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ABSTRACT

STEVEN J ERDMANCZYK JR.. Adaptive deployment of mobile sensor nodes.
(Under the direction of DR. JAMES CONRAD)

There are many desirable applications that involve the deployment of mobile nodes

into environments that may not be favorable to humans in order to gather data or

perform manipulative tasks. In some of these environments, direct wireless commu-

nication may not be possible from the point of deployment to the desired endpoint.

This can be due to radio interference from the environment such as fading effects

from obstacles and walls or signal attenuation due to distance. One solution to this

scenario is to deploy a chain of mobile bread-crumb nodes between the base station

and end node. For this thesis, an algorithm was researched and implemented to intel-

ligently deploy mobile nodes to create such a tether, as well as maintain an optimal

distance between the nodes.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Research in the area of remote controlled or autonomous mobile robot applications

has been popular for many decades now. Common applications for such technologies

include automating industrial maintenance in areas that are either tedious, hazardous,

or impossible for humans to reach. Other applications include sending robots into dis-

aster areas to locate or rescue survivors without risking the lives of rescue personnel.

As technologies become cheaper, more available, and easier to implement, researchers

continue to look into applications where robots can assist where they were unable to

before.

For these kinds of applications, even in the case of autonomous robots, it’s common

to establish and maintain a communications link with the robot to either control

its movement or observe sensor readings. Advancements in wireless communication

technologies have allowed manipulators to maintain this link without the need for

cables that would otherwise be too costly or prohibit the needed degree of movement.

Despite the freedoms wireless technologies enable, all forms of radio communications

still pose the same drawbacks. One drawback is that there will always be a maximum

distance a radio signal of any strength can travel before it has attenuated to greatly

to be received. Another drawback is that obstacles in the environment will cause
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interference with the radio signal. These effects are briefly covered in Chapter 2.

These drawbacks pose problems in indoor or sub-terranean applications where di-

rect line-of-sight communication is almost always impossible. In these situations the

robot will be unable to go far from the deployment point without exceeding the ca-

pable communication range. One solution to mitigate this problem is to implement

multi-hop radio relays that propagate the radio signal for longer distances or around

interfering obstacles.

There are many methods for implementing these types of radio relays, one of which

is to statically place radio relay nodes prior to robot deployment. This is a viable

solution in industrial maintenance scenarios where prior knowledge of deployment

routes can be known. However, this solution would not be helpful in many disaster

scenarios as needed deployment routes would be difficult or impossible to predict.

Furthermore, in disaster scenarios the environment may change due to collapsing

structures. Another solution is for the robot to dynamically place static wireless relay

nodes as needed whenever signal strength to the deployment point or previous relay

node has dropped beneath a sufficient threshold. This method allows deployment

into new areas, but is still limited by the inability, once deployed, of the relay nodes

to adjust distance to each other should changes in the environment cause a decrease

in signal. Another problem that affects this scenario is the inability to react when

one of the relay nodes turns out to be defective or is destroyed.

The motivation of this thesis is to extend on these solutions by creating an algo-

rithm that intelligently deploys a trail of mobile wireless relay nodes or “breadcrumbs”

capable of dynamically adjusting distance between each other in a way that maxi-
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mizes distance between the relays without moving beyond the capable range of radio

communications. This allows deployment in dynamic scenarios, as well as the ability

to cope with changing environments. This also allows the system to handle situations

where one of the nodes is defective or destroyed.

This algorithm was designed with the intention to be used in a future project

that will implement a system of small, low powered quad-rotor robots that will be

deployed through a tunnel system to gather data and perform maintenance. Future

work will be to implement this algorithm alongside other algorithms that handle

obstacle avoidance, path-planning, mapping, and localization in order to create a

complete deployment system.

1.2 Organization of Thesis

This thesis is organized into 6 chapters. Chapter 2 covers background information

concerning Received Signal Strength (RSS) metrics, the Institute of Electrical and

Electronic Engineers (IEEE) 802.15.4 specification, and existing research in the usage

of signal strength in the deployment of mobile robots and radio relays. Chapter 3

covers the initial hardware and software setup. Chapter 4 covers the algorithms

designed and implemented to handle the deployment of nodes, the maintenance of

distance between nodes, and handling of scenarios where nodes are lost. Chapter 5

gives an overview of the resulting software architecture. Chapter 6 covers tests and

observations. Chapter 7 presents the conclusions of this research and future work.



CHAPTER 2: BACKGROUND

2.1 Received Signal Strength

Received signal strength is a metric calculated during message reception on the

media access control (MAC) layer. RSS in low powered systems is often measured in

units of decibel-milliwatt or dBm, which is a ratio of the power of the electric field

carrying the signal received at the antenna compared to 1 milliwatt. Given the power

of the signal in milliwatts, signal strength can be computed in dBm by the equation

PdBm = 10 · log10(PmW/1mW ). A change in 10 dBm represents a change of power

in milliwatts by a factor of ten. For the 802.15.4 protocol there is no standard for

the how the MAC layer should provide the RSS, so determining RSS and the number

format used to provide it will vary by device. The specific term for the number

provided by the MAC layer is Received Signal Strength Indicator (RSSI). In the case

of XBee 802.15.4 radios, the RSSI is the absolute value of the measured RSS, so an

RSSI byte of 0x45 (90) would indicate an RSS of -90dBm, 0x2d (45) would indicate

-45dBm, 0x48 (72) would indicate -72dBm, etc.

The RSS of a radio signal is subject to a number of factors including the power

of the transmitting radio, distance between transmitters, orientation of the transmit-

ting and receiving antennas, type of antenna used, backround radio noise, and any

interference from fading effects due to obstacles in the environment. Fading effects
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include shadowing and multi-path propagation. Shadowing is an effect where an ob-

stacle positioned directly between the communicating radios is casting a “shadow”

in the wave of the transmitted signal similar to how objects cast shadows in light.

Multi-path propagation, is an effect where the signal is partially deflected off of an

object and the deflected signal arrives at the destination alongside the original signal.

The deflected signal will often have shifted phase and amplitude, causing it to interact

destructively with the original signal.

There are various methods for modeling the expected RSS within an application.

The most simplistic model is to assume all other effects ideal and only calculate for

distance. Calculating distance in three dimensional space can become costly because

the robot’s position must first be known. Bayesian modeling techniques such as

Kalman Filters or Monte Carlo particle filters are example methods for generating an

estimate of a mobile robots position. In order to compute an estimate of a robot’s

position, a map of the environment must also be previously known or generated on the

fly. Simultaneous location and mapping (SLAM) algorithms specifies one category of

techniques for generating a map of an environment on the fly. The localization portion

of SLAM algorithms typically employs one of the previously mentioned localization

techniques. If a map is known and a robot is localized, it is also possible to estimate

the effect of antenna position and orientation on RSS. To create a as comprehensive

an estimate of the expected RSS as possible, an application will also need to estimate

the effects of multi-path propagation and shadowing. Attempting to model these

effects deterministically is very difficultand would be prohibitively computationally

expensive, so these effects are often modeled stochastically as random processes.
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Sensors needed to provide measurements for localization techniques are often costly,

require additional power, and may be too large or heavy for feasibility in smaller

systems. Additionally, the computational requirements of localization, mapping, and

modeling fading effects will often surpass the specifications of the micro-controller

units (MCU) used to perform computations in low-powered systems.

One of the goals in this thesis was to provide an algorithm that maximizes distance

between a series of mobile node without exceeding the range needed for radio commu-

nications. This algorithm was intended to be implemented in low-powered systems so

computational and sensor requirements needed to be minimized. Previous research

such as that in [11] demonstrates that as RSS in a system decreases, the number of

messages lost stays consistently low until the RSS dropped below the devices thresh-

old for sensitivity. Research in [4] also demonstrates how signal strength metrics are

superior to relying on distance for predicting communications effectiveness because

it allows the application to avoid locations that are subject to fading effects without

the requirement for extra computations. Thus for this algorithm it was chosen to

negate calculations for distance and modeling fading effects, and simply use the RSS

provided by the MAC layer as the estimate of communications effectiveness. This

proved to be an effective method of determining wireless link quality in a low-cost

system.

2.2 IEEE 802.15.4

The IEEE 802.15 group is a set of standards for wireless personal area network

(WPAN) communications. A WPAN is a network of wireless devices that are only
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intended to communicate locally without a link to the outside world. WPANs typ-

ically consist of groups of devices that share data between one other or transmit

data back to an internet enabled base station such as in wireless sensor networks.

802.15.4 is a sub-standard specifically intended for low cost, low powered devices that

don’t require high speed communication rates. Many devices that use 802.15.4 are

intended to run for extended periods of time, such as months or years, without the

need of maintenance or battery replacement. 802.15.4 specifies the mechanisms on

the physical (PHY) and media access control (MAC) layers of the OSI networking

model.

802.15.4 controls access to the physical communications medium using carrier sense

multiple access with collision avoidance (CSMA/CA). Before sending a message,

CSMA/CA will sense for energy on the transmitting frequency. If energy is detected

above the configured threshold, the algorithm will delay based on a randomized back-

off algorithm. The back-off algorithm chooses the back-off delay by randomly selecting

from a sequence of pseudo-random values based on a configurable exponent. As the

retries increase the values, as well as number of possible values, generated by the

back-off algorithm increase. CSMA/CA will retry up to three times before discarding

the message. 802.15.4 also avoids communication interference by using the direct

sequence spread spectrum (DSSS) technique. DSSS effectively “spreads” the signal

across multiple frequencies by injecting a pseudo-random string of “chips” into the

signal that are at a higher frequency . The receiver is made aware of the pseudo-

random sequence so it can decode the signal at reception. Through this process,

DSSS decreases the chances of interference by spreading the signal across multiple
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frequencies, effectively increasing the signal-to-noise ratio.

802.15.4 enables nodes to communicate to each other using either peer-to-peer,

point-to-point, or point-to-multipoint communications such as in star network topol-

ogy. A star network topology is enabled by specifying two types of nodes: full-function

devices (FFD) and reduced-function devices (RFD). An FFD is capable of coordi-

nating communications between other RFD’s assigned to it by forwarding packets

between them and specifying when they are allowed to communicate. When perform-

ing this role it is referred to as the personal area network (PAN) coordinator. An

RFD is only capable of sending and receiving to an FFD and cannot coordinate other

nodes. FFD’s cannot enter sleep mode, whilst an RFD can in order to save power.

In a star network topology, a PAN coordinator acts as the central point relaying all

communications between multiple RFD end-points. A PAN coordinator can connect

to other coordinators to mimick a cluster topology. However, because 802.15.4 it

is only specified on the PHY and MAC layers, 802.15.4 does not support routing

or functionality to ensure multi-hop message delivery. By default, XBee devices are

configured as FFD’s using peer-to-peer communications.

In the application for this thesis, the resulting topology when many nodes are

deployed would resemble a “chain” where each node only speaks to the nodes in front

of or behind it. Star or cluster topologies would not prove useful in this scenario so

this research did not make use of the 802.15.4 PAN coordinator functionality. All

radios were used as FFD’s communicating with a peer-to-peer topology. Routing and

multi-hop message delivery was handled using software.
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Figure 2.1: Star, cluster, and “chain” network diagrams (clockwise from top-left)

2.3 Previous Work

This section addresses the current work performed in regards to maintaining a

system of relay nodes to increase wireless communication range as well as the use of

RSS as a metric for this and similar purposes.

The paper “Relay Placement for Ad-hoc Networks in Crisis and Emergency Scenar-

ios” [1] describes an algorithm that determines when a new static breadcrumb relay

node must be deployed to maintain a wireless tether between a human emergency

responder and a radio base station. Nodes are signaled to be deployed when the RSS

between the responder and the most recently deployed node drops beneath a certain

threshold.

In the paper “Multi-robot, Multi-target Particle Swarm Optimization Search In

Noisy Wireless Environments” [2] a particle swarm optimization algorithm was pro-

posed to direct multiple robots to a set of targets in an unknown environment. The

targets are indicated by a radio signal, the RSS of that signal was used as the metric

of distance by the seeking robots.
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The paper “Electronic Leashing of an Unmanned Aircraft to a Radio Source” [4]

defines an algorithm that allows an unmanned aerial vehicle to seek and maintain an

orbit around a sensor node based on the RSS and signal-to-noise ratio between the

aircraft and the targeted node. The algorithm was naive to distance measurements

and has an advantage over distance based orbiting because the signal-to-noise ratio

method better helps it avoid taking paths that make the craft susceptible to signal

fading from interference.

The paper “Online Methods For Radio Signal Mapping With Mobile Robots” [5]

implements a path planning method for a single mobile robot to create a Gaussian

map of RSS to a base station at an unknown location. The map was used to deter-

mine a maximum likelihood estimate of the station’s location as well as estimates for

RSS with the base station in unexplored locations. The paper explores methods for

stochastically modeling the effects of fading from shadowing that can develop a prior

to use during on-line execution.

The paper “Constructing Radio Signal Strength Maps with Multiple Robots” [6]

presented an algorithm for navigating robots to create a map of locations with good

RSS between them. The geography of the map was known a priori and was drawn into

sectors between which the RSS was desired to be known. The algorithm determines

the most efficient paths and positions for the robots to take while measuring the

desired RSS values.

The paper “A Methodology for Autonomous Radio Repeating Based on the A *

Algorithm” [7] determines a path planning algorithm for a deployed unmanned aerial

vehicle (UAV) and unmanned ground vehicle (UGV). The UGV in the algorithm
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was to move to a goal location while the UAV flies at an appropriate distance so it

can provide a communications tether between the UGV and the base station. The

purpose of the algorithm proposed in the paper was to determine the best paths for

the UAV and UGV so that an optimal communications path was maintained between

the two and the base station.

The paper “Experiments With Autonomous Mobile Radios For Wireless Tethering

In Tunnels” [8] maintains a wireless tether between a leader robot, a follower robot,

and a base station while navigating through underground tunnels. The algorithm was

implemented on vehicles modified for autonomous operation such as an Ez-Go and

mini-baja buggies. The follower robot maintains a distance behind the leader robot

in order to provide a wireless tether to the base station. Based on the RSS values

between the follower, its lead robot, and base station the follower vehicle was sped

up or slowed down.

The paper “Autonomous Communication Relays for Tactical Robots” [9] like [8]

discusses maintaining distance between a follower and a leader robot so that the

follower may act as a communication relay between the leader and the base station.

Distance between nodes was determined using LADAR and reflective bar codes on

the rear of the robots instead of RSS. The algorithm used was a hybrid between two

methods. In the first method the lead robot navigates until it can go no further

without losing signal, then a relay node was deployed to its position and afterwards

a new node was deployed every time RSS was lost between a leader and the previous

node. In the second method the follower robots maintain a constant distance from

the leading robot and a new follower was deployed each time signal to the base station
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was about to break.

The paper “Real-time Deployment Of Multi-hop Relays For Range Extension” [11]

like [1] was concerned with the deployment of relay nodes for maintaining a wireless

tether between an explorer robot and a base station. This paper discusses methods

for avoiding deep fades due to shadowing and multi-path propagation. Some methods

discussed are direct spectrum sequence spreading, frequency hopping, and orthogonal

frequency division multiplexing. Another method was to set a threshold RSS a fair

margin lower than the threshold for transfer success. The paper also implements

power control varying signal strength so as to decrease when a strong signal was

not needed as to reduce fading from propagation, and to increase strength when

transmitting to weaker links. The paper also reduces communications traffic and

interference by reducing polling between nodes for RSS when nodes are stationary.

Like in [1] the algorithm isn’t implemented with mobile nodes but with statically

deployed nodes.

The paper “Advanced Communication Protocols For Swarm Robotics” [13] pro-

vides a survey of communications protocols viable for use in swarm robots appli-

cations. It discusses the pros and cons of protocols such as Zigbee, mobile ad-hoc

networks, Bluetooth and wireless sensor networks. It points out the strengths of

Zigbee and an advantage for combining aspects of it with those of wireless sensor

networks.

Research in [1] and [11] show similar scenarios to this thesis, where an algorithm

was used to deploy nodes when RSS is too weak along the chain between a mobile

robot and its base station. Research in these papers doesn’t include considerations
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for mobile nodes maintaining their own distance, autonomously adapting when signal

strength changes, or contending with disaster scenarios such as a lost node. [9] is

similar to [1] and [11] except RSS was not used as an input. [8] demonstrates an

algorithm for using RSS to maintain a good distance between nodes for sufficient

data transmission. The work in [5] effectively demonstrates that radio signal metrics

can be used as a singular input metric to an algorithm that will output control

commands that will maintain a path that yields effective data transmission. [2], [5],

[6] and [7] implement path planning and mapping algorithms based on the measured

RSS between nodes.



CHAPTER 3: HARDWARE AND SOFTWARE SETUP

This chapter covers the hardware and software setup used to test and verify the

research performed for this thesis. It starts by giving an overview of the hardware used

and how it was interfaced. It then goes into initial software functions implemented

to provide functionality needed by the algorithms to be covered in Chapter 4.

3.1 Hardware Setup

For this thesis, Renesas Sakura boards provided by Renesas Electronics Corpora-

tion were used to simulate mobile nodes. The Sakura is a development board built

on the Renesas RX63N processor, some specs and features of the board are listed in

Table 3.1. The boards were programmed using C++. Electronic motors were not

available to test with during the research for this thesis, so control outputs were sim-

ulated by illuminating light emitting diodes (LEDs) on the Sakura board and moving

the units by hand. The front-most LED was illuminated if the node was desired to

move forwards and the rear-most LED was illuminated if the node was desired to

move backwards.

The base station for this thesis was implemented with the python programming

language on both an Apple 15” Macbook and Acer Aspire M laptop computer. Using

python it was possible to implement and test modifications on the fly without the

need to recompile, which sped up debugging significantly. Python also enabled the
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Table 3.1: Renesas Sakura features/specifications [10] [12]

CPU
96 MHz
single precision 32-bit floating point unit
32-bit multiplier / divider

Memory
Flash ROM: 1MB
RAM 128KB
Data flash 32KB

Timers

4-channels 16-bit comparator timers
6-channel 16-bit MTU with PWM, input capture, output compare, phase counting mode
12-channels 16-bit TPU with input capture, output compare, phase-counting mode
4-channels 8-bit TMR
independent watchdog timer

Communications
USB (host/function), Ether-MAC, I2C, SPI, CAN, IEBus
data transfer (DMAC, DTC)

Figure 3.1: Renesas Sakura board with XBee and power module

ability to easily switch between computers or operating systems when needed.

XBee 802.15.4 radio modules by Digi International were used to handle all radio

communications between mobile nodes and the base station. The radios provide the

802.15.4 protocol on a simple to implement and low-powered device. Table 3.2 shows

a few of the data-sheet specifications.

Table 3.2: A brief summary of specifications for XBee 802.15.4 modules [3]

Spec Vales
Tx Current (typical) 45mA
Rx Current (typical) 50mA
Indoor Range 30m
Outdoor Range 90m
RF Data Rate 250kbps
Transmit Power Output 1mW
Receiver Sensitivity -92 dBm
Radio Frequency 2.4 GHz
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Figure 3.2: Full system setup: base station with eight nodes

3.2 Interfacing with XBee 802.15.4 Radios

All data to be sent using the XBee modules is sent to the module via a Universal

Asynchronous Receiver/Transmitter (UART) interface. Interfacing with the UART

on the Sakura boards was made simple by a set of pin holes that match the XBee

footprint allowing the module itself or a set of connecting headers to be soldered onto

the board. Software interfacing with the Sakura board was made simple by Rxduino

libraries made available by Renesas’ code compilation software. The Rxduino libraries

provide several common functionalities including a serial communication library that
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wraps UART setup, transmission, and reception into simple function calls. Software

interfacing on the base station was handled by a similar serial communications library

add-on for python.

To request data be sent by the XBee module, it first needs to be transferred to the

XBee module over serial via UART. Once received by the XBee, the data is queued in

the module’s Data-In (DI) buffer. The buffer acts as a first in, first out (FIFO) queue,

delivering data as the CSMA/CA algorithm deems it capable of being delivered. The

device will also keep data queued as it’s receiving transmissions. If the DI buffer is

full, all new data is discarded. Similarly, all radio frequency (RF) data received is

placed into the module’s Data-Out buffer until the device receives it over UART. Any

new transmissions received when the DO buffer is full are discarded. Both the DI and

DO buffer’s are 100 bytes in size. The baud rate chosen for UART communications

in this theis was 57600 baud. 115200 baud was available as a faster option, but was

not chosen because it proved to be buggy during experimentation.

Figure 3.3: XBee internal buffers diagram [3]

The serial library of the Sakura handled clearing the DO buffer in sufficient time it

did not overflow, but the software needed to ensure that the serial library’s internal
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buffer did not overflow as well. There was no documentation available on the internal

buffer size of the Sakura’s serial library, so the 100 byte buffer size of similar Arduino

MCU’s serial libraries was used as a reference. Assuming streaming data, at a rate

of 57600 baud, or 57600 bits-per-second, one bit will arrive every 17.36 µs or one

byte every 69.44 µs. With a buffer size of 100 bytes, this means the buffer will fill

in approximately 6.944 ms. Actual data rates will be slower, due to start and stop

bits used in communications. Based on these calculations it was decided the software

would check on the serial buffer at an interval of once every 5ms.

On initial setup the XBee module acts as a serial cable replacement. All data that

is sent to the module will be repeated as output on the configured destination node.

In its basic mode the destination address must be re-configured using the board’s

command mode if it’s desired to transmit to more than one node. Entering and

exiting command mode requires sending a sequence of characters and waiting for a

specified time-out period as well as an acknowledgment character. Because all of the

nodes in the setup for this thesis needed to talk to at least two nodes and constantly

switch between which node it will transmit to, the needed to constantly enter in and

out of command mode would cause undesirable delays and power consumption.

To answer this problem, the XBee modules also offer an application programming

interface (API) mode for communicating data. Using API mode, all messages in-

tended to be sent to other nodes must be packaged into a frame format before being

sent to the XBee module. All messages received from the module are also packaged

in this format. Figure 3.4 diagrams a few of the basic XBee frame types that were

used for the software in this thesis. Each frame is delimited by a special start char-
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acter, which is followed by two bytes that indicate the length of the message. The

next byte indicates which type of XBee API frame is being used. The next few bytes

provide parameters for the frame type and are then followed by the any data to be

transmitted with the frame if it exists. Lastly, a checksum byte is appended to the

end, which is used for data verification. The formula for calculating the checksum is

0xFF −
((∑lsb

i=msb bytei

)
&0xFF

)
where msb is the position of the most significant

byte, or start, of the message and lsb is the least significant byte, or end, of the

message.

Figure 3.4: XBee API frames used for this thesis

Though a bit more complex to program for, the XBee API mode provides a much

faster and more robust method for peer-to-peer communication with multiple nodes.

As can be seen by the transmit request and received message frame types in 3.4, using

API frames makes it easy to specify or detect the destination or receiving node by

using the appropriate part of the frames. Also, API mode makes reading RSS between

nodes easier by making the measured RSS with a neighbor during a particular packet’s

reception available as part of the received frame.
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Table 3.3: XBee 802.15.4 AT command types [3]

Command Name Description
MY 16-bit Source Address XBee module’s 16-bit address
RR XBee Retries Number of times the XBee module will retry

after CSMA/CA failure
RN Random-Delay Slots Minimum values of the back-off exponent for

the CSMA/CD algorithm
PL Power Level Power level for transmitting messages. Ranges

from 0 = -10dBm to 4 = 0dB.
DB Interface Data Rate Speed for UART communication. Ranges from

0 = 1200 baud to 7 = 115200 baud. (non-
standard rates also supported)

AP API Enable Enable/Disable API mode. 0= disabled,
1=enabled, 2=enable with escaping reserved
characters

AT command frames enable configurations settings of the XBee module to be

modified or read on-the-fly by software. This was useful for determining the address

of the XBee controller on startup. By requesting the address on startup, it also allows

the software connecting to the XBee module to verify it is connected and working on

startup. Table 3.3 illustrates XBee configuration commands used in this thesis.

3.3 Multi-Hop Message Delivery

As covered in 2.2, the 802.15.4 protocol only facilitates peer-to-peer connections

and doesn’t facilitate multi-hop package delivery. It was the responsibility of the

software implemented in this thesis to ensure packets were delivered from the base

station to the end nodes.

On initial testing of the system for this thesis, all multi-hop messages were sent

and subsequently forwarded no acknowledgments. It was quickly noted that the

number of messages being lost increased significantly with the number of hops they

needed to cover. Methods to mitigate packet loss and ensure multi-hop delivery were

immediately implemented.

The first method to handle ensuring multi-hop message delivery was to apply a
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frame-id to the frame of any message that need to cover more than one hop. When

the XBee module is passed a transmit request with a frame-id, it will return a modem

status frame indicating if the message was successfully acknowledged by the receiving

node. The message would be retried if no status message was received within an

alloted time frame. If the modem status message returned with an error, the message

was retried immediately after a random back-off delay. In this case, the random back-

off delay isn’t to ensure an open slot for the message, which is handled by the MAC

layer CSMA/CA protocol, but rather attempts to offset the timing of the node’s

software to avert multiple nodes continuously attempting to send messages at the

exact same time interval. If retried too many times, the message was abandoned.

This functionality was implemented and successfully reduced the factor by which

messages were being lost, but still left room for improvement.

On top of retrying messages based on MAC layer feedback, an acknowledgment

message was implemented on the software level. For all communication frames the

first byte of the RF data portion was allotted for the message’s application layer frame-

id, which is separate from the MAC frame-id. Now if a non-zero byte was present in a

received frame, a receiving node’s software would transmit back an acknowledgment

frame indicating the message was received by the software. With this implemented,

multi-hop message loss was reduced significantly.

3.4 Syncing RSS Between Neighboring Nodes

With the XBee nodes interfaced to the Sakura boards and base station as well as

multi-hop message delivery success facilitated for, the next step was to add function-
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ality to the software for syncing RSS between nodes. It was important that a node

have an up-to-date record of the RSS to each neighboring node, as well as a record

of the measured signal strength from the neighboring nodes to itself as one may be

weaker. Another objective of this functionality was communicating back the received

signal strength between each node to the base station so an operator can be aware of

the overall strength of the chain.

It was observed early in testing that the RSS to a node will inevitably contain

a small degree of noise due to non-linear effects on RSS from obstacles and walls

as well as signals from other nodes. This matches expectations due to behavior

described in section 2.1. Directly relying on these noisy measurements for control

outputs would lead to jittery movements that would consequentially result in excessive

power consumption by motors. To smooth the measurements, the RSS to a node was

described as the average of the previous 10 measured RSS values. Figure 3.5 illustrates

the application layer messages designed for syncing RSS between the nodes and the

base station.

Figure 3.5: Rss sync frames

To obtain the RSS measurement to a neighboring node, the RSSI from any received

frame was appended to a circular queue of 10 previously measured RSS values for that

node. To ensure that an update to the node’s RSS was received on at least an interval

of once every 1.5 seconds, the nodes would send a message to each of their neighbors

containing their most recently measured RSS. This is the first message described
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in Figure 3.5. The received measurement is added to a separate queue of 10 most

recently received values indicating the neighbor’s measured RSS for the connection.

As a result, for each connection on each node there would be two RSS measurements,

one indicating the node’s measured RSS with its neighbor and one indicating the

neighbors measured RSS to the node. The higher level control algorithm will always

refer to the weaker of either measurement for any particular connection. The process

described in this paragraph is illustrated in Figure 3.6.

Figure 3.6: Syncing node rss

The next step in syncing RSS among nodes was to provide a method for nodes

to send a report of each connection’s RSS back to the base station. To facilitate

this a single multi-hop message is initiated by the end node at an interval of once

a second and passed back along the chain to the base station. This is the second

message described in Figure 3.5. The first message sent by the end node contains its

address, the measured RSS with the neighbor to its rear, as well as its record of the
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neighbor’s measured RSS to itself. As each node in the chain receives the message

they append their address as well as the same measurements between itself and the

neighbors to its front and rear. Once the message has arrive at the base station the

message presents a snapshot of the RSS for each connection in the chain for that

point in time. This message also becomes useful later when the base station needs to

be made aware when a node in the chain has stopped communicating. The process

for generating this message is illustrated in Figure 3.7.

Figure 3.7: Reporting node rss

3.5 Verifying Node Network Quality

The final consideration to be made in the software setup before applying the al-

gorithms was to provide a mechanism within the software to measure how well the

nodes are communicating. This mechanism was implemented in the form of a “ping”

message. These messages are illustrated in Figure 3.8.

Figure 3.8: Ping messages

At an interval of once every .5s the base station generates a “ping” with a specified
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ping-id. This message contains 100 bytes of data, and is passed forwards along the

chain until it reaches the front-most deployed node. Once it successfully reaches

the front-most node, the node sends back a ping acknowledgment message with the

corresponding ping-id. The acknowledgment message is passed backwards along the

chain of deployed nodes to the base station. Once the acknowledgment message is

received by the base station, the base station marks the ping with that id as successful.

If an acknowledgment for a ping is not received within a time frame of 2 seconds the

ping is marked as failed. The base station keeps a record of successes (0’s) and failures

(1’s) for the last 25 pings. The success rate is then presented as a percentage by the

formula 100 ·
(

1−
∑n

i=0 Recordi
n

)
where n is the number of recorded pings. The success

rate was used as the metric to verify how well all of the nodes in the chain were

communicating at a given time.



CHAPTER 4: ALGORITHMS

The algorithm implemented for this thesis was divided into three parts. The first

part facilitated for the intelligent deployment of new mobile nodes in the event RSS to

the most recently deployed node dropped below a specified threshold. The second part

was concerned with generating a control output that would move the “breadcrumb”

nodes so that they maximize distance with each other without moving so far that

communication quality degrades. The third part handles when a node is lost either

due to consistent communication failure or destruction.

4.1 Intelligent Node Deployment

The first algorithm was tasked with the intelligent deployment of nodes as needed.

The first step in the algorithm is to build a list of nodes that are available to deploy.

On startup, the software in each node will request its address using an AT command

frame specified in Figure 3.4. After it has become aware of its own address, it begins

to send a broadcast on a 1s interval announcing its presence to the base station.

When it hears this broadcast, the base station adds the node to its internal list. The

node will continue to send this broadcast until deployed.

Figure 4.1: Deployment and address assignment frames
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After a 5 seconds startup delay, the base station will begin to deploy nodes. The

first step in deploying a node is to assign the addresses to the node so it knows who its

neighbors are to the front and back. For the first node, the front neighbor’s address is

the 16-bit value of 0xFFFF which the software on the node uses to determine it is the

front-most node. The rear address is 0x00, which during this thesis was the address

configured to the XBee node always used with the base station. After the addresses

are assigned, the base station sends a “deploy” message, triggering the mobile node

to begin moving. This process is illustrated in Figure 4.2, the frames are illustrated

in 4.1.

Figure 4.2: Process for deploying first node

Each message sent in the deployment process includes an application layer-id as
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described in section 3.3 to monitor that each message is properly received. If an

acknowledgment for any message is not received during the deployment process, the

message will be retried. If a time interval of 5 seconds from the beginning of a

deployment elapses before a deployment succeeds, the current deployment process

will be abandoned and then retried on the next evaluation interval.

Figure 4.3: Process for deploying subsequent nodes

After the first node is successfully deployed, the base station will now monitor the

RSS between the most recently deployed node and itself. It performs this evaluation

continuously on a one second interval. If the RSS, either between itself and the node

or the node and itself, drops below the specified threshold, the base station initiates

a deployment process for the next node in the chain.

The first step in this deployment process is to re-assign the addresses of the most

recently deployed node. The rear address of the recently deployed node will now

be the newly deployed node. The next step assigns the addresses for the newly
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deployed node. Its rear address will be the base station and front address will be the

recently deployed noden. The final step sends a deployment message to the node.

As with deploying the first node, if any message in this process fails to return an

acknowledgment the deployment process is abandoned and a retry will be attempted

on the next evaluation interval. This process is illustrated in Figure 4.3.

4.2 Maintaining Effective Distance for Communications

The next piece for this algorithm was to determine a control output that will keep

an effective distance between the nodes without allowing the signal strength to drop

beneath the needed threshold needed to maintain communications.

This algorithm is implemented as a metaphorical “spring” between the mobile

nodes. If a neighbor is too close to the node to its rear, its algorithm will “push” it

forwards until its RSS drops below a sufficient threshold. If it goes too far from the

node to its rear, the “spring” will pull it backwards. As nodes move forwards and

backwards, the corresponding algorithm on its neighbors “pushes” and “pulls” them

until they reach a balance where each of their measured RSS values between each

other is within the allowed threshold. As a sanity check, if the moving node is trying

to move away from the node to its rear but becomes very close to the node in front if

it, the algorithm will tell the node to stand still, expecting the node in front to move

forward. This algorithm is illustrated in the “Distance Management” pseudo-code.

The output was modeled for a continuous servo motor, where a value of 0 indicates

full speed backwards, a value of 180 is full speed forwards and all other inputs are

invalid. The control output begins as the current control output commanded by
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Distance Management

1: Control← Controlin
2: RSSIhth = −70dBm . Upper RSS threshold
3: RSSI lth = −75dBm . Lower RSS threshold
4: RSSIfth = −50dBm . Lower RSS threshold

5: if RSSIf > RSSIfth then . Front Neighbor too close
6: Control = 90
7: else if RSSIr < RSSI lth then . Rear Neighbor too far
8: Control− = 3 · (RSSIr −RSSI lth)
9: else if RSSIr > RSSIhth then . Rear Neighbor too close
10: Control+ = 3 · (RSSIhth −RSSIr)
11: end if

the base station. The first check in the algorithm is on the signal strength to the

neighbor in front, if it is too strong the node will stop until the signal weakens back

below the threshold, indicating the neighbor has moved itself forward. Otherwise the

control output is adjusted based RSS measured with the neighbor to the rear. If

the signal goes above the allowed upper threshold, the control output is decreased

proportionally to the difference in the signal from the threshold. The result from

the algorithm is clamped in the software to keep it in the range of 0 to 180. This is

implemented in reverse for when the signal goes below the allowed lower threshold.

The upper and lower thresholds of -70dBm and -75dBm respectively were chosen

based on observations made during testing in section 6.1.

Though the output of this algorithm is modeled for a continuous servo motor, the

actual servo motor hardware was not available to test with. Instead, as mentioned

in section 3.1, the output was modeled by signaling the need to move with an LED

output and then moving the nodes by hand. The function calling the algorithm did a

check on the return value that would otherwise have gone to the motor. If the value

was greater than 90, the front-most LED on the Sakura board was lit. If the value
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was less than 90, the rear-most LED on the Sakura board was lit. If the value is equal

to 90, no LED is lit, indicating the node no longer needs to be moved.

4.3 Recovering from a Lost-Node Scenario

The final piece of the algorithm was to handle situations where a node in the

chain is lost, either due to non-recoverable loss of communications or the node being

destroyed. The process of recovering from a lost-node scenario is illustrated in Figure

4.4 and described in the following paragraphs. Communication messages added for

this algorithm are illustrated in Figure 4.5.

Figure 4.4: Lost node recovery

For each connection, base-station-to-node or node-to-node, the devices monitor

when they last received communication to its neighbors. If a specified time interval

elapses without receiving communications then the neighbor is considered to be lost.

In the event that the lost neighbor is to the front of the node, a notification is

first sent to the base station for debugging purposes. The node is now aware that it
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has lost a neighbor to the front, so it will listen for a special “lost-rear” broadcast

message in order to re-connect with the chain in front of it. This is the second

message illustrated in Figure 4.5. In the mean-time, the chain from this node back

will continue to move forwards and the base station will deploy more new nodes as if

there were no longer any nodes in front of this one. Using the RSS report message,

the base station will update its internal record of nodes in the chain to remove any

nodes that are no longer known to be communicating.

Figure 4.5: Lost node messages

In the event a lost neighbor is to the rear of the node, the node will immediately

begin to move backward in order to move within transmitting range of the remaining

nodes to its rear. In the mean-time, on an interval of 1.5 seconds this node will

broadcast the “lost-rear” message that the node behind the lost node should now be

listening for.

In this scenario the node from behind the lost node and in front of the lost node

should eventually come in range of each other. As soon as the rear node hears

the “lost-rear” broadcast it will directly transmit an acknowledgment to the front

node. This acknowledgment is the first message illustrated in Figure 4.5. They will

consequentially update variables in their software to indicate they are now neighbors.
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Using the RSS report message, the base station will now re-add nodes known to still

be part of the chain in the order which they have been re-connected.

If the lost front node happened to be the most recently deployed node, the base

station will consider the entire chain lost after a time interval of 10 seconds. If it

hears a “rear-lost” broadcast before timing out, it will immediately update its internal

record of the chain, removing the lost node without needing to hear the updated RSS

report message.



CHAPTER 5: SYSTEM OVERVIEW

This chapter provides an overview of the full software architecture implementing

the hardware and software of Chapter 3 with the algorithms in Chapter 4 on the

nodes and base station. Figure 5.1 gives a summary of all application layer frame

types designed for functionality in this system, including ones not explicitley described

in previous chapters.

Figure 5.1: Software layer frames summary
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Figure 5.2: Node software flowchart

5.1 Mobile Node

Figure 5.2 gives a flowchart of the software used to run the mobile nodes. The

software begins by intializing serial communications then sends a request to the XBee

for the module’s configured 16-bit address. As soon as the XBee sends a response,

the node is considered intialized and begins sending a broadcast to be heard by the

base station on a one second interval. Once deployed by the base station, the node

will perform various tasks at given intervals. Every 100ms it will check the age of

messages in the outgoing queue. If the message has not succeeded within 200ms, the
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message will be retried. If the retries exceed the software specified maximum of 3, the

message is discarded. The rest of the tasks are performed in order over the course of

each 1.5 second interval. At 200ms after the interval the output is recalculated using

measured RSS values. At 400ms after the interval the software evaluates when it

last received communications from its neighbors, and marks a neighbor as lost if the

time exceeds 5 seconds. At 1200ms after the interval, the node sends its most recently

measured RSS value to the corresponding neighbor. At 1.5 seconds the interval resets,

if the node is the furthest node it initiates an RSS report message back to the base

station.

Figure 5.3 illustrates the process for parsing received serial data for messages on

the node. The software parses through all data in the serial buffer. As soon as a valid

message is recognized it is parsed for its type and data. The first check is for which

XBee frame type. In the case of this software, the three frame types used are the

AT command frame, transmit status, and received message. If it is an AT command

frame, it is the response of a MY request for the XBee module’s 16-bit address so

the returned value is recorded as the node’s address. If it is a transmit status frame,

the software will retry any multi-hop messages with the same XBee frame id as the

returned status if the status returns a failure. As with the message check in Figure

5.2, if the message has too many retries it is discarded. If the frame is a received

message frame then it is a message from another node and it is checked for which

application layer type message is present. If the first byte of the RF data contains a

non-zero value then an application layer frame-id is present and an acknowledgment

message is sent to node that transmitted the message. If the message is from one
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Figure 5.3: Node message reception

of this node’s neighbors, the RSS buffer for that neighbor is updated. If the app id

is 0x12, the message contains a neighbor’s most recent RSS and the buffer holding

RSS values from the neighboring node to this node is updated. If the app id is 0x22,

the message is an RSS report so the node appends its measured RSS values between

itself and its neighbors then passes it to the next node in the chain. If the app id

is 0x24 it is a ping message from the base station. If the destination address of the

ping is the node’s address, a ping acknowledgment is sent back towards the base

station. If not, the ping is forwarded until it reaches its destination. If the app-id is
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0x27 then it is an acknowledgment of one of this node’s multi-hop messages sent to

another node, the corresponding message in the multi-hop outgoing queue is marked

as sent and cleared from the queue. If the app id is 0x26 then the message is a ping

acknowledgment, so it is forwarded towards the base station. An app id value of

0x28 indicates an address assignment from the base station so the node will update

its addresses for its neighbors to the front and back. An app id of 0x31 indicates

a lost broadcast message, after a sanity check that this node has actually lost its

front neighbor a lost acknowledgment is sent, otherwise it is ignored. If the message

is from the node’s current front neighbor and we haven’t lost communications, an

acknowledgment message is still sent. An app id of 0x33 indicates a lost broadcast

acknowledgment record, after a sanity check that we’ve this node has lost its rear

neighbor the rear neighbor address for this node is reset, otherwise the message is

ignored.

5.2 Base Station

This section gives an overview of the software implemented on the base station,

Figure 5.4 shows a flowchart diagram of the architecture. Many functions are similar

to the node software. On startup the base station initializes serial communications

and requests the 16-bit address of the XBee module. If the addres request is successful,

the base station is considered initialized. The station will now delay for an interval

of 5 seconds while listening on the XBee for any broadcasts from new mobile nodes,

adding nodes to the list as they are heard. After the startup delay the software begins

deploying nodes. Message, ping, and neighboring node timeouts are evaluated every
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Figure 5.4: Base station software flowchart

100ms. Messages are handled the same as on the mobile node, retried and discarded

as configured. Pings are marked as unsuccessful after no response is received after 2

seconds. Nodes are marked as lost after 5 seconds. On an interval of every 400ms

the base station sends the 100 byte ping message used to determine the chain’s link

quality. Every 800ms the base station sends its most recently measured RSS to the

closest deployed node. Every 1000ms the base station evaluates if another node needs

to be deployed and the interval is reset.

Figure 5.5 shows the procedure for the base station receiving messages from the

serial buffer. Most messages and responses are similar to the mobile node. The base

station also uses the AT command to become aware of its XBee module’s address. It

also uses the transmit status to check whether multi-hop messages need to be retried

or discarded. Received messages with an application layer id are responded to with an
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Figure 5.5: Base station message reception

acknowledge message, and the RSS is recorded if the message’s sender is the nearest

deployed node. The first difference is the base station also listens for messages with

app id 0x10, which are the announcement message from new nodes. Nodes that send

this message are added to the base station’s internal list. Like in the mobile node,

messages with app id 0x12 are used to update the base station’s record of the node’s

measured RSS from the base station. Messages with an app id of x22 indicates a

full RSS report of the currently deployed chain of nodes, using this message the base

station updates its internal record of RSS in the system while also performing any

maintenance on the list to remove lost nodes. If the app id is 0x26, the ping with the

corresponding id is marked as successful. Same as with the mobile nodes, an app id
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of 0x27 indicates a multi-hop message acknowledgment. The base station marks the

corresponding message in the multi-hop outgoing queue as successful and removes

it from the queue. If the message has an app id of 0x31, this is a lost broadcast

message. If the address of the message matches the message of the most recently

deployed node, an acknowledgment is sent. If it is another node, an acknowledgment

is sent and the node formerly in front of the base station is removed from the list.



CHAPTER 6: TESTS AND OBSERVATIONS

For the purpose of testing, all XBee nodes were configured for their lowest output

power setting of -10dBm. in order to allow for testing in smaller spaces. Tests were

performed in a vacant hallway of the EPIC building of UNC Charlotte in an attempt

to simulate a tunnel-like environment. The nodes and the base station were elevated

from the floor using cardboard boxes as to reduce multi-path propagation interference

from the floor.

6.1 Measuring RSS vs. Distance with One Node

Figure 6.1: Test one: measured rss and success rate between one node and base
station vs. time

The first test performed with this system involved measuring the RSS between one

node and the base station. The node was moved away from the base station until

the RSS evened out at specified dBm measurements, and the distance from the base
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station at that point was recorded. Distances were recorded for measurements of -60,

-70, -80, and -90 dBm. During the test the program on the base station kept record

of the measured RSS as well as the success rate specified in section 3.5. This was

output to a comma-separated-values (CSV) file to be used to graph the test results.

These test results are shown in Figure 6.1. The distances measured at the desired

RSS values were recorded and are presented in Table 6.1 and graphed in Figure 6.2.

Vertical lines in Figure 6.1 indicate the points in time where the node was placed at

the distances recorded in 6.1.

Table 6.1: Test one: measured distances for particular rss values with one node

Connection (node-node) RSS (dBm) Distance (cm)

2-0

0 0
-60 32
-70 372
-80 808
-90 1164

Figure 6.2: Test one: measured distance for particular rss values between one node
and base station

From this test a rough approximation was gained of how far the XBee node could

move from another. It was confirmed through observations that variance in RSS was

largely non-linear in relation to distance. It was also observed that the RSS were very
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noisy despite smoothing, and tended to decrease while the node was in motion and

stabilize when at rest. The success rate was observed to drop off significantly and

become unpredictable when the RSS dropped below -80 dBm. There are no readings

of RSS below -90 dBm, consistent with the XBee module’s indicated sensitivity of

-92dBm.

6.2 Measuring RSS vs. Distance with Two Nodes

Figure 6.3: Test two: measured rss and success rate between two nodes and base
station vs. time

Now that data was gathered with a single node, a second test was performed with

two nodes to compare the effects of multiple node’s signals on the success rate and

distance the nodes were able to travel. Two nodes were placed in a deployed state

with the base station and then moved until the measured RSS between each node

and its neighbor to the rear were stabilized at the same values of -60, -70, -80, and

-90 dBm as in test one. The measured RSS between the nodes and success rate over

time are graphed in Figure 6.3. The distances of the nodes from each other as well

as the total distance at the desired RSS values are recorded in Table 6.2 and graphed



45

in Figure 6.4. Vertical lines in Figure 6.3 indicate the points in time the nodes were

positioned at the distances measured in Table 6.2.

Table 6.2: Test two: measured distances for particular rss values between two nodes
and base station

RSS (dBm) Connection (node-node) Distance (cm)

-50
3-0 0
4-3 0
Total 0

-60
3-0 46
4-3 57
Total 103

-70
3-0 203
4-3 106
Total 309

-80
3-0 502
4-3 478
Total 980

-90
3-0 792
4-3 976
Total 1768

Figure 6.4: Test two: measured distance for particular rss values with two nodes

It was observed that another node being present did have an affect on the distance

other nodes were able to move. Generally, the nodes were not able to move as far a

distance from each other as a single node was with just the base station. However,

with a second node the total distance traveled increased from 1164 cm to 1768 cm.

It was also noted once again that success rate dropped off and become unpredictable

when RSS at any point in the chain dropped beneath -80dBm.
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Based on these tests the thresholds for the distance maintenance algorithm in

section 4.2 was set at an upper threshold of -70 dBm and a lower threshold of -

75 dBm. This allowed for some leeway between the threshold and the limit of -80

dBm before success rate drops off. The span of 5 dB between the threshold values

gave some space for noise in the measurements. The threshold for the deployment

algorithm described in 4.1 was set to -75dBm.

6.3 Nine Node System Test

Figure 6.5: Final test setup: nodes and base station elevated using boxes

A full system test was performed with a total of 9 nodes: 8 “mobile”nodes and 1

base station node; Figure 6.5 shows a photo of the setup. The base station was started

with all 8 nodes announcing themselves to the base station. After the base station’s

startup interval, nodes began to be “deployed” by the base station. Each node was
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Figure 6.6: Final test: rss and success rate vs. time for an intelligently deployed
system of 8 mobile nodes and base station

moved by hand away from the base station based on the output on the Sakura board’s

LED’s. Once the node’s RSS dropped beneath the threshold for deploying a new node,

the next node was deployed by the base station. For the duration of the test the nodes

were moved forwards and backwards by hand purely based on the LED output on the

boards until the board’s LEDs were no longer illuminated, indicating a resting state.

Figure 6.6 shows a graph of RSS and success rate vs. time for the entirety of the test.

Figure 6.7: Final test: graph of rss vs. time as first nodes are being deployed

Figure 6.7 shows a graph of RSS values and success rate for the deployment of
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the first three nodes: nodes 6, 1 and 7. The line graphing RSS between node 6 and

node 0 is shown to decrease to the threshold for deploying a new node, the line ends

when node 1 is deployed and nodes 6 and 0 no longer directly communicate. The

same pattern can then be seen in the RSS between node 1 to node 0 until node 7

is deployed and nodes 1 and 0 no longer directly communicate. This demonstrates

success of the algorithm in section 4.1.

Figure 6.8: Final test: graph of rss vs. time as a node goes down and system
recovers

After node 7, node 4 was deployed. For demonstration purposes, node 4 was

disconnected to simulate a scenario when a node would become missing or break. In

Figure 6.8 this can be observed. The connection from node 7 to node 0 ends when

node 4 is deployed at 136s. Node 4’s connection is observed up until it is disconnected.

It can be noticed the line graphing RSS between node 4 and 7 widens from 170s to

173s. This is because the lines on the graph widen as the time since the value had

last been updated increases, indicating that node 4 has gone down and is no longer

communicating. At 176s, the connection from node 7 to node 0 is renewed because

node 4 has been deemed lost by the software. The line graphing the success rate can
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be observed to drop around the point node 4 goes down due to the ping messages

being sent to address 4 no longer returning, after recovery the success rate can be seen

returning to nominal values. It can be observed that after recovery the application

continues to operate nominally. This demonstrates success of the algorithm described

in section 4.3.

Figure 6.9: Final test: graph of rss vs. time as all nodes balance rss

Figure 6.9 shows a graph of RSS vs. time from the point at which all nodes are

deployed until the end of the test. The graph shows the RSS of each node converging

into the threshold range of -70 down to -75 dBm as they are each moved by hand

into a resting position. Some values in the graph may appear to converge above

-70 dBm, however the nodes were considered resting because the measured RSSI

from the neighboring node had a weaker signal which was considered instead. This
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demonstrates success of the algorithm in section 4.1.

It was observed during this test that noise and variability in the RSS often would

cause jitter in the control output despite smoothing. Even after coming to rest, LEDs

on a node may light up and go out again as the RSS between the node’s connection

evened out. It was also observed that the success rate dropped down to around 70%

with a higher number of nodes deployed. It was observed to drop to lower values

during the test at points nodes were at non-ideal distances or moving, but was shown

to stabilize when the RSS values between nodes was mitigated and the nodes came

to rest. Despite some noisiness and room for improvement in handling multi-hop

messages, this test demonstrated the success of the algorithms described in Chapter

4.



CHAPTER 7: CONCLUSIONS

7.1 Conclusions

Based on the tests in Chapter 5, it was concluded that a system of “breadcrumb”

nodes that intelligently deploy, maintain distance, and recover from lost-node sce-

narios is possible to implement using RSS between the nodes as the primary metric.

Some things noted to be improved upon include smoothing of measured RSS mea-

surements between nodes, as well as handling of multi-hop communications. Despite

some work to be done in these areas, the algorithm was shown to be successful at

handling a basic system without failure.

7.2 Future Work

Future work for research done in this thesis includes implementing this algorithm

into a system with fully-autonomous mobile nodes. A more sophisticated protocol for

handling multi-hop messages should also be implemented, which can improve upon

the 70% success rates observed with a full chain of nodes in this thesis’ tests. Testing

with higher radio output strengths will allow observations of how the algorithm and

RSS values vary when nodes become further from non-neighboring nodes and their

RF transmissions, reducing interference but also increasing the chance of collisions

due to the hidden node problem.
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