINGS AND RUNNING IN LOW POWER MODES 321

10.
11. void main(void) {
12. int i;
13. lcd_initialize();
14. lcd_clear();
15.
16. R_SWITCHES_Init();
17.
18. while (1) {
19. switchPressed = 0;
20. RTC.RCR2.BIT.START = 0;
21. IR(ICU,IRQ8 ) = 0;;
22. IEN(ICU, IRQ8) = 1;
23. lcd_display(LCD_LINE4, "Working");
24. lcd_display(LCD_LINE5, "Press SW1 4");
25. lcd_display(LCD_LINE6, "Deep Soft.");
26. lcd_display(LCD_LINE7, "Standby.");
27. while(!switchPressed);
28. lcd_display(LCD_LINE4, "Deep");
29. lcd_display(LCD_LINE5, "Software");
30. lcd_display(LCD_LINE6, "Standby");
31. lcd_display(LCD_LINE7, "Mode");
32. for(i = 0; i < 9800000; i++);
33. if(0x100000 & get_psw()) {
34. chg_pmsuper();
35. }
36. clrpsw_i();
37. IR(ICU,IRQ8 ) = 0;
38. IEN(ICU, IRQ8) = 0;
39. SYSTEM.SBYCR.BIT.SSBY = 1;
40. SYSTEM.SBYCR.BIT.OPE = 0;
41. SYSTEM.DPSBYCR.BIT.DPSBY = 1;
42. if (SYSTEM.OSTDCR.BYTE) {
43. nop();
44. }
45. if (SYSTEM.SBYCR.WORD) {
46. nop();
47. }
48. RTCSetup();
49. wait();
50. chg_pmusr();
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51. for(i = 0; i < 9800000; i++);
52. }
53. }
54.
55. void sw1_callback(void) {
56. switchPressed = 1;
57. }
58.
59. void RTCSetup(void) {
60. RTC.RCR4.BIT.RCKSEL = 1;
61. RTC.RCR3.BIT.RTCEN = 1;
62. RTC.RCR2.BIT.START = 1;
63. ICU.IER[11].BIT.IEN4 = 0;
64. RTC.RSECAR.BYTE = 0x85;
65. RTC.RCR1.BYTE = 1;
66. while(RTC.RCR1.BYTE != 1);
67. ICU.IR[92].BIT.IR = 0;
68. ICU.IER[11].BIT.IEN4 = 1;
69. ICU.IPR[92].BIT.IPR = 3;
70. SYSTEM.PRCR.WORD = 0xA50B;
71. SYSTEM.DPSIER2.BIT.DRTCAIE = 1;
72. SYSTEM.DPSIFR2.BIT.DRTCAIF = 1;
73. }

Lines 1 through 6 are the header files included in order to complete the task in the program.
Line 8 declares the Realtime Clock Setup function prototype. Lines 13 and 14 initialize
and clear the LCD for use. Line 16 calls the function which sets the switch direction and
interrupt controls. At line 20, the RTC is stopped. Line 21 is the code used to clear the
switch1, IRQ8, and pending interrupts. Line 22 enables the interrupt associated with the
switch1 and IRQ8. Lines 23 through 26 displays the LCD message prior to the switch
press. Line 27 waits on a switch to be pressed. The switchPressed flag is set in the
sw1_callback function from the ISR.

Once a switch is pressed lines 28 through 31 display the “Deep Software Standby
Mode.” Line 32 is used to allow the processor hardware to latch all settings into the reg-
isters prior to executing Line 33. Line 33 through 35 check the PSW register for user
mode; if in user mode, the mode is changed to supervisor mode. Line 36 disables mask-
able interrupts to ensure the interrupts to cancel out deep software standby mode (i.e.,
the RTC alarm) is not triggered prior to entering the low power mode. Line 37 clears
any pending interrupt requests prior to entering the low power mode and line 38 dis-
ables the switch interrupt as it will not be used to cancel the deep software standby
mode. Line 39 sets the software standby mode to 1, telling the controller to switch into
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software standby mode once a wait statement is issued. Line 40 sets the address bus and
bus control signals to a high impedance state in order to conserve power. Line 41 sets to
enter deep software standby mode. Lines 42 through 47 are a force of register read
to ensure the deep software standby mode selection has completed. Line 48 calls the
RTC setup function which enables all interrupts, sets up the alarm to a certain second
value, enables interrupts, and starts the clock. Line 49 tells the controller to enter into
the low power mode and enable interrupts. Line 50 changes the processor to user mode
from supervisor mode. Line 51 is used as a wait for the processor to stabilize upon
wake up.

12.7 RECAP

Power consumption is an integral part of any embedded system design and must be ac-
counted for early on in the process, even as early as MCU selection. Most of the today’s
modern processors have multiple modes to reduce power consumption depending on ap-
plication needs.

The RX63N has four low power modes: all-module clock stop, software standby, sleep
mode deep software standby mode, as well as the ability to change clock speeds to suit
your application. The RX63N also has multiple clocks for bus and peripheral control. One
can also save power by turning off one or more peripherals devices in the RX63N micro-
controller.
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12.9 EXERCISES

1. List out the tasks to be done upon power-on reset to configure the MCU.
2. What are the two modes in which the RX63N processor and other processors

consume their power?
3. What are the two different areas of power loss for the RX63N processor as well

as most others?
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4. What should be an Embedded Systems Designer’s focus in reducing power con-
sumption in the RX63N processor?

5. Write a function to change the system clock frequency to 48 MHz. Do not as-
sume that any of the registers are defaulted or set correctly.

6. How do you unprotect ALL the registers that are write-protected so that they can
be written directly, using one line only?

7. List out the low power modes in the RX63N in descending order of their power
consumption.

8. In All-Module Clock Stop Mode, are all of the peripheral modules turned off?
9. Which interrupts are allowed to cancel the Deep Software Standby state?
10. Does a reset of any kind cancel ALL low power modes?
11. In Deep Software Standby Mode do all values in RAM and computer registers

remain valid?
12. Give one good reason, with an example, of why power consumption is a major

requirement in embedded systems?
13. What is the difference between sleep mode and software standby mode?
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A
Acceptance filter, CAN, 243
ACK field, of data and remote

frame, 237
Acknowledge check, 241
ACSE bit, 304
Activation record, 24
Addressing mode(s)
immediate, 6
register direct, 6–7
register indirect, 7
register relative, 7–8

All module clock mode, low
power consumption, 301

All-module clock stop mode, low
power consumption,
313–15

All-module clock stop mode
enable (ACSE) bit, 304

Arbitration field, of data and
remote frame, 236

Argument(s)
concepts of, 25
description of, 24
passing
methods for, 25
rules for, 23–26

Arithmetic instructions, 9–10
Assembly language
addresses in memory, 13–15
addressing modes, 5–8
concepts of, 1, 5–19
data storage and use, 2–5
inline assembly, 18–19
instruction set (see

instruction set)
machine code, low vs high, 1
notations, of RX family, 15–16

registers of, 3
set up ports and turn on LEDs,

ex, 19–20
simple software debounce for

switch, ex, 20–21
source code, writing of, 15–18

Auto-start mode, 282–83, 284

B
BCADR [10:0] bits, 162
BCK[3.0] bit, low power

consumption, 301
BCLK, power consumption,

reduction of, 300–301
BCR, 245, 257
Binary semaphore, 78, 87
Bit configuration register (BCR),

245, 257
Bit monitoring, 240
Bit rate
automatic adjustment of, in

boot mode, 180–81
and CAN, 266

Bit stuffing, 240
Bit timing setting, CAN, 266
Bit(s). see individual bits
Bitwise operation, description

of, 5
Blank check address setting, 162
Block transfer mode
DMAC and, 123–24
external data transfer, ex,

132–33
internal data transfer, ex, 126
setting transfer, ex, 116

Boot mode
bit rate, automatic adjustment

of, 180–81

control code, 181
flash memory and, 142, 178
ID code protection, 181,

182–83
startup process and, 295
state transitions in,

179–80
system configuration, 178

Brownout condition, 291
Buffer memory, FIFO. see FIFO

memory buffer
Bulk transfers, of USB, 191
Bus arbitration, in CAN protocol,

238–39
Bus off state, in CAN protocol,

241–42
Bus topology, 210, 211

C
CAN. see Controller Area

Network (CAN)
Carrier Sense Multiple Access

with Collision
Detection, 210

Cause flag(s), floating point
status word, 61–62

CCI, 193
CDC. see Communication Device

Class (CDC)
Checksum check, 241
CKS [3.0] bits, 279
Class driver(s). see also Human

Interface Device (HID)
communication device class,

192–94, 195
mass storage device class,

194, 196
Clock setting, of CAN, 265

13.ES_Conrad_RX63N_Advanced_Index.qxd:Conrad  3/7/14  11:49 AM  Page 325



326 INDEX

Clock(s)
default frequency, 296
low power modes (see low

power modes and
consumption)

module clock function, ex,
311–12

multi-clock functionality, 311
power consumption, reduction

of, 301
Cluster transfer mode
description of, 128
external data transfer, ex,

133–35
operation while in, fig, 130
register update operation, 129

CMDLK bit, 150
CNTVAL [13.0] bits,

280, 288
Co-axial bus topology, 210
Code, writing rules and process

of, 15–18
Command-lock state, and

FCU, 177
Communication Class Interface

(CCI), 193
Communication Device Class

(CDC)
description of, 192
endpoints of, 194
function examples for, 193
groups of, 192–93
subclasses of, 195

Complex number kernel(s), 94
Config_r_can_api.h, 270
Connectors, USB, 187–88
Control code, in boot mode, 181
Control field, of data and remote

frame, 237
Control register (CTLR), 245
Control transfer instructions,

11–12
Controller Area Network (CAN)
acceptance filtering, 266–68

application programming
interface (API), 270–73

block diagram of, fig, 243
bus arbitration, 238–39
bus initialization, ex, 271–72
bus send/receive, ex, 272–73
bus standards, 242
characteristics of, 234–35
communication speed setting,

265–66
concepts of, basic, 242–62
data transfer synchronization,

240
description of, 234, 241–42
error detection, 240–42
error state, confirmation of,

241–42
fault confinement, 235, 241
frame
data and remote, 236–38
error, 237–38
overload, 238

initialization of bus, ex,
255–58

interrupt use, ex, 269–70
interrupts of, 268–69
mailbox modes of, 244
main function, ex, 260–62
masking functions, 266–68
message broadcasting and,

235, 239–40
nodes, states of, 241
operating modes of, 262–64
protocol, theory of, 234–42
reception, 249–52, 253,

258–59
registers of, 244–49
transmission, 249–50, 252,

254, 259
voltage levels of, 234

Co-operative scheduling, in
FreeRTOS, 84

Counting semaphore, 78
CRC delimiter bit, 237

CRC field, of data and remote
frame, 237

CRC sequence field, 237
CRXi, 243
CSMA/CD, 210
CTLR, 245
CTXi, 243

D
Data and remote frame, of

Controller Area Network
(CAN) protocol, 236–38

Data Class Interface (DCI), 193
Data communication

equipment, 209
Data Length Code (DLC)

field, 237
Data packet, USB

transaction, 191
Data storage
data, types of, 4–5
description of, 2
memory, important addresses

in, 13–15
memory features of RX63N, 2
memory map, 14, 32–34
registers for, 3

Data terminal equipment
(DTEs), 209

Data transfer instructions, 8–9
Data transfer synchronization,

and CAN protocol, 240
DCEs, 209
DCI, 193
Debounce for switch, ex,

20–21
Deep cut (DEEPCUT[1.0])

bit, 308
Deep software, low power

consumption, 301
Deep software standby (DPSBY)

bit, 308
Deep software standby mode,

315, 320–23
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Deep standby control register
(DPSBYCR), 307–8

DEEPCUT[1.0] bit, 308
Denormalized number bit(s), 62
DFLAE bit, 150
DFLBCCNT, 162
DFLBCSTAT, 163
DFLRE0, 151–52
DFLRE1, 152
DFLREy, 177
DFLRPE bit, 150
DFLWE0, 153
DFLWE1, 154–55
DFLWEy, 177
DFLWPE bit, 150
DFT, 107
Digital signal processing (DSP)
data, structures and types of,

95–96
description of, 93
executive attributes of, 95
fast fourier transform (FFT),

107–9
finite impulse response (FIR)

filter, ex, 98–103
floating point exception, 97
function arguments, 98
function naming convention,

97–98
instructions of, 13
kernel, defined, 93
kernel handles, 96–97
library, concepts of, 93–98
library kernels, 94–95
matrix multiplication, 103–7
vector and matrices, 96

Direct memory access controller
(DMAC)

block diagram of, 113, 115
cluster transfer mode, 128–30
concepts of, 111–23
description of, 112–13
external data transfer, ex,

131–35

external direct memory access
controller, 126–30

internal data transfer, ex,
123–27

operation, modes of, 113, 116,
120–23

registers of, 115–20, 122,
123, 135

specifications of, 114
Direct memory access controller

(DMAC)i, interrupts,
examples with, 135–37

Discrete Fourier Transform
(DFT), 107

Divide-by-zero exception (EZ),
56, 59, 62

DLC, 237
DMA block transfer count

register (DMCRB), 117
DMA destination address register

(DMDAR), 116
DMA interrupt setting register

(DMINT), 117, 119
DMA source address register

(DMSAR), 115–16
DMA transfer count register

(DMCRA), 116–17
DMA transfer enable register

(DMCNT), 117–20
DMA transfer mode register

(DMTMD), 117, 118
DMAC. see direct memory

access controller (DMAC)
DMCNT, 117–20
DMCRA, 116–17
DMCRB, 117
DMDAR, 116
DMINT, 117, 119
DMSAR, 115–16
DMTMD, 117, 118
Double precision, 47–49
Down-counter value, 280, 288
DPSBY bit, 308
DPSBYCR register, 307–8

DSP. see digital signal
processing (DSP)

DTEs, 209

E
E stage, 50
E2 data flash
internet protocol and, 212
low power consumption, 301

E2 DataFlash access violation
flag, 150

E2 DataFlash blank check
control register
(DFLBCCNT), 162

E2 DataFlash blank check status
register
(DFLBCSTAT), 163

E2 DataFlash lock-bit read
mode, 146

E2 DataFlash memory. see flash
memory

E2 DataFlash P/E enable register
0 (DFLWE0), 153

E2 DataFlash P/E enable register
1 (DFLWE1), 154–55

E2 DataFlash P/E modes
description of, 146
switching to, 164–65

E2 DataFlash P/E normal
mode, 146

E2 DataFlash
programming/erasure
protection violation
bit, 150

E2 DataFlash read enable register
0 (DFLRE0), 151–52

E2 DataFlash read enable register
1 (DFLRE1), 152

E2 DataFlash read protection
violation flag, 150

E2 DataFlash status read
mode, 146

ECMR, 216–19
ECSR, 220, 221

13.ES_Conrad_RX63N_Advanced_Index.qxd:Conrad  3/7/14  11:49 AM  Page 327



328 INDEX

EDMAC. see ethernet controller
EDMAC mode register

(EDMR), 223
EDMAC receive request register

(EDRRR), 224–25
EDMAC transmit request register

(EDTRR), 224
EDMR, 223
EDRRR, 224–25
EDTRR, 224
EEPROM. see flash memory;

Virtual EEPROM (VEE)
EHCI, 190–91
Electrically erasable

programmable read-only
memory. see flash
memory; Virtual
EEPROM (VEE)

Embedded TCP/IP Stack [4], 212
Enhanced Host Controller

Interface, 190–91
EOF field, of data and remote

frame, 236, 237
Equation(s)
logic levels, 234
power consumption, 300
T-tap FIR filter, structure of, 99

Erasure. see flash memory
Erasure error flag, 157
Erasure suspend mode, 161
Erasure suspend status flag, 156
Error active state, in CAN

protocol, 241
Error delimiter, field of error

frame, 238
Error flag, field of error frame, 237
Error frame, in CAN protocol,

235, 237–38
Error passive state, in CAN

protocol, 241
ERSERR bit, 157
ERSSPD bit, 156
ESUSPMD bit, 161
ETHERC, 214

Ethernet controller
configuration of, 214
controller chip, 213–14
description of, 209
direct memory access

controller, 214–15,
222–26, 245

driver API, 227–31
frames
reception of, 215–16
transmission of, 214–15

internet protocol, 212
network topology, 209–11
receiving frames, ex, 230–31
registers of, 216–21, 223–26
set up, ex, 212–13
transmitting frames, ex,

229–30
Ethernet controller mode register

(ECMR), 216–17
Ethernet controller status register

(ECSR), 220, 221
Ethernet direct memory access

controller (EDMAC). see
ethernet controller

Ethernet mode control register,
217–18

Exception flag(s), floating point
status word, 62

Exception handling enable bit(s),
floating point status
word, 62

EXDMAC. see external direct
memory access controller
(EXDMAC)

Execution stage (E stage), 50
External direct memory access

controller (EXDMAC)
cluster transfer mode, 128–30
description of, 126
operation, modes of, 127
register update operation, 129
registers of, 128

EZ, 56, 59, 62

F
FADD, 54
Fast Fourier Kernel. see Fast

Fourier Transform (FFT)
Fast Fourier Transform (FFT),

93, 98
coefficients for, 109
description of, 107
set up for, 107–9

FASTAT, 149–50, 177
FCMDR, 161
FCMP, 55
FCPSR, 161
FCRME bit, 155
FCU. see flash control unit

(FCU)
FCU command register, 161
FCU command-lock flag, 150
FCU error flag, 158
FCU processing switching

register (FCPSR), 161
FCU RAM enable bit, 155
FCU RAM enable register

(FCURAME), 155
FCUERR bit, 158
FCURAME, 155
FENTRYR, 158–59, 177
FFT, 93, 98
FIFO mailbox mode, of

CAN, 244
File Transfer Protocol

(FTP), 212
Filter kernel(s), 94
Finite Impulse Response (FIR)

filter, 93, 98–103
FIR filter, 93, 98–103
Fixed point math, 43, 66–70
Flash access status register

(FASTAT), 149–50, 177
Flash control unit (FCU)
commands of, 147
description of, 145
modes of, 145–46
registers of, 148–64
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Flash memory
block diagram of, 141
boot mode (see boot mode)
data flash area read and

program permissions, ex,
169–70

description of, 139
E2 DataFlash, block

configuration of, 144
EEPROM, difference

between, 139
erasing, procedures for,

166–67
FCU, description and modes

of, 145–47
FCU peripheral block

initialization, ex, 168–69
Flash API copying, ex, 170
low power consumption, 301
mode, transitions of, 164–65
notification of clock, ex,

183–84
operating modes of, 141–42
program lock-bit, ex, 184–85
programming, procedures for,

165–66
ROM, block configuration of,

142–43
Simple Flash API, 167–68
software protection, 176–77
specifications of, 140
Virtual EEPROM (seeVirtual

EEPROM)
Flash mode register

(FMODR), 149
Flash P/E mode entry register

(FENTRYR),
158–59, 177

Flash P/E status register
(FPESTAT), 162–63

Flash protection register
(FPROTR), 159–60

Flash ready interrupt enable
bit, 151

Flash ready interrupt enable
register (FRDYIE),
150–51

Flash reset bit, 160–61
Flash reset register

(FRESETR), 160
Flash status register 0

(FSTATR0), 155–56
Flash status register 1

(FSTATR1), 157
Flash write erase protection

register (FWEPROR),
148, 177

Floating-point error summary
flag, 63

Floating-point operation, 4, 11
Floating-point status word

(FPSW), 51–52, 60–63
Floating-point unit (FPU)
concepts of, 43–56
dsp and, 97
exceptions
descriptions of, 55–56
ex, 56–60
handling of, 63–66

FPSW bit definition, tab,
52–53

instructions of, 54–55
math, basics of, 43–49
matrix multiplication time

calculation, ex, 70–74
registers of, 51–52
representation of, 43–44
in RX63N, 50–56
standard of, 44–49
time calculation, ex, 66–70

FLOCKST bit, 157
FMODR, 149
Fourier Transform, 107
FPESTAT, 162–63
FPROTCN bit, 160, 177
FPROTR, 159–60
FPU. see floating-point unit

(FPU)

Frame buffer, 113
Frame check, 241
FRDYIE, 150–51
FRDYIE bit, 151
FreeRTOS. see operating system

usage, advanced
FRESET bit, 160–61
FRESETR, 160
FSTATR0, 155–56
FSTATR1, 157
FSUB, 54
FTP, 212
Function call(s)
arguments, rules for passing,

23–26
description of, 23
example, 29–32, 35–40
interrupt service routine,

difference between, 26
memory mapping, 14, 32–34
stack usage, allocation and

deallocation, 28–29
type conversion, 26–28
variable declaration, 23–26

FWEPROR, 148, 177

G
Global variable(s), addresses in

memory, 13
GNURX toolchain, 19
G_vee_RecordLocations

array, 173
G_vee_Sectors array, 175

H
Halt mode, of CAN, 263
Handshaking packet, of USB

transaction, 191
Hard real time requirement(s), 80
Hardware post-processing, 66
Hardware pre-processing, 64
Heap memory, addresses in

memory, 13
HTTP, 212
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Human Interface Device (HID).
see also class driver(s)

architecture of, 201
class endpoints usage, tab, 201
description of, 200
driver functions, ex, 201–6
function description, tab, 202
reports of, 201

Hypertext Transfer Protocol
(HTTP), 212

I
ICD bit, 220
ICK[3.0] bit, low power

consumption, 301
ICLK, low power modes, 311
ID code protection, 181, 182–83
ID Stage, 50
IDE bit, 237
Identifier extension (IDE) bit, 237
IEEE 754, 44–49, 51, 54, 55
IF Stage, 49
ILGLERR bit, 157
Illegal carrier detection, 220
Illegal command error flag, 157
Immediate addressing mode, 6
Independent watchdog timer

(IWDT)
block diagram of, 286
description of, 283–84
registers of, 285–
specifications of, 284–85
start modes of, 284
use of, 285

Inexact exception, 56, 62
Inline assembly, 18–19
Instruction decode stage (ID

stage), 50
Instruction fetch stage (IF

stage), 49
Instruction set
arithmetic, instructions of,

9–10
of control transfer, 11–12

of data transfer, 8–9
DSP, 13
of floating-point operations, 11
logic and bit manipulation,

10–11
no operation (NOP), 12
string manipulation, 12–13

Instruction set architecture
(ISA), 43

Integer, description of, 4
Interframe space
field of error frame, 238
of overload frame, 238

Internet protocol, 211
Interrupt generator, and CAN, 244
Interrupt management, in

FreeRTOS, 86–87, 90–91
Interrupt transfers, of USB,

191–92
Invalid operation exception, 56,

60, 62
Inverse Fourier Transform, 107
I/O port retention (IOKEEP) bit,

308
IOKEEP bit, 308
IP, 212
ISO 11783, and CAN

standards, 242
ISO 11898, and CAN

standards, 242
ISO 11992, and CAN

standards, 242
Isochronous transfers, of

USB, 192
IWDT. see independent watchdog

timer (IWDT)
IWDT control register, 287
IWDT count stop control register

(IWDTCSTPR), 289
IWDT refresh register

(IWDTRR), 285–86
IWDT reset control register

(IWDTRCR), 288–89
IWDT status register, 288

IWDTCLK, 285
IWDTCR, 287
IWDTCSTPR, 289
IWDT-dedicated clock, 285
IWDTRCR, 288–89
IWDTRR, 285–86
IWDTSR, 288

K
Kernel. see digital signal

processing (DSP)

L
LANs, 209–11
Large-Scale Integrated device

(LSI), 214
LCHNG bit, 220
LEDs, turning on, ex, 19–20
Link signal change, 220
Local area networks (LANs),

209–11
Lock-bit protection cancel,

160, 177
Lock-bit status, 157
Logic and bit manipulation

instructions, 10–11
Low power modes and

consumption
all-module clock stop mode,

313–15
deep software standby mode,

315, 320–23
description of, 300–301
modes, overview of, 301
module clock function, setting

of, ex, 311–12
multi-clock function, setting

of, ex, 311–12
power, loss of, 301
processor settings, 301–2
registers of, 301–2
SDCLK output control

function, setting of, ex,
312–13
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sleep mode, 313, 316–18
software standby mode, 315,

318–20
startup process, 295–300
state machine for, 314

Low-voltage detection
(LVD), 291

LSI, 214
LVD, 291
LVDA, 291–92
LVDLVLR, 291

M
M stage, 50
MAC, 214, 245
Machine code. see assembly

language
Magic Packet detection

enable, 219
Mailbox interrupt enable register

(MIER), 248
Mailbox register j (MBj), 247
Mask invalid register (MKIVLR),

246–47
Mask register k (MKRk), 246
Mass Storage Class (MSC), 194
Matrix kernel(s), 95
Matrix multiplication, 103–7
Matrix multiplication time

calculation, 70–74
Matrix structure, 96
MBj, 247
MCTLj, 248
Media Access Control (MAC),

214, 245
Media Independent Interface, 214
Memory. see data storage
Memory access (M stage), 50
Memory map, 14, 32–34
Message box, and CAN, 243
Message broadcasting, 235,

239–40
Message control register j

(MCTLj), 248

Message identifier, of data and
remote frame, 236

MIER, 248
Mini connectors, USB, 188–89
MKIVLR, 246–47
MKRk, 246
Module clock function, setting

of, ex, 311–12
Module stop control register A

(MSTPCRA), 303–4
Module stop control register B

(MSTPCRB), 305–6
MPDE bit, 219
MSC, 194, 196
MSTPCRA register, 303–4
MSTPCRB register, 305–6
Multi-clock functionality, 311–12
Multi-tasking, of operating

system, 77–78

N
Networking devices. see class

driver(s)
No operation (NOP)

instruction, 12
Non-Return-to-Zero principle, 240
Normal mailbox mode, of

CAN, 244
Normal transfer mode
DMAC and, 120–21
external data transfer, ex, 131
internal data transfer, ex,

123–26
setting transfer, ex, 116

Notations, of RX family, 16–17

O
OFS0.WDTTOPS[1:0], 278
OHCI, 190
On-The-Go (OTG) Micro

Connectors, USB, 189
OPE bit, 302
Open Host Controller

Interface, 190

Operating system usage,
advanced

counting semaphore, ex, 80
FreeRTOS, getting started

with, 80–81
interrupt management, 86–87,

90–91
memory footprint, 81
memory management, 79
multitasking, 77–78
port, features of, 81
queue management, 84–86,

89–90
semaphores, 78
binary for
synchronization, 87

task communication, 79
task management, 82–84,

88–89
task structure, ex, 79
task synchronization, 79

Operation mode, of CAN, 264
Optimization, value of, ex, 38–40
OTG Connectors, USB, 189
Out-of-place normal order

calucation, 109
Output port enable (OPE) bit, 302
Overflow exception, 55, 57, 62
Overload delimiter, field of

overload frame, 238
Overload flag, field of overload

frame, 238
Overload frame, in CAN

protocol, 235, 238
Overrun mode, in CAN, 252, 253

P
Passing by value, 24
PAUSE frame retransmit retry

over, 221
PAUSE frame usage with

TIME, 219
PC, 29
PCKA [7:0] bits, 164
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PCKA[3.0] bit, low power
consumption, 301

PCKAR, 163–64
PCKB[3.0] bit, low power

consumption, 301
PCLK, IWDT, to use, 285
P/E error status, 163
PEERRST [7:0] bits, 163
Peripheral clock notification

bits, 164
Peripheral clock notification

register (PCKAR),
163–64

Peripheral(s), power
consumption, 301

PHY-LSI, 214
Pipeline processing
concepts of, 49–50
example of, fig, 49

Pointer variable, description of,
32, 34

Point-to-point connection,
209–10

Ports, setting up, ex, 19–20
Power consumption. see low

power modes and
consumption

Pre-emptive scheduling, in
FreeRTOS, 84

PRGERR bit, 157
PRGSPD bit, 156
PRM bit, 216, 219
Program code, processing of

user-written code, 64
Program counter (PC),

description of, 29
Programming error flag, 157
Programming suspend status

flag, 156
Promiscuous mode, 216, 219
Protocol controller, and

CAN, 243
PSRTO bit, 221

Q
Queue(s)
defined, 84
description of, 79
management of, 84–86, 89–90

R
RAM, stack usage and, 28
R_can_api.c, 270
R_can_api.h, 270
RDLAR, 226
RE bit, 219
Real time clock alarm

interrupt, 320
Real time requirement(s), 80
Receive descriptor list start

address register
(RDLAR), 226

Receive frame length 11 to 0, 219
Receive frame length register

(RFLR), 219, 220
Reception enable bit, 219
Reduced Media Independent

Interface, 214
REFEF flag, 280, 288
Refresh error flag (REFEF),

280, 288
Register direct addressing

mode, 6–7
Register indirect addressing

mode, 7
Register relative addressing

mode, 7–8
Register start mode, 281–82, 284
Register(s)
assembly language, 3
CAN, 244–49
cluster transfer mode, 129
DMAC, 115–20, 122, 123, 135
EDMAC, 223–26
ethernet controller, 216–21
EXDMAC, 128
FCU, 51–52

independent watchdog timer,
285–89

lower power modes and
consumption, 301–2

rules to use, 25
watchdog timer, 276–81

Relative address, defined, 7
Remote frame, in CAN

protocol, 235
Remote transmission request

(RTR), 236
Repeat transfer mode
DMAC and, 121–22
external data transfer, ex,

131–32
internal data transfer, ex, 125
setting transfer, ex, 116

Reserved bit(s), 63
Reset mode, of CAN, 262–63
Resetprg.c, 295
R_Ether_Close_ZC, 227
R_Ether_Open_ZC, 227
R_Ether_Read_ZC, 228
R_Ether_Write_ZC, 228
RFL [11:0] bits, 219
RFLR, 219, 220
RM bit(s), 61
ROM, block configuration of,

142–43
ROM access violation flag, 150
ROM lock-bit read mode, 146
ROM P/E modes, 145–46, 164
ROM read modes, 145, 164
ROM status read mode,

145–46
ROMAE bit, 150
ROM/E2 DataFlash Read Mode,

145, 164
Rounding-modes, in floating

point status word, 61
RPES [1.0] bits, 279
RPSS [1.0] bits, 279
RTM bit, 219
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RX family notations, 16–17
RX_DSP library. see digital

signal processing (DSP)

S
SBYCR register, 302
SCKCR register, 309–10
SCKCR.FCK[3.0] bit, low power

consumption, 301
SCSI, 196
SDCLK
low power modes, 311
power consumption, reduction

of, 301
setting of, ex, 313

Semaphore(s), 78, 87
Simple Flash API, 167–68
Single-precision, 44–47
Size modifiers, and source code

writing, 15
Sleep mode
of CAN, 264
how to enter, ex, 316–18
low power consumption,

301, 313
Small Computer System Interface

(SCSI), 196
SOF field, of data and remote

frame, 236
Soft real time requirement(s), 80
Software standby (SSBY)

bit, 302
Software standby mode
low power consumption,

302, 315
transition to, ex, 318–20

Source code, 15–18
SP, 28
SSBY bit, 302
Stack overflow, description of, 29
Stack point (SP), description

of, 28
Stack(s). see function call(s)

Standby control register
(SBYCR), 302

Standby mode
low power consumption,

302, 315
transition to, ex, 318–20

Star configuration, 211
Startup process. see also boot

mode
clock frequencies, 296
initial settings of, 296
low power consumption,

295–300
Statistical kernel(s), 94
Status register (STR), 249
Status return handle, 108
STR, 249
String manipulation instructions,

12–13
String(s), description of, 5
Suspend ready flag, 157
SUSRDY bit, 157
System clock control register

(SCKCR), 309–10

T
Task management, in FreeRTOS,

82–84, 88–89
TCP, 212
TDLAR, 225–26
TE bit, 219
Telnet virtual terminal

communications
protocol, 212

Tick interrupt, 83
Timer, and CAN, 243
Token packet, of USB

transaction, 191
Toolchain
GNURX, 19
inline assembly, 19

TOPS [1:0] bits, 279
Transfers, USB, 191

Transform kernel(s), 94
Transmission Control Protocol

(TCP), 212
Transmission enable bit, 219
Transmission/reception bit, 219
Transmit descriptor list start

address register
(TDLAR), 225–26

TX ID, 258
Type casting, 26

U
UHCI, 190
Underflow exception, 55,

58, 62
UNDFF flag, 280, 288
Universal Host Controller

Interface, 190
Universal Serial Bus (USB)

Connectivity
cabling and connectors of,

187–88
class drivers (see class

driver(s))
device, 191
device detection, ex,

196–97
electrical specifications

of, 189
ending connection to USB

device, ex, 197–98
FIFO memory buffer (see

FIFO memory buffer)
frame breakdown, tab, 192
host, 189–91
human interface device (see

Human Interface Device
(HID))

interface specifications,
187–89

receiving data, ex, 198–200
transactions of, 191
transfers of, 191–92
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USB. see Universal Serial Bus
(USB) Connectivity

UxInitialCount, 87
UxMaxCount, 87

V
Variable declaration, 23–26
Vector structure, 96
Virtual EEPROM (VEE)
blocks, allocation of, 174–75
data management, 172
description of, 170–71
project data configuration,

175–76
record storage and blocks,

172–73
records, assigning to sectors,

173
records of, 172, 176

Voltage
brownout condition, detection

of, 291–92
Controller Area Network, 234

Voltage detection circuit (LVDA),
291–92

Voltage detection level select
register (LVDLVLR), 291

W
Watchdog timer (WDT)
all-module clock stop

mode, 313
auto-start mode, 282–83
block diagram of, 277
brownout condition, 291–92
concepts of, 275
count operations of, 281
description of, 275
independent watchdog timer

(see independent
watchdog timer (IWDT))

overflow signal, 275
register start mode, 281–82
registers of, 276–81
setting of, ex, 290–91
sleep mode, 313
software standby mode, 315
specifications of, 276–77
start modes of, 276

WB stage, 50
WDT. see watchdog timer

(WDT)
WDT control/status register

(WDTCSR), 276
WDT overflow signal

(WDTOVF), 275

WDT refresh register (WDTRR),
278

WDT reset control register
(WDTRCR), 280–81, 283

WDT status register (WDTSR),
280

WDT time-out period selection
bits, 278

WDTCR, 278–79, 281, 283
WDTCSR, 276
WDTOVF, 275
WDTRCR, 280–81, 283
WDTRR, 278
WDTSCR, 276
WDTSR, 280
Write protect register, 257
Write-back stage (WB stage), 50

X
XQueueMessagesWaiting, 85
XQueueRecieve, 85
XSemaphoreGiveFromISR, 87
XSemaphoreTake, 87
XTicksToWait, 85, 87

Z
ZPF bit, 219
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