
LyraNET: A Zero-Copy TCP/IP Protocol Stack for Embedded Operating
Systems

Yun-Chen Li Mei-Ling Chiang
Department of Information Management

National Chi-Nan University, Puli, Taiwan, R.O.C.
s1213526@ncnu.edu.tw, joanna@ncnu.edu.tw

Abstract

Embedded systems are usually resource limited in
terms of processing power, memory, and power
consumption, thus embedded TCP/IP should be
designed to make the best use of limited resources.
Applying zero-copy mechanism can reduce memory
usage and CPU processing time for data transmission.
Power consumption can be reduced as well.

In this paper, we present the design and
implementation of zero-copy mechanism in the target
embedded TCP/IP component, LyraNET, which is
derived from Linux TCP/IP codes and remodeled as a
reusable software component that is independent from
operating systems and hardware. Performance
evaluation shows that TCP/IP protocol processing
overhead can be significantly decreased by 23-56.22%.
Besides, object code size of this network component is
only 78% of the size of the original Linux TCP/IP stack.
The experience of this study can serve as the reference
for embedding Linux TCP/IP stack into a target system
and improving the transmission efficiency of Linux
TCP/IP by zero-copy implementation.

1. Introduction

As the explosion of Internet, adding Internet
connectivity is required for embedded systems [5].
TCP/IP protocol is the core technology for this
connectivity. In order to suit for resource-limited
embedded devices, some commercial products
implemented TCP/IP protocol stack from scratch for
embedded systems with the aims to reduce code size
and CPU processing overhead. Their codes are not
freely obtainable. Since Linux provides open source
codes, besides, it is popular and has the advantages of
stability, reliability, high performance, and well
documentation, these advantages let making use of the
existing open source codes and integrating Linux
TCP/IP protocol stack [6] into a target operating
system become a cost-effective way.

However, because Linux is a monolithic kernel,
Linux TCP/IP stack is not a separate component that
has closely relationship and interaction with other
Linux kernel functions such as file system, device
driver, and kernel core. This adds the difficulties in
reusing the Linux TCP/IP stack in a target system.

Besides, straight porting of the Linux TCP/IP
protocol stack into a target operating system is also not
the best implementation for the particular needs of an
embedded system. Especially, embedded systems are
usually resource limited in terms of processing power,
memory, and power consumption. For example, data
transmission of Linux TCP/IP protocol codes are
suitable for general-purpose operating systems in the
common resource-abundant desktop computers.
Transmitted data is always copied from user buffer to
kernel buffer, then sent from kernel buffer to network
interface card (NIC). Received data is brought from
NIC to kernel network buffer, then copied from kernel
network buffer to user buffer. These data copy
operations need CPU processing time and add to power
consumption. Therefore, TCP/IP implementation for
embedded systems should minimize the amount of data
copying in order to reduce power consumption and
provide efficient response.

Zero-copy [2] is a mechanism in which data from
network card is directly received in the user buffer and
data from user buffer is directly sent to network card.
No data copying between user buffers and kernel
buffers is needed. Zero-copy implementation requires
virtual memory operations such as page remapping and
hardware supported devices such as DMA controller.
Data consistency of TCP/IP transmission must be
ensured as well. Besides, because virtual memory
operations and DMA are needed to implement
zero-copy, memory buffers that are used to receive or
send data via network must be constrained. For devices
do not support DMA operations, data copying from/to
network card to/from user buffers is still need.

For reusing Linux TCP/IP codes, we have extracted
TCP/IP protocol stack from Linux in our previous
study [4]. It is then implemented as a software

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

component that is independent from operating systems
and hardware, called LyraNET. Based on the
component design principle [1], the advantages of
modularity, reconfigurability, component replacement
and reuse can be obtained. To implement the TCP/IP
stack as a self-contained component requires
modifying Linux TCP/IP codes to separate them from
other kernel functions and implementing kernel
support modules in the target operating system for
integrating Linux TCP/IP protocols.

For adapting LyraNET into embedded systems, in
order to reduce protocol processing overhead, memory
usage, and power consumption, in this paper, we focus
on applying zero-copy mechanism to reduce the data
copying operations in TCP/IP transmission by passing
the address of user data buffer when sending data to
network, and by page remapping when receiving data
from network. Besides, NIC drivers need modifications
to incorporate zero-copy mechanism. After integrating
LyraNET with copy elimination into LyraOS [3,8], a
component-based embedded operating system,
performance evaluation shows that TCP/IP protocol
processing overhead can be decreased by 23-56.22%.

2. LyraOS and LyraNET

LyraOS [3,8] is a component-based operating
system which aims at serving as a research vehicle for
operating systems and providing a set of well-designed
and clear-interface system software components that
are ready for Internet PC, hand-held PC, embedded
systems, etc. It was implemented mostly in C++ and
few assembly codes. It is designed to abstract the
hardware resources of computer systems, such that
low-level machine dependent layer is clear cut from
higher-level system semantics. Thus, it can be easily
ported to different hardware architectures [3].

Figure 1 shows LyraOS system architecture. Each
system component is complete separate, self-contained,
and highly modular. Besides being light-weight system
software, it is a time-sharing multi-threaded
microkernel. Threads can be dynamically created and
deleted, and thread priorities can be dynamically
changed. It provides a preemptive prioritized
scheduling and supports various mechanisms for
passing signals, semaphores, and messages between
threads. On top of the microkernel, a micro window
component with Windows OS look and feel is
provided. Besides, the LyraFILE component, a
light-weight VFAT-based file system, supports both
RAM-based and disk-based storages. Especially,
LyraOS provides the Linux device driver emulation
environment to make use of Linux device drivers.

Under this environment, Linux device driver codes can
be integrated into LyraOS without modification.

Hardware (ARM / AMD Hardware (ARM / AMD ElanElan SC400 / PC)SC400 / PC)

Kernel Core Kernel Core
ComponentsComponents

TCP/UDPTCP/UDP
IPIP

Device DriverDevice Driver

File SystemFile System

Java Virtual MachineJava Virtual Machine

POSIX subset APIPOSIX subset API

Embedded Browser /DesktopEmbedded Browser /Desktop

LyraOSLyraOS Framework APIFramework API

Hardware Abstraction LayerHardware Abstraction Layer

Hardware (ARM / AMD Hardware (ARM / AMD ElanElan SC400 / PC)SC400 / PC)

Kernel Core Kernel Core
ComponentsComponents

TCP/UDPTCP/UDP
IPIP

Device DriverDevice Driver

File SystemFile System

Java Virtual MachineJava Virtual Machine

POSIX subset APIPOSIX subset API

Embedded Browser /DesktopEmbedded Browser /Desktop

LyraOSLyraOS Framework APIFramework API

Hardware Abstraction LayerHardware Abstraction Layer

Figure 1. LyraOS system architecture

The LyraNET [4] component is a TCP/IP protocol
stack derived from Linux TCP/IP codes [6]. We made
the most use of Linux open source codes mainly to
reduce our development effort. We then remodeled it
as a reusable software component that is independent
from operating systems and hardware. Our work
mainly includes remodeling Linux TCP/IP stack to
separate it from file systems, implementing wrappers
for kernel and device independence, and providing
wrapper for compatible socket interfaces.

3. Adaptation for embedded systems

To adapt LyraNET component for resource-limited
embedded systems, we focus on reducing memory
usage and CPU processing overhead, with the aim to
reduce power consumption as well. In our network
buffer management, pre-allocated buffers are used
rather than allocating them at run time if buffers are
needed. Copy elimination is implemented in LyraNET
since the original Linux TCP/IP protocol stack [6] does
not implement zero-copy mechanism. Our work
includes remodeling TCP/IP protocol procedure,
modifying TCP/IP protocol codes and NIC driver
codes, and adding related kernel support functions.

3.1. Issues and difficulties

For zero-copy implementation, different procedures
of receiving data and sending data add the difficulties
to eliminate data copying overheads. When system
sends data to network by a TCP/IP connection, system
must establish a connection with destination host.
When the connection is established, then system sends

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

data to network. At this time, the address of the data to
be transmitted is known in advance. If zero-copy
mechanism is applied, the user data can be directly sent
to NIC. Whereas, when a packet is received by NIC,
only after the protocol processing is performed then the
system can find out which connection the packet
belongs and how to process the payload of packet.

For zero copying, the payload of a packet should be
allocated at right place when NIC receives incoming
data. The direct way is to modify NIC drivers to send
packets to buffers after the completion of protocol
processing, and NIC should be designed to contain a
large memory for storing unprocessed packets.
Because of the lack of such devices, zero copying must
be accomplished by virtual memory (VM) operations
in our system.

Besides the modification of TCP/IP protocol for
zero copying, NIC drivers may also need modification
for incorporating zero-copy handling. Especially, NIC
drivers are hardware dependent and should be
implemented in different ways for network cards with
or without DMA support. The modification of NIC
drivers should as efficient as possible and not to
degrade the total performance improvement.

3.2. Remodeling data processing flow of
TCP/IP transmission

The original data transmission in TCP/IP protocol
must copy data to/from kernel buffer from/to user
buffer when sending/receiving a packet. We modified
the original TCP/IP transmission to eliminate the data
copying overhead. As shown in Figure 2, user data is
directly written to NIC when data is sent to network.
For the unknown destination of incoming packets and
the lack of a large memory on NIC, incoming packets
should be received in host memory immediately. After
protocol processing is performed, destination of a
packet can be known and then data can be
“transmitted” to user buffer by VM operations.

Figure 2. Dataflow for LyraNET with zero copy

3.3. Implementation of copy elimination in
LyraNET

In Linux TCP/IP, the sk_buff buffer is used to
manage individual packet and the maximal payload is
1460 bytes in Ethernet network. In the original Linux
TCP/IP codes, user sent data is copied into one or
several sk_buff buffers according to the data length. A
sk_buff buffer that still has space left after being
copied data into may be filled with data again.

In the implementation of copy elimination, we
modify the sk_buff structure to avoid data copying as
shown in Figure 3. The sk_buff structure is added in an
array with two elements, named dataseg, to record
addresses for data without copying. Each dataseg is
defined with two variables, ptr and len, which record
the memory addresses to be sent to network and length
of data that is not copied into sk_buff buffer. The
variables, follow_data and follow_data_len are added
to record the address of data that is copied into a
sk_buff buffer and its corresponding length. These new
variables are used to avoid most of data copying by
recording data address and data length.

Figure 3. New sk_buff structure in copy elimination

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Figure 4. Data processing in original Linux TCP/IP and in LyraNET with copy elimination

When user sends data to network, a sk_buff buffer
records user data in dataseg, as shown in Figure 4.
When a sk_buff buffer is allocated to carry user buffer,
user buffer address is recorded in dataseg[0].ptr and
buffer length that is carried is recorded in
dataseg[0].len. If first element of dataseg is recorded
with user buffer address and the data size that sk_buff
buffer carries is less then 1460 bytes, the second
element of dataseg is used to record user buffer address
and user buffer length that sk_buff buffer can contain.
Only when the data size that sk_buff buffer carries is
less then 1460 bytes and two elements of dataseg are
recorded with user data addresses, user data is copied
into sk_buff buffer. follow_data records the address of
copied data in sk_buff and follow_data_len records the
accumulated data length after data is copied into
sk_buff buffer. A NIC driver should write protocol
headers in sk_buff buffer into NIC, then write data that
is recorded by dataseg, and then write data that is
copied into sk_buff buffer if needed.

When receiving a packet, the modified NIC driver
writes data of the incoming packet in a pre-allocated
memory space that is 4096 bytes. dev_alloc_skb() is
modified to allocate a sk_buff buffer with a page size.
After the completion of protocol processing, the
modified TCP/IP protocol does page remapping
instead of copying data into user memory buffer. For
the page remapping, users must allocate memory

through a special system call to allocate page-aligned
user buffers, and Copy on Write (COW) mechanism is
implemented to maintain the data consistency.

3.4. Modifications of NIC drivers

NIC drivers should be modified to work with Copy
Elimination. In PIO NIC, data is transmitted from/to
NIC to/from host memory by CPU, whereas, in DMA
NIC, data is transmitted from/to NIC to/from host
memory by DMA device. Though DMA device can
eliminate one data copying from the viewpoint of CPU,
the use of DMA device limits zero copy in some way.

In LyraOS on x86 platform, a continuous virtual
memory space may be mapped to several physical
memory page frames that are not contiguous. If data
size is larger than 4096 bytes, DMA controller may fail
to transmit data when the segment of data crosses the
page boundary. Therefore, data segment that is not
copied into sk_buff buffer should be checked for
crossing page boundary. For DMA NIC driver,
checking for page boundary is done when user data is
separated into sk_buff buffer. When data segment
crosses page boundary, the data segment is taken as
two data segments and stored into sk_buff buffer. So
data segment stored in dataseg is not needed to check
if it crosses page boundary.

(a) Original Linux TCP/IP(a) Original Linux TCP/IP

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

3.5. Added kernel support functions

Because page remapping is needed to implement
Copy Elimination, we have implemented related kernel
support functions, COW mechanism, and page fault
recovery routines. Besides, a specific function is
provided for users to allocate page-aligned buffers.

4. Performance evaluation

This section presents the performance evaluation of
LyraNET with Copy Elimination after being integrated
into LyraOS. Table 1 shows our experimental platform
that we use to simulate an embedded system, in which
two computers are connected in a private network to
avoid the affection of external network traffic. The ttcp
[7] benchmark is used and the processing times for
protocol processing and network driver operations are
measured. The total data length is set to 26,280K bytes
for PIO NIC and 131,400K bytes for DMA NIC.

Table 1. Experimental platform

4.1. Comparison of object code size

Table 2 shows that the object code size of LyraNET
with Copy Elimination is 78% of the size of Linux
TCP/IP Stack. Adding Copy Elimination mechanism in
LyraNET only increases 1.1-1.7% of object code size.

Table 2. Code size comparison

Object Code
Size (bytes)

Linux 2.0.37 TCP/IP stack 116,892
LyraNET without Copy Elimination 89,760

LyraNET with Copy Elimination (PIO NIC) 91,241
LyraNET with Copy Elimination (DMA NIC) 90,760

4.2. Performance of sending data

We send data with the size several times of 1460
bytes. Figure 5 shows that protocol performance
improvement is from 51.34-56.22% when Copy
Elimination is applied in LyraNET.

 When DMA NIC is used, though driver processing

time of Copy Elimination is increased, total processing
time is still decreased by 27.7-50%. Because of the fast
speed of DMA controller, driver processing time is
efficient and does not dominate the total processing
time when DMA NIC is used. This concludes that
Copy Elimination is beneficial when data copying
dominates the total processing time.

When PIO NIC is used, the driver processing time
becomes an extremely large portion of total processing
time due to the characteristic of PIO. Total processing
time of Copy Elimination is still decreased slightly
because protocol processing time is decreased.

(a) Sending data by DMA NIC

(b) Sending data by PIO NIC

Figure 5. Processing time for sending data

4.3. Performance of receiving data

We measure three parts of processing time: NIC
driver operation (i.e. ei_interrupt() or
boomerang_interrupt()), main protocol codes of
receiving data (i.e. from net_bh() to tcp_rcv()), and the
codes of system call processing (i.e. from sys_recv() to
tcp_recvmsg()). In Linux source codes, incoming
packets from NIC are received in NIC interrupt service
routine (ISR), then this ISR marks NET_BH to activate
bottom half handling, i.e. net_bh(). Most of the
receiving protocol processing is completed in the
control flow from net_bh() to tcp_rcv(). Then tcp_rcv()

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

Seconds

protocol processing driver

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

Seconds

protocol processing driver

0
2
4
6
8

10
12

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

Seconds

protocol processing driver

0
2
4
6
8

10
12

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

Seconds

protocol processing driver

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

calls tcp_data() to wake up the thread waiting for the
data. The waiting thread that slept in tcp_recvmsg() is
waken up to copy data while the thread previously calls
sys_recv() to receive data.

(a) Receiving data by DMA NIC

(b) Receiving data by PIO NIC

Figure 6. Processing time for receiving data

Figure 6(a) shows the processing time when system
receives data by DMA NIC. The ttcp is setup to send
1460-byte data 102,400 times to LyraNET. The results
show that the processing time of data copying (i.e from
sys_recv() to tcp_recvmsg()) in origin TCP/IP stack is
the largest part of total processing time. With Copy
Elimination, the processing time of data copying is
decreased greatly. Though boomerang_interrupt() is
not modified in Copy Elimination, however, page
remapping would incur TLB flushing, which in turn
would degrade performance of DMA driver. In
protocol processing part, the difference of the
processing time from netbh() to tcp_rcv() in LyraNET
with and without Copy Elimination is insignificant.

Figure 6(b) shows the processing time when system
receives data by PIO NIC. The ttcp is setup to send
1460-byte data 8192 times to LyraNET. The results
show that receiving data from NIC is the main

bottleneck. Without support of fast device such as
DMA controller, PIO NIC relies on CPU to receive
data to host memory. Though we greatly reduce the
processing time of data copying in Copy Elimination,
however, driver processing dominates the total
processing time, which causes performance
improvement insignificant.

5. Conclusions

We have reused and remodeled Linux TCP/IP stack
to be a software component called LyraNET that is
independent from operating systems and hardware. For
the adaptation into resource-limited environments, we
develop Copy Elimination in LyraNET to reduce
protocol processing overhead and reduce memory
usage. Performance evaluation shows that protocol
processing time can be reduced by 51.34-56.22% in
sending data and by 23-46% in receiving data. Adding
Copy Elimination mechanism only increases 1.1-1.7%
of object code size. To sum up, the success and the
experience of our work can serve as the reference for
embedded Linux TCP/IP stack into a target system
requiring network connectivity. Besides, our zero copy
implementation can also help the work of enhancing
the transmission efficiency of Linux TCP/IP stack.

6. References

[1] J. Bruno, J. Brustoloni, E. Grabber, A. Silberschatz, and
C. Small, “Pebble: A Component Based Operating System
for Embedded Applications”, In Proceedings of 3rd
Symposium on Operating Systems Design and
Implementation, USENIX, February 1999.
[2] J. C. Brustoloni and P. Steenkiste, “Effects of Buffering
Semantics on I/O Performance”, Proceedings of 2nd
Symposium on Operating Systems Design and
Implementation, pages 277–291, USENIX, Oct. 1996.
[3] Z. Y. Cheng, M. L. Chiang, and R. C. Chang, “A
component based operating system for resource limited
embedded devices”, IEEE International Symposium on
Consumer Electronics, HongKong, Dec. 5-7, 2000.
[4] J. W. Chuang, K. S. Sew, M. L. Chiang, and R. C. Chang,
“Integration of Linux Communication Stacks into Embedded
Operating Systems”, International Computer Symposium,
December 6-8, 2000.
[5] T. Herbert, “Embedding TCP/IP”,
http://www.embedded.com/2000/0001/0001ia1.htm.
[6] S. T. Satchell and H. B. J. Clifford, Linux IP Stacks
Commentary, Coriolis Group Books, 2000.
[7] ttcp,
http://www.clarkson.edu/projects/itl/HOWTOS/PCATTCP-j
nm-20011113.htm .
[8] C. W. Yang, C. H. Lee, and R. C. Chang, “Lyra: A
System Framework in Supporting Multimedia Applications”,
IEEE International Conference on Multimedia Computing
and Systems'99, Florence, Italy, June 1999.

0
1
2
3
4
5
6
7
8
9

10

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

seconds

sys_recv->tcp_recvmsg net_bh->tcp_rcv boomerang_interrupt

0
1
2
3
4
5
6
7
8
9

10

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

seconds

sys_recv->tcp_recvmsg net_bh->tcp_rcv boomerang_interrupt

0

1

2

3

4

5

6

7

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

seconds

sys_recv->tcp_recvmsg net_bh->tcp_rcv ei_interrupt

0

1

2

3

4

5

6

7

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

seconds

sys_recv->tcp_recvmsg net_bh->tcp_rcv ei_interrupt

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

