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Abstract

Embedded systems are usually resource limited in 
terms of processing power, memory, and power 
consumption, thus embedded TCP/IP should be 
designed to make the best use of limited resources. 
Applying zero-copy mechanism can reduce memory 
usage and CPU processing time for data transmission.  
Power consumption can be reduced as well. 

In this paper, we present the design and 
implementation of zero-copy mechanism in the target 
embedded TCP/IP component, LyraNET, which is 
derived from Linux TCP/IP codes and remodeled as a 
reusable software component that is independent from 
operating systems and hardware. Performance 
evaluation shows that TCP/IP protocol processing 
overhead can be significantly decreased by 23-56.22%. 
Besides, object code size of this network component is 
only 78% of the size of the original Linux TCP/IP stack.
The experience of this study can serve as the reference 
for embedding Linux TCP/IP stack into a target system 
and improving the transmission efficiency of Linux 
TCP/IP by zero-copy implementation.  

1. Introduction 

As the explosion of Internet, adding Internet 
connectivity is required for embedded systems [5]. 
TCP/IP protocol is the core technology for this 
connectivity. In order to suit for resource-limited 
embedded devices, some commercial products 
implemented TCP/IP protocol stack from scratch for 
embedded systems with the aims to reduce code size 
and CPU processing overhead. Their codes are not 
freely obtainable. Since Linux provides open source 
codes, besides, it is popular and has the advantages of 
stability, reliability, high performance, and well 
documentation, these advantages let making use of the 
existing open source codes and integrating Linux 
TCP/IP protocol stack [6] into a target operating 
system become a cost-effective way.  

However, because Linux is a monolithic kernel, 
Linux TCP/IP stack is not a separate component that 
has closely relationship and interaction with other 
Linux kernel functions such as file system, device 
driver, and kernel core. This adds the difficulties in 
reusing the Linux TCP/IP stack in a target system.  

Besides, straight porting of the Linux TCP/IP 
protocol stack into a target operating system is also not 
the best implementation for the particular needs of an 
embedded system. Especially, embedded systems are 
usually resource limited in terms of processing power, 
memory, and power consumption. For example, data 
transmission of Linux TCP/IP protocol codes are 
suitable for general-purpose operating systems in the 
common resource-abundant desktop computers. 
Transmitted data is always copied from user buffer to 
kernel buffer, then sent from kernel buffer to network 
interface card (NIC). Received data is brought from 
NIC to kernel network buffer, then copied from kernel 
network buffer to user buffer. These data copy 
operations need CPU processing time and add to power 
consumption. Therefore, TCP/IP implementation for 
embedded systems should minimize the amount of data 
copying in order to reduce power consumption and 
provide efficient response.  

Zero-copy [2] is a mechanism in which data from 
network card is directly received in the user buffer and 
data from user buffer is directly sent to network card. 
No data copying between user buffers and kernel 
buffers is needed. Zero-copy implementation requires 
virtual memory operations such as page remapping and 
hardware supported devices such as DMA controller. 
Data consistency of TCP/IP transmission must be 
ensured as well. Besides, because virtual memory 
operations and DMA are needed to implement 
zero-copy, memory buffers that are used to receive or 
send data via network must be constrained. For devices 
do not support DMA operations, data copying from/to 
network card to/from user buffers is still need.  

For reusing Linux TCP/IP codes, we have extracted 
TCP/IP protocol stack from Linux in our previous 
study [4]. It is then implemented as a software 
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component that is independent from operating systems 
and hardware, called LyraNET. Based on the 
component design principle [1], the advantages of 
modularity, reconfigurability, component replacement 
and reuse can be obtained. To implement the TCP/IP 
stack as a self-contained component requires 
modifying Linux TCP/IP codes to separate them from 
other kernel functions and implementing kernel 
support modules in the target operating system for 
integrating Linux TCP/IP protocols. 

For adapting LyraNET into embedded systems, in 
order to reduce protocol processing overhead, memory 
usage, and power consumption, in this paper, we focus 
on applying zero-copy mechanism to reduce the data 
copying operations in TCP/IP transmission by passing 
the address of user data buffer when sending data to 
network, and by page remapping when receiving data 
from network. Besides, NIC drivers need modifications 
to incorporate zero-copy mechanism. After integrating 
LyraNET with copy elimination into LyraOS [3,8], a 
component-based embedded operating system, 
performance evaluation shows that TCP/IP protocol 
processing overhead can be decreased by 23-56.22%. 

2. LyraOS and LyraNET 

LyraOS [3,8] is a component-based operating 
system which aims at serving as a research vehicle for 
operating systems and providing a set of well-designed 
and clear-interface system software components that 
are ready for Internet PC, hand-held PC, embedded 
systems, etc. It was implemented mostly in C++ and 
few assembly codes. It is designed to abstract the 
hardware resources of computer systems, such that 
low-level machine dependent layer is clear cut from 
higher-level system semantics. Thus, it can be easily 
ported to different hardware architectures [3].  

Figure 1 shows LyraOS system architecture. Each 
system component is complete separate, self-contained, 
and highly modular. Besides being light-weight system 
software, it is a time-sharing multi-threaded 
microkernel. Threads can be dynamically created and 
deleted, and thread priorities can be dynamically 
changed. It provides a preemptive prioritized 
scheduling and supports various mechanisms for 
passing signals, semaphores, and messages between 
threads. On top of the microkernel, a micro window 
component with Windows OS look and feel is 
provided. Besides, the LyraFILE component, a 
light-weight VFAT-based file system, supports both 
RAM-based and disk-based storages. Especially, 
LyraOS provides the Linux device driver emulation 
environment to make use of Linux device drivers. 

Under this environment, Linux device driver codes can 
be integrated into LyraOS without modification. 
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Figure 1. LyraOS system architecture 

The LyraNET [4] component is a TCP/IP protocol 
stack derived from Linux TCP/IP codes [6]. We made 
the most use of Linux open source codes mainly to 
reduce our development effort. We then remodeled it 
as a reusable software component that is independent 
from operating systems and hardware. Our work 
mainly includes remodeling Linux TCP/IP stack to 
separate it from file systems, implementing wrappers 
for kernel and device independence, and providing 
wrapper for compatible socket interfaces.  

3. Adaptation for embedded systems 

To adapt LyraNET component for resource-limited 
embedded systems, we focus on reducing memory 
usage and CPU processing overhead, with the aim to 
reduce power consumption as well. In our network 
buffer management, pre-allocated buffers are used 
rather than allocating them at run time if buffers are 
needed. Copy elimination is implemented in LyraNET 
since the original Linux TCP/IP protocol stack [6] does 
not implement zero-copy mechanism. Our work 
includes remodeling TCP/IP protocol procedure, 
modifying TCP/IP protocol codes and NIC driver 
codes, and adding related kernel support functions. 

3.1. Issues and difficulties 

For zero-copy implementation, different procedures 
of receiving data and sending data add the difficulties 
to eliminate data copying overheads. When system 
sends data to network by a TCP/IP connection, system 
must establish a connection with destination host. 
When the connection is established, then system sends 
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data to network. At this time, the address of the data to 
be transmitted is known in advance. If zero-copy 
mechanism is applied, the user data can be directly sent 
to NIC. Whereas, when a packet is received by NIC, 
only after the protocol processing is performed then the 
system can find out which connection the packet 
belongs and how to process the payload of packet.  

For zero copying, the payload of a packet should be 
allocated at right place when NIC receives incoming 
data. The direct way is to modify NIC drivers to send 
packets to buffers after the completion of protocol 
processing, and NIC should be designed to contain a 
large memory for storing unprocessed packets. 
Because of the lack of such devices, zero copying must 
be accomplished by virtual memory (VM) operations 
in our system. 

Besides the modification of TCP/IP protocol for 
zero copying, NIC drivers may also need modification 
for incorporating zero-copy handling. Especially, NIC 
drivers are hardware dependent and should be 
implemented in different ways for network cards with 
or without DMA support. The modification of NIC 
drivers should as efficient as possible and not to 
degrade the total performance improvement. 

3.2. Remodeling data processing flow of 
TCP/IP transmission 

The original data transmission in TCP/IP protocol 
must copy data to/from kernel buffer from/to user 
buffer when sending/receiving a packet. We modified 
the original TCP/IP transmission to eliminate the data 
copying overhead. As shown in Figure 2, user data is 
directly written to NIC when data is sent to network. 
For the unknown destination of incoming packets and 
the lack of a large memory on NIC, incoming packets 
should be received in host memory immediately. After 
protocol processing is performed, destination of a 
packet can be known and then data can be 
“transmitted” to user buffer by VM operations.  

Figure 2. Dataflow for LyraNET with zero copy

3.3. Implementation of copy elimination in 
LyraNET 

In Linux TCP/IP, the sk_buff buffer is used to 
manage individual packet and the maximal payload is 
1460 bytes in Ethernet network. In the original Linux 
TCP/IP codes, user sent data is copied into one or 
several sk_buff buffers according to the data length. A 
sk_buff buffer that still has space left after being 
copied data into may be filled with data again. 

In the implementation of copy elimination, we 
modify the sk_buff structure to avoid data copying as 
shown in Figure 3. The sk_buff structure is added in an 
array with two elements, named dataseg, to record 
addresses for data without copying. Each dataseg is 
defined with two variables, ptr and len, which record 
the memory addresses to be sent to network and length 
of data that is not copied into sk_buff buffer. The 
variables, follow_data and follow_data_len are added 
to record the address of data that is copied into a 
sk_buff buffer and its corresponding length. These new 
variables are used to avoid most of data copying by 
recording data address and data length. 

Figure 3. New sk_buff structure in copy elimination 
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Figure 4. Data processing in original Linux TCP/IP and in LyraNET with copy elimination 

When user sends data to network, a sk_buff buffer 
records user data in dataseg, as shown in Figure 4. 
When a sk_buff buffer is allocated to carry user buffer, 
user buffer address is recorded in dataseg[0].ptr and 
buffer length that is carried is recorded in 
dataseg[0].len. If first element of dataseg is recorded 
with user buffer address and the data size that sk_buff 
buffer carries is less then 1460 bytes, the second 
element of dataseg is used to record user buffer address 
and user buffer length that sk_buff buffer can contain. 
Only when the data size that sk_buff buffer carries is 
less then 1460 bytes and two elements of dataseg are 
recorded with user data addresses, user data is copied 
into sk_buff buffer. follow_data records the address of 
copied data in sk_buff and follow_data_len records the 
accumulated data length after data is copied into 
sk_buff buffer. A NIC driver should write protocol 
headers in sk_buff buffer into NIC, then write data that 
is recorded by dataseg, and then write data that is 
copied into sk_buff buffer if needed. 

When receiving a packet, the modified NIC driver 
writes data of the incoming packet in a pre-allocated 
memory space that is 4096 bytes. dev_alloc_skb() is 
modified to allocate a sk_buff buffer with a page size. 
After the completion of protocol processing, the 
modified TCP/IP protocol does page remapping
instead of copying data into user memory buffer. For 
the page remapping, users must allocate memory 

through a special system call to allocate page-aligned 
user buffers, and Copy on Write (COW) mechanism is 
implemented to maintain the data consistency. 

3.4. Modifications of NIC drivers  

NIC drivers should be modified to work with Copy 
Elimination. In PIO NIC, data is transmitted from/to 
NIC to/from host memory by CPU, whereas, in DMA 
NIC, data is transmitted from/to NIC to/from host 
memory by DMA device. Though DMA device can 
eliminate one data copying from the viewpoint of CPU, 
the use of DMA device limits zero copy in some way. 

In LyraOS on x86 platform, a continuous virtual 
memory space may be mapped to several physical 
memory page frames that are not contiguous. If data 
size is larger than 4096 bytes, DMA controller may fail 
to transmit data when the segment of data crosses the 
page boundary. Therefore, data segment that is not 
copied into sk_buff buffer should be checked for 
crossing page boundary. For DMA NIC driver, 
checking for page boundary is done when user data is 
separated into sk_buff buffer. When data segment 
crosses page boundary, the data segment is taken as 
two data segments and stored into sk_buff buffer. So 
data segment stored in dataseg is not needed to check 
if it crosses page boundary.  

(a) Original Linux TCP/IP(a) Original Linux TCP/IP
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3.5. Added kernel support functions 

Because page remapping is needed to implement 
Copy Elimination, we have implemented related kernel 
support functions, COW mechanism, and page fault 
recovery routines. Besides, a specific function is 
provided for users to allocate page-aligned buffers. 

4. Performance evaluation 

This section presents the performance evaluation of 
LyraNET with Copy Elimination after being integrated 
into LyraOS. Table 1 shows our experimental platform 
that we use to simulate an embedded system, in which 
two computers are connected in a private network to 
avoid the affection of external network traffic. The ttcp 
[7] benchmark is used and the processing times for 
protocol processing and network driver operations are 
measured. The total data length is set to 26,280K bytes 
for PIO NIC and 131,400K bytes for DMA NIC. 

Table 1. Experimental platform 

4.1. Comparison of object code size 

Table 2 shows that the object code size of LyraNET 
with Copy Elimination is 78% of the size of Linux 
TCP/IP Stack. Adding Copy Elimination mechanism in 
LyraNET only increases 1.1-1.7% of object code size. 

Table 2. Code size comparison 

Object Code 
Size (bytes)

Linux 2.0.37 TCP/IP stack 116,892 
LyraNET without Copy Elimination 89,760

LyraNET with Copy Elimination (PIO NIC) 91,241
LyraNET with Copy Elimination (DMA NIC) 90,760

4.2. Performance of sending data 

We send data with the size several times of 1460 
bytes. Figure 5 shows that protocol performance 
improvement is from 51.34-56.22% when Copy 
Elimination is applied in LyraNET. 

 When DMA NIC is used, though driver processing 

time of Copy Elimination is increased, total processing 
time is still decreased by 27.7-50%. Because of the fast 
speed of DMA controller, driver processing time is 
efficient and does not dominate the total processing 
time when DMA NIC is used. This concludes that 
Copy Elimination is beneficial when data copying 
dominates the total processing time.  

When PIO NIC is used, the driver processing time 
becomes an extremely large portion of total processing 
time due to the characteristic of PIO. Total processing 
time of Copy Elimination is still decreased slightly 
because protocol processing time is decreased. 

(a) Sending data by DMA NIC 

(b) Sending data by PIO NIC 

Figure 5. Processing time for sending data 

4.3. Performance of receiving data 

We measure three parts of processing time: NIC 
driver operation (i.e. ei_interrupt() or 
boomerang_interrupt()), main protocol codes of 
receiving data (i.e. from net_bh() to tcp_rcv()), and the 
codes of system call processing (i.e. from sys_recv() to 
tcp_recvmsg()). In Linux source codes, incoming 
packets from NIC are received in NIC interrupt service 
routine (ISR), then this ISR marks NET_BH to activate 
bottom half handling, i.e. net_bh(). Most of the 
receiving protocol processing is completed in the 
control flow from net_bh() to tcp_rcv(). Then tcp_rcv()
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calls tcp_data() to wake up the thread waiting for the 
data. The waiting thread that slept in tcp_recvmsg() is
waken up to copy data while the thread previously calls 
sys_recv() to receive data. 

(a) Receiving data by DMA NIC 

(b) Receiving data by PIO NIC 

Figure 6. Processing time for receiving data 

Figure 6(a) shows the processing time when system 
receives data by DMA NIC. The ttcp is setup to send 
1460-byte data 102,400 times to LyraNET. The results 
show that the processing time of data copying (i.e from 
sys_recv() to tcp_recvmsg()) in origin TCP/IP stack is 
the largest part of total processing time. With Copy 
Elimination, the processing time of data copying is 
decreased greatly. Though boomerang_interrupt() is 
not modified in Copy Elimination, however, page 
remapping would incur TLB flushing, which in turn 
would degrade performance of DMA driver. In 
protocol processing part, the difference of the 
processing time from netbh() to tcp_rcv() in LyraNET 
with and without Copy Elimination is insignificant. 

Figure 6(b) shows the processing time when system 
receives data by PIO NIC. The ttcp is setup to send 
1460-byte data 8192 times to LyraNET. The results 
show that receiving data from NIC is the main 

bottleneck. Without support of fast device such as 
DMA controller, PIO NIC relies on CPU to receive 
data to host memory. Though we greatly reduce the 
processing time of data copying in Copy Elimination, 
however, driver processing dominates the total 
processing time, which causes performance 
improvement insignificant. 

5. Conclusions 

We have reused and remodeled Linux TCP/IP stack 
to be a software component called LyraNET that is 
independent from operating systems and hardware. For 
the adaptation into resource-limited environments, we 
develop Copy Elimination in LyraNET to reduce 
protocol processing overhead and reduce memory 
usage. Performance evaluation shows that protocol 
processing time can be reduced by 51.34-56.22% in 
sending data and by 23-46% in receiving data. Adding 
Copy Elimination mechanism only increases 1.1-1.7% 
of object code size. To sum up, the success and the 
experience of our work can serve as the reference for 
embedded Linux TCP/IP stack into a target system 
requiring network connectivity. Besides, our zero copy 
implementation can also help the work of enhancing 
the transmission efficiency of Linux TCP/IP stack. 

6. References 

[1] J. Bruno, J. Brustoloni, E. Grabber, A. Silberschatz, and 
C. Small, “Pebble: A Component Based Operating System 
for Embedded Applications”, In Proceedings of 3rd 
Symposium on Operating Systems Design and 
Implementation, USENIX, February 1999. 
[2] J. C. Brustoloni  and P. Steenkiste, “Effects of Buffering 
Semantics on I/O Performance”, Proceedings of 2nd 
Symposium on Operating Systems Design and 
Implementation, pages 277–291, USENIX, Oct. 1996. 
[3] Z. Y. Cheng, M. L. Chiang, and R. C. Chang, “A 
component based operating system for resource limited 
embedded devices”, IEEE International Symposium on 
Consumer Electronics, HongKong, Dec. 5-7, 2000. 
[4] J. W. Chuang, K. S. Sew, M. L. Chiang, and R. C. Chang, 
“Integration of Linux Communication Stacks into Embedded 
Operating Systems”, International Computer Symposium,
December 6-8, 2000.  
[5] T. Herbert, “Embedding TCP/IP”, 
http://www.embedded.com/2000/0001/0001ia1.htm. 
[6] S. T. Satchell and H. B. J. Clifford, Linux IP Stacks 
Commentary, Coriolis Group Books, 2000. 
[7] ttcp, 
http://www.clarkson.edu/projects/itl/HOWTOS/PCATTCP-j
nm-20011113.htm . 
[8] C. W. Yang, C. H. Lee, and R. C. Chang, “Lyra: A 
System Framework in Supporting Multimedia Applications”, 
IEEE International Conference on Multimedia Computing 
and Systems'99, Florence, Italy, June 1999. 

0
1
2
3
4
5
6
7
8
9

10

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

seconds

sys_recv->tcp_recvmsg net_bh->tcp_rcv boomerang_interrupt

0
1
2
3
4
5
6
7
8
9

10

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

seconds

sys_recv->tcp_recvmsg net_bh->tcp_rcv boomerang_interrupt

0

1

2

3

4

5

6

7

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

seconds

sys_recv->tcp_recvmsg net_bh->tcp_rcv ei_interrupt

0

1

2

3

4

5

6

7

LyraNET without
Copy Elimination

LyraNET with
Copy Elimination

seconds

sys_recv->tcp_recvmsg net_bh->tcp_rcv ei_interrupt

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05) 

1533-2306/05 $20.00 © 2005 IEEE 


