

A PATH PLANNING AND OBSTACLE AVOIDANCE

ALGORITHM FOR AN AUTONOMOUS ROBOTIC VEHICLE

by

Sharayu Yogesh Ghangrekar

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2009

Approved by:

Dr. James M. Conrad

Dr. Bharatkumar Joshi

Dr. Ron Sass

 ii

©2009

Sharayu Yogesh Ghangrekar

ALL RIGHTS RESERVED

 iii

ABSTRACT

SHARAYU YOGESH GHANGREKAR. A Path Planning and Obstacle Avoidance

Algorithm for an Autonomous Robotic Vehicle. (Under the direction of Dr. James M.

Conrad)

Path planning in robotics is concerned with developing the logic for navigation of

a robot. Path planning still has a long way to go considering its deep impact on any

robot’s functionality. Various path planning techniques have been tried and tested earlier,

including probabilistic, integral and genetic approaches. The implementation details of

most of these algorithms are proprietary to specific organizations. The requirement of a

customized strategy for collision free and concerted navigation of an All-Terrain Vehicle

(ATV) led to the activities of this research. As a part of this research an algorithm has

been developed and simulated to give a visual effect. The algorithm presented is

evolutionary and capable of path planning for ATVs in the presence of completely known

and newly-discovered obstacles. This algorithm helps the ATV to maneuver in an open

field in a specific pattern and avoid the obstacles, if any, along its path. As part of the

research the actual algorithm is implemented and simulated using C and WINAPI. As a

result, given the data of known obstacles and the field, the ATV can maneuver in a

systematic and optimum manner towards its goal by avoiding all the obstacles in its path.

This algorithm can also be deployed on an ATV using real time data from LIDAR and

GPS. The logic of the algorithm can be extended for path planning in a completely

dynamic environment.

 iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and thank my advisor, Dr. James M.

Conrad for his explicit support and help throughout my Master’s program all the way till

the successful completion of my thesis. I thank him for the utmost confidence and

encouragement that he provided in guiding me through my thesis. His advices and

teachings will be definitely helpful to me in my future. I am also thankful to Dr.

Bharatkumar Joshi and Dr. Ron Sass for accepting to be my committee members and also

for their advice and support.

I would like to express my sincere appreciation towards Zapata Engineering for

providing me the platform for my thesis. Also, I would like to appreciate the support

from Malcolm Zapata, Thomas Meiswinkel and Richard McKinney and for their timely

advice.

Last but not the least I would like to thank my husband Yogesh for his love and

support and also the support from my parents and family for showing their profound

confidence in me and their invaluable help towards the completion of this thesis.

 v

Table of Contents

List of Figures .. viii�

List of Equations ... x�

List of Tables ... xi�

Chapter 1: Introduction ... 1�

1.1� Motivation ... 7�

1.2� Current Work .. 9�

1.3� Organization of Thesis .. 12�

Chapter 2: Path Planning Overview .. 13�

2.1� Quad tree Multiresolution ... 15�

2.2� Evolutionary Algorithm .. 15�

2.3� Use of Laplace’s Equation .. 16�

2.4� Hierarchical Strategy .. 16�

2.5� Numerical Potential Field Techniques .. 17�

2.6� Use of Intersecting Convex Shapes .. 18�

2.7� Symbolic and Geometric Connectivity Graph .. 19�

2.8� Need of a new Technique ... 20�

Chapter 3: Algorithm .. 22�

3.1� Terminology Used .. 23�

3.2� Algorithm .. 26�

3.2.1� Logic for Local Path Creation... 30�

3.2.2� Avoidance of Newly-Discovered Obstacle ... 36�

3.3� Example .. 37�

 vi
3.4� Computational Analysis of the algorithm ... 41�

3.4.1� Computational Complexity of Obstacle avoidance 41�

3.4.2� Computational Complexity of Navigation .. 43�

3.4.3� Computational Complexity of algorithm .. 43�

3.4.4� Example to describe the modified BFS in this algorithm 43�

3.5� Data Structure ... 47�

3.6� Pseudo Code.. 47�

3.6.1� Initialization .. 48�

3.6.2� Create Imaginary Square... 48�

3.6.3� Obstacle Detection .. 49�

3.6.4� Move Vehicle .. 49�

3.6.5� Local Path Navigation... 50�

3.6.6� Find Optimum Intermediate Goal Point ... 51�

3.6.7� Navigate Through Field .. 51�

Chapter 4: Role of Logistics and Assumptions in Path Planning 52�

4.1� Assumptions .. 53�

4.2� Logic ... 54�

4.2.1� Data Structure ... 54�

4.2.2� Formulas ... 54�

4.2.3� Code .. 61�

Chapter 5: Simulation and Graphics Details ... 65�

5.1� Path of Development of the Research Along With Platform Selection 66�

5.2� Graphics and Simulation Tools Used ... 68�

 vii
5.2.1� Getting Started with Win API Programming .. 69�

5.2.2� Some of the Basic Functions and Structures with Win API [29] 69�

5.2.3� Customization of Programming in Win API for the Algorithm 74�

Chapter 6: Study Heuristics .. 82�

Chapter 7: Conclusion and Future Work .. 87�

Bibliography ... 90�

 viii

1 List of Figures

Figure 1-1 : Navigation of robot in a room ... 4�

Figure 1-2 : Graphical representation of robot’s movement plan 5�

Figure 1-3 : Obstacle in the normal path .. 6�

Figure 1-4 : Path around an obstacle... 6�

Figure 1-5 : Target Environments for Outdoor Robotic Mapping [7] 7�

Figure 3-1 : Field Attributes ... 23�

Figure 3-2 : LIDAR Attributes ... 24�

Figure 3-3 Pattern of Navigation in the field .. 27�

Figure 3-4 Field with Known Obstacles ... 28�

Figure 3-5 Imaginary Square around the known obstacles ... 29�

Figure 3-6 Imaginary squares around know obstacles with local path defined 29�

Figure 3-7 : Obstacle and imaginary square ... 37�

Figure 3-8 : Case 1.1 to decide next scan point to be 8 .. 38�

Figure 3-9 : Case 1.2 to decide next scan point to be 9 .. 38�

Figure 3-10 : Case 1.2 to decide next scan points to be 10 and 11 39�

Figure 3-11 : Local path created around obstacle using different cases 40�

Figure 3-12 : Computational technique used for obstacle avoidance 41�

Figure 3-13 : Example for computational technique .. 44�

Figure 3-14 : Modified BFS at depth level 2 .. 44�

Figure 3-15 : Modified BFS at depth level 3 .. 45�

Figure 3-16 : Modified BFS at depth level 4 .. 45�

 ix
Figure 3-17 : Modified BFS at depth level 5 .. 46�

Figure 3-18 : Modified BFS at depth level 6 .. 46�

Figure 4-1 : Y scan range = LIDAR range ... 56�

Figure 4-2 : Y scan range = LIDAR range / 2 .. 56�

Figure 6-1: Simulation output of different scan points when going around the obstacle

(left hand path case) .. 83�

Figure 6-2 : Simulation output of different scan points when going around the obstacle

(right hand path case) .. 84�

Figure 6-3 : Simulation output of different scan points when going around the obstacle

(base case 1) .. 86�

 x

List of Equations

Equation 4-1 .. 55�

Equation 4-2 .. 55�

Equation 4-3 .. 56�

Equation 4-4 .. 57�

Equation 4-5 .. 57�

Equation 4-6 .. 58�

Equation 4-7 .. 58�

 xi

List of Tables

Table 1 : Case table for left local path .. 34�

Table 2 : Case table for right local path .. 35�

1. Chapter 1: Introduction

Autonomous robotics is one of the most key topics of this generation of research.

It has a wide range of applications, such as construction, manufacturing, waste

management, space exploration, and military transportation. One of the main areas of

research, in order to achieve successful autonomous robots, is path planning. Path

planning in robotics is defined as navigation that shall be collision free and most

optimum for the autonomous vehicle to maneuver from a source to its destination. This

thesis concentrates on building a path planning algorithm for an all terrain vehicle (ATV)

used for travelling in an open field or forest. The novelty of this algorithm is that it does

not simply create a path between a source to its destination, but it makes sure that the

vehicle covers the entire field area when navigating from the source to its destination.

Consider a case where a person has to travel from room A to an adjacent room B,

wherein he does not know the path from A to B beforehand. Starting at A, the person will

have no knowledge at all about the directions to go to B. Initially, he understands the fact

that he has to get out of the present room and then go to room B. For this he has to sense

an exit from the present room. He uses his eyes to understand the location of the door for

room A. His eyes and brain makes him understand that there is no object in his way to the

door if he can simply go towards the door in straight direction. He then uses this

information collected from his sensory organs to direct himself towards the door and

 2
hence towards room B. In other words, he uses his sensory organs (eyes) and control

system (brain) to plan his path towards room B.

An autonomous robot is such a person who has no beforehand data about

navigation and which needs some algorithm to be used for creating the directions for

navigation. Path planning does something similar in case of autonomous robots with the

use of electronic sensors and control system (algorithm). The field of robotic mapping

addresses the problem of robot navigation where the use of GPS is not available or

possible. It considers the ability of a robot to survey its surroundings, build a virtual map

and move along an optimal path. The robot uses Laser Detection and Ranging (LIDAR),

ultrasound and other sensors for data collection to understand its surroundings. This data

is used to build a virtual map of its surroundings and build a path on the fly as the robot

proceeds. This is referred to as Mapping. A robot that navigates using this map must be

able to accurately calculate its position with respect to the landmarks in the map, and

locate itself in this map. This is known as Localization. To maneuver along an optimal

path both mapping and localization is necessary. This field is referred to as Simultaneous

Localization and Mapping (SLAM) [1, 2].

Mapping starts from a point of zero data. As data is gathered new features are

checked for repetition and then added or estimated accordingly. The basics of mapping is

comprised of three parts: Data prediction (gather data using sensory inputs), data

association (using some algorithm build an estimation of the environment) and map

building (build a map using the earlier two steps which the robot can use for its

trajectory). Mapping depicts the environment without any person physically measuring

 3
the whole area. In short, mapping gives us a virtual or visual representation of the actual

environment which shall be used by the robot to do any of its prescribed action.

SLAM is a method which finds if it is possible for a mobile robot to be placed at

an unknown location in an unknown environment, and for the robot to incrementally

build a consistent map of the environment while simultaneously determining its location

within this map. Over the years SLAM has been solved using various algorithms like

Extended Kalman Filter (EKF) SLAM, Fast SLAM and Rao-Blackwellized. Most of

these algorithms use various probabilistic and state space model based approaches. The

need for a probabilistic solution arises because the data obtained from the sensors and

from the movement of robot itself can be affected by noise. Furthermore the Gaussian

and motion model are amongst few of the models used for robotic motion. Mapping and

SLAM both require building a recursive solution, which would continually build a map

from the point of start to the final destination. Mapping happens to be one of the integral

parts for any autonomous vehicle.

For any ATV, path planning can only happen if the mapping and localization has

been finished beforehand, i.e. only when the vehicle has complete knowledge of its

surroundings and its own position in this surrounding, it can further plan its way towards

the destination. Consider, for example, that a robot is positioned at a corner of a room and

the room has only one door (See Figure 1-1). The Goal of the robot is to get out of the

room autonomously without clashing with any of the walls. Mapping will give the robot

some initial data of the surrounding environment. It will allow the robot to understand

that it is positioned in some location totally blocked from all four sides surrounding it

from a certain distance, with only one opening. With localization, it understands that,

 4
given the above circumstances, it is currently positioned at one of the corners diagonally

opposite to the opening from where it has to exit. So we see that the entire journey of the

vehicle from its source to destination is comprised of mapping, localization and then path

planning. To reach the goal the robot will have to move towards east first then north and

then east again to get out through the door. As seen in Figure 1-2, there could be multiple

ways to reach the goal, i.e. the robot could go straight diagonally from the corner towards

the door or first go north and then towards east. It is the path planning which decides

upon these logistics and formulates an algorithm for the robots trajectory.

Figure 1-1 : Navigation of robot in a room

In the above example if the robot moves towards east but then does not move

towards north, there is a probability of 0.5 that the robot moves north and 0.5 that the

robot does not do so. Various such possibilities are shown in Figure 1-2. So for mapping

the formulation includes probability distribution for every single state of the robot. In

general this functionality is represented as d(s0,a0,s1) – probability of transitioning from

state s0 to state s1 when action a0 is applied. For every single possible state its state value

is calculated considering how fair or difficult it will be to go to the goal from this state.

 5

Figure 1-2 : Graphical representation of robot’s movement plan

To make the planning robust, algorithms further take into consideration the

undeterministic factors especially when in the outdoors using Gaussian noise distribution

and Markov models. Hence a significant amount of computation and memory

consumption is involved which eventually affects the frequency at which the robot can

incorporate sensor data, which in turn implies accuracy.

Using the inputs from mapping and the localization, path planning algorithm

further builds the logistics for the vehicle to follow a suitable path to reach its goal. Path

planning not only assigns proper directions for the vehicle’s trajectory but also handles

the obstacles, if any, along its path. As per the algorithm presented in this research, an

autonomous vehicle shall maneuver the entire field area in a predetermined fashion.

Obstacles, if any, along the path are optimally avoided to resume back to the normal path.

A base example would be as shown in Figure 1-3 and Figure 1-4:

 6

Desired path for ATV, which includes an obstacle:

Figure 1-3 : Obstacle in the normal path

Path drawn from the algorithm:

Figure 1-4 : Path around an obstacle

The above example shows the obstacle avoidance part of the algorithm. The

algorithm also takes care that the ATV moves around the obstacle and covers the entire

field area. Certain assumptions are taken into consideration while developing this

algorithm. Typically, a field is represented using a grid. Each grid will be divided into

points or nodes. Data of any one point, its surroundings and its goal point is used for

planning the path. The algorithm explains how and why these points are created, and how

they are used to create the logistics for path planning. In depth reasoning will be provided

for every step of the algorithm from its outlining to the developmental stage. The

algorithm is comprised of various sub routines such as local path navigation, obstacle

detection, initialization which will be elaborated in the following chapters. This approach

plans an initial global path or route based on known information and then modifies the

plan locally as the robot discovers obstacles with its sensors. The process repeats until the

 7
robot reaches the goal or determines that it cannot. The programming is implemented

using ‘C’ language. The scope of this research is limited to the development of a

simulation based model of this algorithm.

1.1 Motivation

In July of 2002, nine miners in the Quecreek Mine in Sommerset, Pennsylvania

were trapped underground for three and a half days after accidentally drilling into a

nearby abandoned mine. A subsequent investigation attributed the cause of the accident

to inaccurate maps [7]. Since the accident, mobile robots and SLAM have been

investigated as a possible technology for acquiring accurate maps of abandoned mines.

Figure 1-5 : Target Environments for Outdoor Robotic Mapping [7]

Over the years, the basic estimation problem in mapping and path planning is well

understood. However, there are still a number of open problems to be addressed. These

include computational complexity, linearization effects, association of measurements to

features, detection of loops in the robot’s path, and maintaining topological consistency

as the maps get very large. Typically, for indoor environments, certain features are taken

for granted, such as extensive planar regions. Most of these algorithms have been

 8
successful for indoor applications; however, for outdoors the results have not been very

satisfactory. This is because of complex outdoor environments and dynamic situations as

shown in Figure 1-5. Also, when outdoors there are more chances that that the

environment will change over time.

This research concentrates on building a fairly optimal and robust path planning

algorithm for maneuvering of autonomous vehicles in outdoor environment. It will be

based on following main tasks:

v Get a clear picture as far as possible of the surroundings

v Localize the robot inside the map

v The path should be so that the vehicle covers the entire field area

v Algorithm built should be optimum enough for obstacle avoidance

As part of this research, data gathered using LIDAR and processed through filters

will be used for building the path. The Open source software tool Dev C++ Integrated

Development Environment is studied and worked upon for the entire development. The

solution best suited for outdoor environments, especially with dynamically changing

factors and unexpected landmarks is worked upon. The vehicle under consideration

traverses in the outdoors and is prone to obstacles such as tree locations. The initial map

and position built will be used for routing the robot through the open field autonomously.

Various factors, such as optimum path planning, self localization of the vehicle in the

field map within some predetermined time frame and number and size of the obstacles

determine the time frame in which the robotic vehicle shall complete its navigation. In

order to cover all possible extreme localization failures, the functionality will be tested by

introducing random obstacle cases.

 9

1.2 Current Work

This section addresses the current work that has been done in the field of mapping.

The current work in path planning will be discussed in chapter two. The main purpose of

robotic mapping is to make the robot’s mobility independent of devices such as a GPS in

areas especially like underwater and airborne environments. Sensors, lasers, and LIDARs

are used for data collection and for map integration.

The paper “Simultaneous Localization and Mapping [Part I and Part II]” [1, 2]

describes details of SLAM along with a few solution algorithms. Also, it focuses on the

recursive Bayesian formula of the SLAM problem, in which the probability distributions

or estimates of the absolute or relative locations of landmarks and vehicle pose are

obtained.

The paper “Probabilistic Mapping of an Environment by a Mobile Robot” [3]

analyzes basics of mapping techniques for mobile robots in an indoor environment using

a probabilistic model, maximum likelihood estimation, and a two step algorithm based on

positioning and mapping respectively.

The paper “Robotic Mapping: A Survey” [4] provides a comprehensive introduction

to the field of robotic mapping with a focus on the indoor mapping. It describes and

compares various probabilistic techniques as they are presently being applied to a vast

array of mobile robot mapping problems.

The paper “Fast SLAM: a Factored Solution to the Simultaneous Localization and

Mapping Problem with Unknown Data Association” [7] describes the Fast SLAM

 10
technique which samples the potential robotic paths instead of maintaining a

parameterized distribution of solutions like the EKF.

A Considerable amount of research work has been done in the area of indoor

robotic mapping. This data and research proves crucial for exploring the outdoor tasks.

Algorithms using probabilistic distribution [3], Bayesian approach [11], Gaussian

elimination [4], state space matrices [2], and recursive Monte Carlo [10] sampling have

been implemented. Most of these algorithms simply distinguish between the scanned and

unscanned areas. Stachniss and Burgard investigated occupancy grids [6] computing

entropy of each cell in the grid to determine the utility of scanning from certain location.

To distinguish color with each new input of data, new histograms are updated to fit

changing conditions.

Almost all of the algorithms explored implement a probabilistic model of mapping.

Uncertainty and noise factors are the main reasons for this. Also these algorithms model

the “uncertainty factor” in autonomous robots using probability theory. An alternative to

represent the environment of a robot are coverage maps [6]. The coverage maps store in

each cell a posterior about the coverage of that cell.

The basic principle underlying virtually every single successful mapping algorithm is the

Bayes Rule:

 p (x|d) = � p (d|x) p(x) [4]

As the size of the map increases, the system tends to go slower. The map built can

be guaranteed to converge but is subjected to local maxima. Currently some of the map

building methods are:

 11

• Line superposition method [32]: Builds a segment oriented geometric map of

environment. Speeds up the processing.

• RRT for occupancy grid [32]: Suitable for fusion of different sensors. Most

common low level sensor based models of environment.

• Occupancy grid based mapping [32]: Sensor data, gathered from multiple points

of view, and is combined by Bayesian approach to allow the incremental updating

of occupancy grid. Works for indoor environments and is robust to noise.

• Feature extraction based on neural networks [32]: Based on “Growing Neural Gas

Algorithm”. Here number of neurons (units) and the topology of the network are

changed during self organization process.

• Creating map from simple sharp sensors [32]: Sharp sensors are used for local

navigation.

• 3D environment mapping [32]: Laser rangefinders are used. Horizontal

rangefinder is used for 2D mapping and localization and vertical one for 3D

environment information.

The path planning process could be run time or predetermined. The predetermined

method builds the path before the next action is decided for the robot. In the run time

method the path is built simultaneously along with the performance of any of the actions

decided. For the outdoor environments the run time method proves to be more precise

considering the impromptu conditions.

Even some minimal amount of noise in path planning can cause a considerably

chaotic situation. The probabilistic approaches in mapping takes care for such noises and

their counter effect on the robot.

 12

1.3 Organization of Thesis

The thesis is organized into eight major chapters. Chapter 2 explains the concept of

path planning and the requirement for this research. Chapter 3 describes the basic

algorithm. Chapter 4 explains the reason behind every step of the algorithm and the

assumptions upon which it is based. Chapter 5 includes the simulation details, tools used

and the correlation between the algorithm and the animation. Chapter 6 tells about study

heuristics, where the results and test cases are analyzed. Chapter 7 includes conclusion

and future work.

2 Chapter 2: Path Planning Overview

Research in mobile robotics can be traced back to late 1940s, although most of the

effort related to path planning is more recent and has been conducted during the 1980s.

Thanks to such fields, such as artificial intelligence, mathematics, computer science and

mechanical engineering that theoretical and practical understanding of some issues has

received a major boost [13]. Planning refers to a preconceived scheme or method of

acting or proceeding. In other words, we can say that it defines an operative intelligence.

In this algorithm, path planning is done with respect to a mobile robot or an autonomous

all terrain vehicles (ATV), in order to design or scheme its routing. This chapter

elaborates the various aspects of path planning in robotics worked upon until now and the

reason why this research was evolved.

As the field of mobile robotics diversifies, so does the scope of path planning.

Most of the mobile robots are customized for specific operation. Industrial robots are

generally customized as per the specific industry and the industrial functionality. Robots

used in medical field are customized for the specific surgery or any similar medical

operation. Rovers to be used for exploration on other planets are customized for data

collection related jobs. Hence all such customizable robots can be classified to have two

parts of development. One part deals with the overall development of the robot, while the

other deals with structuring the development as per the required customization.

 14
A robot is any machine that resembles a human and does mechanical routine tasks

automatically upon a command. Since it is a machine, whether an ATV or a still

positioned robot, its functionality depends completely upon the set of instructions given

to it. These set of instructions defined for any particular robot, mobile or immobile,

defines its intelligence. In other words, since the robot is a machine, we can customize it

for any specific functionality that we want it to work for. Currently various customizable

robots are present in a successfully working stage [14]. Some such robots are: Pioneer(the

Chornobyl reconnaissance robot), Helpmate(an assistant for the elderly and infirm), The

Brain Surgeon(a robot to help in surgery), HazBot(a mobile robot for hazardous

materials), Dante(the Volcano Explorer), Urbie(the Urban Robot), Underwater

Explorer(explores a sunken fishing fleet), Serpentine Visual Inspection Robot(a small,

light weight visual inspector), Antarctica 2000 Big Signal(the Nomad Rover hunts for

meteorites in Antarctica), Stardust(a mission to collect and return comet dust to Earth),

Galileo(a journey to Jupiter) and many more planetary rovers. Mobile robot is another

such category with a lot of consideration these days. In this category the robot is suppose

to move from one place to another for some specific purpose. This purpose could be

mowing a lawn or shifting objects from one room to other in a home or simply exploring

an open field. Depending upon the purpose, its navigation details are decided or

customized. Development of the navigation details creates the need of a path planning

algorithm for such mobile robots or ATVs. This algorithm decides the logic or scheme

for navigation.

 15

Present Path Planning Methods

Until now various algorithms have been implemented for the present

customizable robots. This section describes a few important algorithms or techniques

currently used for path planning.

2.1 Quad tree Multiresolution

This technique is based on the A* search method [16]. A quad tree block is

created with zeros representing free space and ones representing obstacles. A minimum

cost path is found from the source to the goal. This cost depends on the actual distance

travelled and also upon the clearance of the path from the obstacles. This is followed by

finding a neighbor using the node expansion process. If any of the horizontal or vertical

nodes is a grey node (non obstacle node), a leaf adjacent to this node being expanded is

found. As a result, a list of nodes from the quad tree forms a set of paths from source to

goal nodes. With this method the number of nodes searched is lower compared to that in

the grid search method.

2.2 Evolutionary Algorithm

This algorithm uses an evolutionary navigator to unify the offline [global path]

and online [collision avoidance] computation [17]. Nodes are classified as feasible or

infeasible depending upon their proximity to any obstacle. An offline algorithm creates a

global path from source to goal. Online algorithm creates a sub route in case of facing an

obstacle. A chromosome is formed of an ordered list of path nodes. Each node of each

chromosome has a feasibility and path cost associated with it. The path cost is the

 16
Euclidian distance from the next node. The chromosomes are further used for crossover

(of nodes), mutation (fine tuning co ordinates of nodes), insertion, deletion or swap.

2.3 Use of Laplace’s Equation

This method uses Laplace’s equation to constrain the generation of a potential

function over regions of configuration space of an effector [18]. Use of Laplace equation

helps to achieve computation on large parallel architectures. A harmonic function on a

domain satisfies the min-max principle, hence creating local minima in regions

impossible to traverse, if Laplace equation is imposed. If a function satisfies the

Laplace’s equation in some region, then any critical point of the function in the interior of

that region must be a saddle point, since local extrema of the function are not possible.

Every harmonic function satisfies four properties: Analyticity, Polar, and Admissibility

and that every critical point must be an isolated saddle point. The neighborhood of a

given obstacle has a potential of not only this obstacle but also of all other obstacles.

Using superposition the gradient for each maze is calculated. Numerical solutions to

Laplace’s equation obtained from finite difference methods are well suited for tasks of

finding solutions with arbitrary boundary conditions. This technique provides a fast

method of creating paths in a robot configuration space.

2.4 Hierarchical Strategy

This technique focuses on finding a three dimensional solution (time being the

third dimension) to avoid a collision with moving obstacles [19]. It is assumed that the

obstacle cannot accelerate beyond a certain limit. A quad tree hierarchical representation

is used for the three dimensional configuration. The 3D space and time is further

 17
subdivided into eight subspaces of equal sizes called cells. These cells are termed as

vertex, edge, empty and full cells. Initially, the entire universe is treated as a single cell

which is represented by an octree containing one node. Depending on violation of the

four basic conditions the cell gets further subdivided. A control point (C-point) is used to

create the final skeleton of the path. C point comprises of L(x and y) and T (time) points.

The L point is assigned as per the nine possible locations around a square. Depending

upon the appropriate velocity, the T point is assigned in the search stage. Greater the

number of L points in a plane, more is the degree of control attained. The main search

procedure uses a priority queue, where the T point component of a C point serves as that

point’s priority. Once an acceleration value is set it has to be maintained until next L

point. This method may not work in a search space.

2.5 Numerical Potential Field Techniques

In this method an entire graph is searched to create the path [20]. This technique

is based on the use of multi scale pyramids of bitmap arrays for representing both the

robot’s workspace and the used configuration space. This method avoids any pre

computation otherwise required for creating a global path. This technique provides a

solution with three degrees of freedom and two orders of magnitude faster than most of

the previous methods. This approach incrementally builds a graph connecting the local

minima of a potential function defined over the configuration space, and concurrently

searching this graph until a goal configuration is attained. Using the bitmap configuration

a workspace pyramid is built. Numerical potential fields are built in two steps: W-

potentials (computed for a selected point in a robot) and W potentials at various control

points that forms a C potential. Four path planning techniques are put forth in this

 18
research. The first one performs a best first search using C potential as cost function and

hence is complete in resolution. The second one is based on the Monte Carlo method

generating random motions until the local minima are obtained. The third method

searches for ‘valleys’ in a C potential. This method is slower in speed and also with less

degree of freedom compared to earlier two techniques. The fourth is a constrained motion

technique based on ideals of earlier three. It uses the C potential (global minimal) and

also the notion of a ‘valley’ while escaping encountered local minima. Experiments show

that amongst all the four the random motion method has the best qualities and is highly

parallelizable.

2.6 Use of Intersecting Convex Shapes

This technique is based on the Quine-McCluskey method of finding prime

implicants in a logical expression [21]. It is used to isolate all of the largest, rectangular,

and free convex areas in a specified environment. Convexity is identified with all the

largest rectangular free areas. A graph is created with a node corresponding to each of

such convex area. This method defines a convex area, as the one that is free of obstacles

and has the property that any two points in that area can be joined by a straight line that

lies entirely within that area. Each such rectangle is represented by a pair of binary strings

each at most 2n + 1 bit long. This algorithm is similar to the Quine-McCluskey technique

[l0]-[12] used to identify the prime implicants of a logical expression. Prime convex areas

in which the source and destination points are located may be determined, and the graph

may be traversed from the source node to the destination node using one of the varieties

of techniques available. Since one node look ahead is used, path cost assignments cannot

begin until the graph node path progresses at least to the third node. An exhaustive graph

 19
search for optimal path is performed using a backtracking procedure. With this technique

aligned objects are added randomly. This, results into a graph with the number of nodes

bounded by the limit based on number of objects with distinct edges. This method

requires relatively small amount of database to be maintained.

2.7 Symbolic and Geometric Connectivity Graph

Two methods based on the A* search algorithm – symbolic and geometric are

presented [22]. The symbolic system uses inference rules to analyze and classify spatial

relationships within the connectivity graph. The geometric method builds an exact path

using connectivity information. The output of symbolic method is a symbolic description

of the planned route while the geometric method builds a simple list of coordinate

positions. The connectivity graph has adjacency relationships with different regions of

free space. Based on number of incident arcs nodes are classified in four different

categories. The symbolic or heuristic method represents a different order of traversal

amongst the obstacles, that is, the order and side on which the obstacles are traversed is

different for each alternative. A tandem process is created between A* search and the

inference engine. The geometric system employs a RLC database and a free-space graph.

In the geometric approach, a funnel (sequence of vertices) is meant to grow from tile to

tile. For a given tile sequence, the ultimate result from such processing is the shortest

path within that sequence. Symbolic system is used to exploit resolution hierarchy.

Compared to the geometric method the symbolic system is shown to give better speed

performance.

 20

2.8 Need of a new Technique

The techniques and algorithms stated above are only a few amongst the many

others dedicated for path planning. However the research papers do not elaborate the

implementation details for these techniques. The research currently undergoing (behind

this algorithm) involves navigation of an ATV in an open field in a predetermined

manner. Hence, along with obstacle avoidance, this algorithm has to also take care of

following a specific route throughout its navigation. A certain amount of customization

was hence required in this algorithm. This customization decided the particular manner in

which the vehicle routing will occur. The logic for obstacle avoidance has also been

created altogether new so as to match the customization. The requirements for this

algorithm can be stated as:

a) A path planning strategy for an autonomous ATV to be used in an open field

b) The navigation of the ATV has to be so as to cover the entire area of the field

c) Obstacles if any (known or newly-discovered) should be avoided in a manner so

as to avoid them and then continue on the predetermined navigation route

The reference papers do not describe the intricate details for the implementation

of their algorithms into software. The details of logic development behind the algorithm

were not found to be described in these papers. The reasoning for questions such as why

any particular step is performed is the most important in such path planning techniques.

Also, what is important is, understanding how a particular logic has been translated into

the actual software.

This algorithm and research takes care of all such details. All the requirements

stated in the above paragraph led to the development of this research. This research also

 21
describes in detail each and every step behind the logic of the algorithm. Development of

simulation to get a visual effect of the algorithm is also a part of this research. As stated

above this algorithm is developed and customized so as to be implemented on an

autonomous ATV set to navigate in an open field.

This algorithm, developed in two dimensions, is flexible enough to be carried

forward and molded as per varied field or ATV or obstacle dimensions.

3 Chapter 3: Algorithm

The algorithm presented in this chapter basically explains the logic used for

path planning from source to destination.

Basic things that this algorithm takes care of are:

a) Build a virtual map of the field

b) Plan a path from source to destination considering known obstacles

c) Plan the path so as to cover the entire field area

d) Detect and avoid newly-discovered obstacles, in order to maintain the decided

path

A LIDAR is used on the autonomous vehicle for obstacle detection. The LIDAR

will give information, such as how far and at what degree the obstacle is located. This

information will be used by the path planning algorithm to modify its path so as to avoid

the obstacle and re route the vehicle’s path. For this software, the information related to

LIDAR will be taken as input from a file.

 23

Figure 3-1 : Field Attributes

3.1 Terminology Used

1) Field: Any open space to be explored (forest or farm)

2) Field width: Distance of the field in X direction

3) Field length: Distance of the field in Y direction

4) Source: Start point for the vehicle’s trajectory

5) Destination: end point for the vehicle’s trajectory

6) Vehicle: Autonomous All Terrain Vehicles (ATV). Any vehicle equipped

with LIDAR and other hardware required for computation of the mapping

7) Vehicle width: Maximum distance of the vehicle in direction perpendicular to

 LIDAR

8) LIDAR range: Maximum distance up to which the LIDAR can scan ahead of

it as shown in Figure 3-2

9) Scan Area: 180 degree area in front of the LIDAR

 24

Figure 3-2 : LIDAR Attributes

10) Scan Point: Point on the field where the vehicle will scan the 180 degree area

 in front of it

11) Number of X scan points: Number of scan points along the width of the field

 (along the X direction) = Roundup (Field Width/Vehicle Width) +1

12) Number of Y scan points: Number of scan points along the length of the field

 (along the Y direction) = Roundup (Field Length / [Lidar Range/2] +1)

13) X Scan range: Distance between any two scan points along the X direction

 = Field Width / (Number of XScanPoints-1)

14) Y Scan range: Distance between any two scan points along the Y direction

 = FieldLength / (Number of YScanPoints)

15) Total Number of Scan Points = Number of X scan points * Number of Y scan

 points

16) Goal Point: Scan point with index number consecutively next to the current

 scan point. In the above example shown in Figure 3-1, scan point 2 is the goal

point of 1 and 21 is the goal point of 20

17) Reach Points: All the scan points from where there is direct access (with a

 25
 single hop) to the current scan point are called the reach points of the current

 scan point. These are the scan points with a distance of plus or minus X scan

 range and Y scan range from the current scan point. Every scan point will

 have maximum of four points from where it can be reached. In Figure 3-1

 10, 22, 14 and 16 are the reach points of 15.

18) Imaginary Square: A virtual square built around each known and newly-

discovered obstacle. This square decides a boundary around the obstacle

which the ATV cannot cross. The margin kept on each side of the obstacle, to

create the boundaries of this virtual square, is so as to keep the ATV at a safe

enough distance away from the obstacle. This ensures that the vehicle does

not collide with the obstacle. Also at the same time the margin is optimum

enough for the ATV to go just around the obstacle.

19) Local path: The sub route other than the main regular path to be followed

during navigation. It is created to go around any obstacle.

20) Start point of imaginary square route: Point from where a new local path

around an obstacle starts.

21) End point of imaginary square route: Point where the local path around an

obstacle finishes.

 26

3.2 Algorithm

1) The field dimensions, vehicle dimensions, LIDAR range and information about

any present known obstacles are given.

2) Initially, a virtual map is built using the given data. This map will define the

boundary of the field area to be covered and the trajectory of the vehicle

required for the navigation considering the known obstacles.

3) The navigation field for this algorithm is considered in two dimensions – X and

Y. The X coordinates increment from left to right and the Y coordinates

increment from top to bottom.

4) A definite pattern is pre decided for the trajectory (as indicated by the black

arrows in Figure 3-3). This pattern is so as to cover the entire field area. In this

pattern the vehicle starts its navigation from the top left corner of the field. It

maneuvers in straight lines along the length of the field and takes a turn towards

right, only when it reaches the top or bottom field limits.

 27

�

Figure 3-3 Pattern of Navigation in the field

5) Initially, the location (in terms of X, Y coordinates) of the scan points, goal

points, and reach points is calculated. Scan points on the boundary will have

three reach points while scan points at the corners will have two reach points.

6) The numbering of the scan points is done as per the particular pattern of

trajectory required in this algorithm.

7) The vehicle turns or rotations are taken care of by the mechanical section.

8) The navigation starts from source and the ATV moves consecutively from the

current scan point to its goal point.

9) In case of no known or newly-discovered obstacles the vehicle continues

moving along the specific pattern of trajectory till the last scan point

(destination) is reached.

10) For known obstacles, the following information is taken as input:

• Number of obstacles

• For each known obstacle:

 28
Ø Y coordinate of end point of the obstacle in north most direction

Ø Y coordinate of end point of the obstacle in south most direction

Ø X coordinate of end point of the obstacle in east most direction

Ø X coordinate of end point of the obstacle in west most direction

11) Add a distance equal to half the vehicle width to all the above points, and

calculate the northwest, northeast, southwest and southeast points.

Draw an imaginary square that include these points as the corner points. See

Figure 3-5 for reference.

12) Consider a known obstacle for the given field as shown in Figure 3-4

Figure 3-4 Field with Known Obstacles

 29

Figure 3-5 Imaginary Square around the known obstacles

Figure 3-6 Imaginary squares around know obstacles with local path defined

13) When the vehicle reaches scan point 14, it finds the consecutively next scan

point (in this case 15) to be marked as unreachable. Accordingly it understands

about the imaginary square ahead and so cannot maneuver in the regular manner

as shown in Figure 3-3.

 30
14) Since the immediate next scan point after 14 is found to be not reachable, a

search is made for the consecutively next scan points to be set as the new goal

point. In this case since 15 and 16 both are unreachable 17 is marked as the new

goal point for scan point 14.

15) A local path is now devised for the ATV to go from 14 to 17. This local path

around the obstacle can go from the left or the right hand side. The decision to

go from left or right is based upon the shortest path criteria. The local path that

includes least number of intermediate points to go from the source to its goal is

considered to be the most optimum path.

16) In case both the paths have the same number of intermediate points the left hand

path is given preference. Since scan points on the left hand of the current scan

point are going to be the earlier visited ones, there is probability of having no

obstacles in the left local path.

3.2.1 Logic for Local Path Creation

1) As per this algorithm, three thumb rules are checked for in case of local path

navigation:

2) Choose the optimum path (left or right) based on number of intermediate scan

points to be traversed

3) Are there any common reach points between the goal point and current scan

point? If yes, path is created through this common reach point. If no -

 31
4) To begin a local path around an obstacle, intermediate goal points are created.

Again reach point search based upon direction sequence set for that position

and the last visited option is used to traverse the vehicle to it actual goal.

5) A local path is a path that goes around the obstacle in order to avoid it and then

resume the main path. In case of the main path, the ATV maneuvers using the

consecutively numbered scan points along the trajectory. Similarly when in a

local path, some set of scan point numbers are required to be arranged for the

ATV to follow.

6) Hence, as soon as it is understood that the actual goal is not reachable and a

local path is required to go to the next possible goal a stack is built up. This

stack stores the set of scan point numbers along which the ATV will have to

maneuver in order to move around the obstacle.

7) The main task of the algorithm, when a local path is about to start, is to reach

the new goal point possibly using the most optimum path.

8) As stated in the fourth point in Section 3.2 the predefined path of navigation for

this algorithm is so as to move along the field from left to right. So at any

location on the field the scan points to its left are the ones which have been

passed upon earlier.

9) Also other than the boundary position when inside the field the ATV always

maneuvers in vertical columns alternately going up and down (Figure 3-3)

10) As will be seen in detail in Chapter 4, considering the maximum distance

between any two scan points in X direction and the margin used to draw the

imaginary square around an obstacle, at least one scan point will go inside the

 32
imaginary square. Hence a situation would never arise such that the source scan

point and its goal are horizontally on the same level (having the same Y

positions and differing only in X positions).

11) As per this algorithm irrespective of the position of the obstacle in the field, the

source scan point and the alternate goal scan point will always differ in their Y

positions (irrespective of their X positions).

12) Reach points of every scan point are the most important in developing the local

path. Using a chain of reach points a stack is created in backtrack manner from

the goal to the source scan point for the local path.

13) Consider for example Figure 3-6. The local path from 14 to 17 consists of scan

points 14, 11, 10, 9, 8 and 17. As can be seen from the Figure 3-3, starting from

the source, every next point is a reach point of its preceding scan point.

14) All the intermediate scan points in this local path are termed as alternate goals.

In the above example 11, 10, 9 and 8 are the alternate goals formed in the local

path from 14 to 17.

15) Since the algorithm focuses on having an optimum local path, the local path will

go from source to goal from either the left hand or right hand side depending

upon which is the shortest path.

16) This algorithm has the logic for obstacle avoidance based on Backtracking,

Quadratic Positioning and Direction Sequence cases.

17) Backtracking: To create a local path its intermediate points are decided from the

goal scan point towards the source scan point. For local path creation, since the

aim is to reach the goal point, a reach point that gives direct access to the goal

 33
point is initially searched. A reach point that is in accordance with the direction

sequence from the goal is selected. This assures that the reach point meets the

algorithm’s criteria for a local path. This reach point is then termed as alternate

goal. The same procedure continues till the source becomes a reach point of an

alternate goal along the local path.

18) A stack consisting of all such related reach points is made from the goal t the

source. The number of elements of this stack hence represents the number of

intermediate scan points to go from the source to goal.

19) Two separate stacks of intermediate points are created considering the local path

from left and right respectively. The stack counter of these two stacks is

compared to decide which stack (left or right local path) has lesser number of

intermediate points. The one with a least number of stack counters is marked as

the optimum local path to be followed in order to go around the obstacle.

20) Quadratic Positioning and Direction Sequence: As seen in point ‘viii’, two base

cases are set:

Source Y < Goal Y and Source Y > Goal Y

In Figure 3-6, for the local path from scan point 14 to 17 Source Y < Goal Y,

and from 20 to 23 the Source Y > Goal Y. To create a chain of reach points

from the goal to source, alternate goals are created starting from the main goal

point. The quadratic case selection for deciding each of these intermediate scan

points (reach points) in a local path is based on the position of the alternate goal

with respect to the source scan point. Also for each case based on the

positioning, preferences are set to choose the reach point on left, right, bottom

 34
or top. Eight quadratic cases and specific sequence of four preferences is set for

selecting each alternate goal.

21) Two such tables are created considering local path from left and from right

22) Quadratic Cases and sequence to be considered for reach point selection for left

local path:

T = Top, L = Left, B = Bottom, R = Right

Table 1 : Case table for left local path

Main case 1 Ysource < Ytarget
Case No Condition Sequence

1.1 (SourceY < AltGoalY) && (SourceX == AltGoalX) TLBR

1.2 (SourceY < AltGoalY) && (SourceX > AltGoalX) TLBR

1.3 (SourceY < AltGoalY) && (SourceX < AltGoalX) LBRT

1.4 (SourceY == AltGoalY) && (SourceX > AltGoalX) RTLB

1.5 (SourceY == AltGoalY) && (SourceX < AltGoalX) LTBR

1.6 (SourceY > AltGoalY) && (SourceX == AltGoalX) BLRT

1.7 (SourceY > AltGoalY) && (SourceX > AltGoalX) TRLB

1.8 (SourceY > AltGoalY) && (SourceX < AltGoalX) BRLT

Main case 2 Ysource > Ytarget

2.1 (SourceY < AltGoalY) && (SourceX == AltGoalX) TLRB

2.2 (SourceY < AltGoalY) && (SourceX > AltGoalX) RBLT

2.3 (SourceY < AltGoalY) && (SourceX < AltGoalX) TLRB

2.4 (SourceY == AltGoalY) && (SourceX > AltGoalX) RBTL

2.5 (SourceY == AltGoalY) && (SourceX < AltGoalX) LTBR

2.6 (SourceY > AltGoalY) && (SourceX == AltGoalX) LTRB

2.7 (SourceY > AltGoalY) && (SourceX < AltGoalX) LTRB

2.8 (SourceY > AltGoalY) && (SourceX > AltGoalX) BLTR

23) Quadratic Cases and sequence to be considered for reach point selection for

right local path:

 35
Table 2 : Case table for right local path

Main case 1 Ysource < Ytarget

Case No Condition Sequence

1.1 (SourceY < AltGoalY) && (SourceX == AltGoalX) TRBL

1.2 (SourceY < AltGoalY) && (SourceX > AltGoalX) TLBR

1.3 (SourceY < AltGoalY) && (SourceX < AltGoalX) TRBL

1.4 (SourceY == AltGoalY) && (SourceX > AltGoalX) RTLB

1.5 (SourceY == AltGoalY) && (SourceX < AltGoalX) LTRB

1.6 (SourceY > AltGoalY) && (SourceX == AltGoalX) BLRT

1.7 (SourceY > AltGoalY) && (SourceX > AltGoalX) TRLB

1.8 (SourceY > AltGoalY) && (SourceX < AltGoalX) BLTR

Main case 2 Ysource > Ytarget

2.1 (SourceY < AltGoalY) && (SourceX == AltGoalX) TLRB

2.2 (SourceY < AltGoalY) && (SourceX > AltGoalX) RBLT

2.3 (SourceY < AltGoalY) && (SourceX < AltGoalX) TLBR

2.4 (SourceY == AltGoalY) && (SourceX > AltGoalX) RBTL

2.5 (SourceY == AltGoalY) && (SourceX < AltGoalX) LBRT

2.6 (SourceY > AltGoalY) && (SourceX == AltGoalX) RTLB

2.7 (SourceY > AltGoalY) && (SourceX < AltGoalX) BRTL

2.8 (SourceY > AltGoalY) && (SourceX > AltGoalX) BLTR

24) These cases and reach point preference sequence have been set based upon the

following criteria :

• Navigation from source to goal from the left hand or right side and

• Depending upon the position of the alternate goal check that the reach

point which directs the backtracking path towards the source

25) As per this algorithm, to select the best reach point (alternate goal) in a local

path initially the case number is matched depending upon the positioning of

 36
source and alternate goal. As per the case, the best reach point is then selected

(depending upon reach ability) based on the preference given in the sequence.

26) A flag is also set to keep track of the last direction used, so that the reach point

in opposite direction is not set and thus preventing the local path from going

into a loop.

27) For example, if the alternate goal satisfies the 2.8 case (left local path), its

Bottom reach point is first checked for reach ability. If so it is returned and

marked as the next alternate goal. If not reachable the Left reach point is

checked and so on.

28) A sequence of such reach points from the goal to source scan points creates the

stack. Based on the least stack counter decision an optimum local path (left or

right) is decided. Once the local path is ready the ATV uses this path for

navigation from source to goal for every obstacle. Upon reaching the goal

navigation along the regular path continues till the final destination.

3.2.2 Avoidance of Newly-Discovered Obstacle

The newly-discovered obstacle avoidance logic is same as that for the known

obstacles. Only difference is that it is used to create to local path for newly-

discovered obstacles run time when the newly-discovered obstacles are detected

during navigation. If the goal point of the current scan point is not reachable due to

presence of a newly-discovered obstacle, the goal point is checked for reach ability

from any of its other reach points. The data given by the LIDAR scan range as input

is considered while taking decisions to reach the goal point from any of its reach

point.

 37

3.3 Example

1) Consider the example shown in Figure 3-7 and the local path from scan point

14(source) to scan point 17(goal).

Figure 3-7 : Obstacle and imaginary square

2) Initially, the source Y (Y coordinate of 14) is less than goal Y(Y coordinate of

17). So main case 1(local left path) is considered for deciding the local path.

3) Initially 17 acts as the alternate goal. So we have case 1.1 ((SourceY <

AltGoalY) and (SourceX == AltGoalX)). As per the sequence preference is first

given to the ‘top’ reach point of 17. In this case it happens to be scan point 16.

Since 16 is not reachable (inside the imaginary square) next preference of the

‘left’ reach point is checked. Reach point number 8 of alternate goal 17 on its

left is reachable and so is set the new alternate goal. This is shown in Figure 3-

8.

 38

Figure 3-8 : Case 1.1 to decide next scan point to be 8

4) With 8 as the alternate goal and 14 as the source case number 1.2 is considered.

As per the sequence preference the ‘Top’ reach point number 9 of alternate goal

8 is reachable and set as new alternate goal. This is shown in Figure 3-9.

Figure 3-9 : Case 1.2 to decide next scan point to be 9

5) The same case continues for alternate goal points 9 and 10. For both these cases

since first reach point preference on ‘Top’ is available 10 becomes the alternate

 39
goal of 9, and similarly 11 becomes the alternate goal of 10. This is shown in

Figure 3-10.

�

Figure 3-10 : Case 1.2 to decide next scan points to be 10 and 11

6) When 11 is the alternate goal point the case now changes to 1.4. As per the

sequence preference the ‘Right’ reach point number 14 of alternate goal 11 is

reachable. Also here 14 is the source point.

 40
7) So the reach point chain of sequence (left stack) started from the goal has

reached the source and the local path from 14 to 17 from left hand side is

created.

8) The same procedure is repeated considering the cases from the table for right

hand side local path. This local path creates a stack consisting of scan point 14,

23, 26, 27, 28, 29, 20 and 17. It has a stack counter of 8 compared to the stack

counter of the left stack which was 6. The decision to go from left is finalized,

and the scan points in the left stack are used for the actual local path navigation.

This is shown in Figure 3-11.

�

Figure 3-11 : Local path created around obstacle using different cases

 41

3.4 Computational Analysis of the algorithm

3.4.1 Computational Complexity of Obstacle avoidance

1) The obstacle avoidance routine in this algorithm can be categorized to be a

modified version of the breadth first search (BFS) technique.

2) The BFS is a graph search algorithm and explores all the neighboring nodes. Then

for each of those nearest nodes, it explores their unexplored neighbor nodes, and

so on, until it finds the goal. Consider for example the following tree structure

shown in figure 3-12 used to represent a search from source to goal point:

Figure 3-12 : Computational technique used for obstacle avoidance

3) In this example, the search begins from the root at depth level 1. If the goal is not

found, the search proceeds to the second level. Here, all the nodes throughout the

breadth of the level are searched for from left to right. So P1, P2 and P3 are

searched to match with the goal. If not, the search proceeds to the third depth

level. Again here all the nodes throughout the breadth of this level (P1C1, P1C2,

P1C3 ….. P3C3) are searched.

4) Accordingly, the search complexity of the BFS algorithm is O(b^d) where b is the

branching factor (number of children for each node) of the tree(3 in the above

example) and d is the depth required to search the goal.

 42
5) The modification done to the BFS in this algorithm is so that at every depth level,

the best possible node is selected based on the logic (case tables) developed, and

only that node is explored further.

6) So, considering above example, P1, P2 and P3 are searched to match the goal. If

none of them is the goal, the best possible node, which will lead to the goal, is

considered. For example, if P2 is the best node the child nodes of only P2 are

further explored in depth level 3. Likewise, if the goal is found at depth level d the

maximum number of nodes that are required to be explored are b*d.

7) In this algorithm the modified BFS is called twice, once for the left and then for

the right hand local path. Consider the depth level of search for left local path is lD

and the depth level of search for right local path is rD. In this case complexity

would be (b* lD) + (b* rD) = b * (lD + rD).

8) In the above example, shown in figure 3-12, the branching factor is 3. For the tree

structure of this algorithm for obstacle avoidance, any parent node is going to be

the base scan point and its child nodes will represent its reach points.

Accordingly, for this algorithm, the branching factor is four (maximum number of

reach points for any scan point).So, the worst case depth for this algorithm would

be the total number of scan points (n). In the worst case scenario, all scan points

(n) can have depth of d.

9) If only BFS (without any modifications) had been considered for the obstacle

avoidance routine in this algorithm, the complexity would have been O((4n)^n).

10) For BFS (with the modifications done in this algorithm), the complexity is

O(4(n+n)*n) = O(8n^ 2).

 43

3.4.2 Computational Complexity of Navigation

Overall, there are 10 for loops in the software (considering no obstacles) used to create

the trajectory and navigate the vehicle along this trajectory from the source to its

destination. Each for loop has a length of n. So, considering a field without any obstacle,

the algorithm carries out only the navigation routine with a complexity of O(10n).

3.4.3 Computational Complexity of algorithm

 = complexity of navigation + complexity of obstacle avoidance

 = O(10n) + O(8n^ 2) = O(10n+8n^ 2)

3.4.4 Example to describe the modified BFS in this algorithm

Consider the following example in figure 3-13 to create a left local path from scan point

14 to 17. The following computation is done to develop the stack from left hand side of

the obstacle. As described in the algorithm, the stack for the local path is crated from the

goal point to the source point. So in this case, the stack creation will start from point 17

and aim to reach till 14.

 44

Figure 3-13 : Example for computational technique

Left reach point - 8 is selected as the best node for depth level 2 as per Case 1.1

So, as shown in figure 3-14, the child nodes of only node 8 are explored for depth level 3.

Figure 3-14 : Modified BFS at depth level 2

Top reach point - 9 is selected as the best node for depth level 3 as per Case 1.2

 45
So, as shown in figure 3-15, the child nodes of only node 9 are explored for depth level 4.

Figure 3-15 : Modified BFS at depth level 3

Top reach point - 10 is selected as the best node for depth level 4 as per Case 1.2

So, as shown in figure 3-16, the child nodes of only node 10 are explored for depth level

5.

Figure 3-16 : Modified BFS at depth level 4

 46
Top reach point - 11 is selected as the best node for depth level 5 as per Case 1.2

So, as shown in figure 3-17, the child nodes of only node 11 are explored for depth level

6.

Figure 3-17 : Modified BFS at depth level 5

Top reach point - 14(source) is selected as the best node for depth level 6 as per Case

1.4

Figure 3-18 : Modified BFS at depth level 6

Note: Nodes in pink color are discarded due to unreachability. Nodes in green color are

the ones as best selected as per the case table.

 47

3.5 Data Structure

Structure to store X and Y co-ordinates of any scan point:

struct Coordinates {
 int X;
 int Y
 };

Coordinates Curr, Next, Prev;

Structure to store the known obstacle data:

struct Obst
{
 Coordinates North, South, East, West;
}

Structure to represent various attributes of a scan point:

struct ScanPt
{
 Coordinates Source, Goal, Igoal;
 //Coordinates ReachPtCords [4]; // coordinates of reach points
 int ScanPtNumsOfReachPts [4]; // stores scan point number of each of reach points
 int ScanPtNum; // number to identify a scan point
 int GoalPtNum; // number to identify Goal of current scan point
 int ReachPtAccessibility [10][10]; // identifies accessibility of each reach point
 int NumOfReachPts; // total number of reach points for a particular scan point
 int Visited; // indicates of the scan point is already visited
 int IsScanPointReachable; // indicates if the scan point can be reached
 int ObstacleNo; // identifies the obstacle which makes this point unreachbale
 int AltGoalPtNum; // alternate goal pt in case of known obstacles
 int Weightage; //Weightage for every ScanPoint. The ones visited more times get more Weightage
} ScanPtArr [10000], SimulationScanPtArr [10000];

3.6 Pseudo Code
The algorithm is categorized into seven routines:

Ø Initialization

Ø CreateImaginarySquare

Ø Newly-discovered Obstacle detection

Ø Move vehicle

Ø Local Path Navigation

 48

Ø Navigate through Field

3.6.1 Initialization
For all scan points, calculates X and Y co-ordinates, goal point, reach points.

ScanPtNumber = 1;
iCounter = 1;
Number of XScanPoints = Roundup (FieldWidth/VehicleWidth) +1
Number of YScanPoint: Roundup (FieldLength / [Lidar Range/2]) +1
XScanRange = FieldWidth / (Number of XScanPoints-1)
YScanRange = FieldLength / (Number of YScanPoints-1)
Total Number of Scan Points = Number of XScanPoints * Number of YScanPoints
Temp = Number of YScanPoint;
for (iCountX=0; iCountX< Number of XScanPoints; iCountX ++)
{
 for (iCountY=0; iCountY< Number of YScanPoints; iCountY ++)
 {
 Xcord = (iCountX * XScanRange);
 Ycord = (iCountY * YScanRange);
 if ((iCountX is odd)

{
 ScanPtNumber = iCounter +Number of YScanPoints – (iCountY*2) - 1;

}
else

 ScanPtNumber = iCounter;
ScanPt [ScanPtNumber].ScanPtNum = ScanPtNumber;

 ScanPt [ScanPtNumber].Source.X = Xcord = current.X;
 ScanPt [ScanPtNumber].Source.Y = Ycord = current.Y;

iCounter++;
NumOfReachPoints = 0;

}

for (all scan points)
{
 Calculate X and Y coordinates of all possible reach points;
 Find the scan point numbers with those coordinates;
 Assign these scan point numbers as the reach points;

} //end for
For(icount=1;icount<Total Number of Scan Points;icount++)
{
 ScanPt [ScanPtNumber].Goal.X = ScanPt [ScanPtNumber+1].Source.X ;
 ScanPt [ScanPtNumber].Goal.Y = ScanPt [ScanPtNumber+1].Source.Y;
}

3.6.2 Create Imaginary Square

Using the data of known obstacles this routine creates a virtual square around

the obstacles.

Input: Number of obstacles

Extreme North, South, East, West points of each known obstacle

CreateImgSqr (NoOfObst, north, south, east, west);
{

for (NoOfObst)

 49
{
 Add a distance = half the vehicle width to each of north, south east, west coordinates;
 North east coordinates = Y coordinate of north and X of east;
 North west coordinates = Y coordinate of north and X of west;
South east coordinates = Y coordinate of south and X of east;
 South west coordinates = Y coordinate of south and X of west;

// determine imaginary scan points
for (i =0; i < = field length; i+=Yscan range)
{
 if ((i>south) && (i<north))
 ImgScanPt1.X = Northwest.X;
 ImgScanPt2.X = Northeast.X;
 ImgScanPt1.Y =ImgScanPt2.Y =i;
}
for (i =0; i < = field width; i+=Xscan range)
{
 if ((i>west) && (i<east))
 ImgScanPt1.X = Northwest.X;
 ImgScanPt2.X = Northeast.X;
 ImgScanPt1.Y =ImgScanPt2.Y =i;
}
for (all scan points in this imaginary square)
{

IsScanPointReachable = 0;
ScanPt.ObstNo = sequence number of obstacle;

}

3.6.3 Obstacle Detection

This function gets input from LIDAR and calculates obstacle position with

respect to scan points.

Input: Current scan point, Next scan point

Output: 1 [If obstacle exists between current scan point and its goal points]

 0 [If obstacle does not exist between current scan point and its goal

points]

ObstacleDetection (Current scan point, Next scan point)

Detects if an obstacle is present between the current and its next scan point.

The LIDAR operation can be used for this function.

3.6.4 Move Vehicle

Based on co-ordinates of previous scan point, current scan point, and goal

scan point this function decides the direction [straight, left or right] to be taken

 50
to reach the goal point. This function calls mechanical routine to actually

move the vehicle to be positioned at the goal point.

Input: Current, Previous, Next Scan point

MoveVehicle (startPt, endPt, prevPt)
 {
 if (endPt.X == prevPt.X)
 then, Direction = Straight;
 else
 {
 val = ((endPt.Y- prevPt.Y) / (endPt.X – prevPt.X));
 If (startscan point > goal scan point)
 val = - val;
 if (val == 0)
 Direction = Straight;
 else if (val >0)
 Direction = Right;
 elseif (val <0)
 Direction = Left;
 }

Call mechanicalMove (Direction, startPt, endPt);
 }

3.6.5 Local Path Navigation

This function navigates the vehicle around the obstacle to reach back to its

normal path. It calculates intermediate goal points around the obstacle and

hence creates a local path.

Input: Goal Scan Point Number

LocalPathNav (SourceScanPtNum, GoalPtNum)
 {
 Create two stacks;
 Store the source scan point number;
 Store the goal scan point number in as the first element of both the stacks;
 Find the alternate goals in the left local path;
 Store each of these alternate goals in the left stack;
 Check if reach point of alternate goal is same as the source scan point;
 If so, left local path is completed;
 Repeat the same procedure to create a right local path;
 Based upon the shorter of the two an optimum path is selected;

Pop the optimum stack scan point numbers and call move vehicle function;
 If a new newly-discovered obstacle is in the path of the local path, then call the local path
function

again with the new source and goal point numbers;
 Continue the recursive process until the original goal is reached;

}

 51

3.6.6 Find Optimum Intermediate Goal Point

Based on the table of cases above this function finds the most optimum scan

point that could form the alternate goal. It calculates intermediate goal points

around the obstacle based on the algorithm criteria and hence creates a local

path.

Input: Source scan point, alternate goal scan point number

Output: The best possible intermediate reach point

FindOptimumLocalGoalPt (int SourcePt, int AltGoalPt)
{
 Based on the source and alternate goal point Y coordinates determine the main case number;
 Based on the main case number, X and Y coordinates of alternate goal and source scan point number the

particular case number is selected from the table above;
 As per the case number the reach point availability is checked for as per the sequence of preference

mentioned in the table;
If the reach point in the sequence is reachable, it is returned,
Else the next reachable reach point in the sequence is opted;
If none of the reach points in the sequence are reachable, the particular scan point is marked unreachable
as well;

}

3.6.7 Navigate Through Field

For every scan point in the field, it checks for presence of obstacle. If so, then

the vehicle navigates through a local path. Else the vehicle moves along its

normal path.

NavigateField ()
 {
 for (all scan points)
 {
 if (Next scan point is not reachable)
 LocalPathNav (SourceScanPtNum, Goal.ScanPtNum);

 else
 {

 if (ObstacleDetection (Current scan point, Next scan point) == 0)//no newly-discovered
obstacle
 MoveVehicle (currentscanPt, goalscanPt, (current-1) scanPt);
 else
 LocalPathNav (SourceScanPtNum, Goal.ScanPtNum);
 }

 }
 }

4 Chapter 4: Role of Logistics and Assumptions in Path
Planning

Decision making is a vital process in any artificial intelligence project. The

question why has to be answered for any single step considered. Decision making works

in parallel with the role of logistics for this algorithm development. Path planning is only

a secondary step to mapping. It can only be done in a known environment. For a robot,

SLAM creates this virtual environment. Hence, discrepancies, if any, in mapping are

carried forward in the implementation of path planning. Accordingly, utmost care has to

be taken during the logic development of the algorithm so as to make the navigation as

fault tolerant as possible. Also, being the very first version of this research, there are

some basic assumptions that are defined. This chapter elaborates all such assumptions

along with the importance of logistics to develop the algorithm.

�

 53

4.1 Assumptions

There are various assumptions that have been considered before evaluating

this algorithm:

1) The field (outdoor operation space, open field or forest) will always be

rectangular.

2) There will be no obstacles on the boundary of the field.

3) Information about the location and size of all the existing (known) obstacles

will be provided.

4) The Dimensions of the field will be provided.

5) The Dimensions of the vehicle (length and width) to be used for maneuvering

shall be provided.

6) The LIDAR has a maximum operating range of 80 meters.

7) A 90 degree turn is decided upon any time the vehicle has to turn.

8) Field is considered only in two dimensions, X and Y. With these assumptions

as prerequisites, the algorithm is still capable of detecting new obstacles,

avoiding them, and maintaining the predefined route.

9) For any autonomous motion there is a difference between predicted motion and

the actual motion. Furthermore, the difference in motion could be in terms of

distance travelled, direction of travel, speed of travel, and angle of turn. There

are varied factors which affect the intensity of this difference. A few of such

factors are the mechanical factors of the vehicle, the sensor inputs to the vehicle,

the fault tolerance intensity of the algorithm logic, the external environment or

the ground conditions. This algorithm is primararily developed and tested for

 54
the simulation stage. The algorithm focuses on optimum management of the

input data, so as to process and provide path planning in a systematic manner.

Since the algorithm is for path planning of an autonomous vehicle every single

step of the algorithm implementation should have a valid reason.

4.2 Logic

Here we see the details of how very fairly the input resources have been used

for the logic development. The reasoning for particular steps, equations and formulas

used in the code and algorithm will be explained here.

4.2.1 Data Structure

Three data structures are used: Coordinates, Obstacle and ScanPt.

1) Coordinates stores the Cartesian coordinates of any scan point. This structure is

used while referring to the current, next and previous scan points while moving

the vehicle.

2) Obst stores all the parameters related to the known obstacles, and its related

imaginary square such as the boundary coordinates of these obstacles.

3) ScanPt stores all the parameters related to a scan point. These parameters

include the scan point’s reach ability, its number, its visited status, number of

reach points it has, its actual and alternate goal point number. This structure is

used while referring to any particular scan point during simulation as well.

4.2.2 Formulas

• The number of X and Y scan points are calculated using:

 55

�

Equation 4-1

�

Equation 4-2

This algorithm plans the path for the ATV such that the entire are of the

rectangular field is covered in a parallel zigzag manner along the length of the field.

The black arrows shown in Figure 3-3 indicate the direction of navigation in

which the ATV should maneuver. The distance between any two adjacent scan points

in the X direction is suppose to be so that when the vehicle is at any one of the two

adjacent points, half the distance between them is covered. The distance between any

two adjacent scan points should be just enough for an entire vehicle width, so that

eventually when the ATV maneuvers up and down, the entire field area between these

points is covered. Hence, to calculate the distance between any two X scan points the

entire field with is divided by the vehicle width. The “+1” in the formula ensures the

first and last scan points in X direction. The distance between any two scan points in

the Y direction is supposed to be so that the vehicle can maneuver from one point to

the next safely with proper obstacle detection. At every scan point the LIDAR scans

the area in front of it to check for safety in order to move forward. Consider the case

if the distance between two consecutive scan points in Y direction is set to LIDAR

range as in Figure 4-1

 56

Figure 4-1 : Y scan range = LIDAR range

As seen in this case the shaded area is not covered in LIDAR range to check

for presence of any obstacle.

Figure 4-2 : Y scan range = LIDAR range / 2

On the other hand, as seen in Figure 4-2 with a distance of LIDAR range/2 the

shaded area which cannot be detected for obstacles is reduced by a large margin.

Hence, this algorithm considers the distance between any two scan points in the Y

direction to be LIDAR range/2. This distance can be further changed as per the

requirement for resolution of obstacle detection. Accordingly the number of scan

points in X and Y direction are calculated as shown in equation 4-1 and 4-2.

• The Number of X and Y scan points are then used to calculate the scan range in X

and Y direction and the total number of scan points.

Equation 4-3

 57

• The X and Y coordinates for each scan point is calculated as per the distance of

the scan point from the source point in X and Y direction respectively.

Equation 4-4

• The number of reach points for every scan point depends on the scan point’s

location. If the scan point is on any of the field boundaries, it has 3 reach points. If

it is at any of the four corners, it has two reach points. For all the scan point inside

the field there are four reach points. All of these three cases for creating reach

points are taken care by the following formulas :

Equation 4-5

In case, if the left condition is true, and the scan point has a reach point on its left

with a distance of Xscan range away from the current. Similarly the coordinates

for reach point on all remaining sides are calculated

• To find the alternate goal point in case if the actual goal point lies inside an

imaginary square and is not reachable the formula used is :

 58

Equation 4-6

This routine ensures that in case an imaginary square is present in front of a

scan point the consecutively next scan point number whichever is reachable is

assigned as the alternative goal point.

• To calculate the direction of navigation from one scan point to the next a

tangential formula is used :

Equation 4-7

The direction of navigation is decided based upon on the previous, current and

next scan point’s X and Y coordinates. The ‘if’ statement here checks if the current

and next scan point does not have the same X coordinate. If so it means it has to

divert from its straight path. The dFactor then decides left or right turn. The fact that

the X coordinates increase from left to right while the Y coordinates increase from

top to bottom is used to decide the direction. In this formula, if the dFactor is greater

than zero, it indicates a left turn because as seen from the formulas there are two

cases where the dFactor could be positive:

 59
Ø If the current X is less than goal X: which means the current scan point is on

the left of the goal X (considering that the X coordinates increase from left to

right) and so to go to the goal the vehicle has to take a left turn

Ø If the previous Y is less than the current Y: which means the previous scan

point is placed above the current Y (considering that the Y coordinates

increase from top to bottom). And then the current and goal X are different.

• Another similar formula is used in case if the Y coordinates of previous and

current scan points are same and at the same time the Y coordinates of current and

goal are not same. Similar logic as mentioned in the above point is used in this to

decide the direction of navigation.

• The case table mentioned in chapter 3 is the core for finding the best possible

intermediate reach point in a local path. It is represented in the

FindoptimumReachPoint function.

if (SourceY < TargetY)//--------------MAIN CASE 1------------------------------
 {
 if ((SourceY < AltGoalY) && (SourceX == AltGoalX))//CASE 1.1
 {
 fprintf (fpOut,"\nInside Case 1.1\n");
 //consider reach pt on top
 ReachPt = ScanPtArr [AltGoalPt].ScanPtNumsOfReachPts [2];
 ReachPt = CheckIfTemporaryInAccessible (ReachPt);
 //if top reachpt is reachable AND chk if OffPathDirection is not BOTTOMDIR
 if ((ReachPt! = -99) && (ScanPtArr [ReachPt].IsScanPointReachable ==
 1) && (OffPathDirection! = BOTTOMDIR))
 {
 BestReachPt = ReachPt;
 OffPathDirection = TOPDIR;
 return (BestReachPt);
 }
 else
 { //consider reach pt on left
 ReachPt = ScanPtArr [AltGoalPt].ScanPtNumsOfReachPts [0];
 ReachPt = CheckIfTemporaryInAccessible (ReachPt);
 //if left reachpt is reachable AND chk if OffPathDirection is not RIGHTDIR
 if ((ReachPt! = -99) && (ScanPtArr [ReachPt].IsScanPointReachable ==

 1) && (OffPathDirection! = RIGHTDIR))
 {
 BestReachPt = ReachPt;
 OffPathDirection = LEFTDIR;
 return (BestReachPt);

 60
 }
 else
 {//consider reach pt on BOTTOM
 ReachPt = ScanPtArr [AltGoalPt].ScanPtNumsOfReachPts [3];
 ReachPt = CheckIfTemporaryInAccessible (ReachPt);
 //if BOTTOM reachpt is reachable
 if ((ReachPt! = -99) && (ScanPtArr [ReachPt].IsScanPointReachable
 == 1) && (OffPathDirection! = TOPDIR))
 {
 BestReachPt = ReachPt;
 OffPathDirection = BOTTOMDIR;
 return (BestReachPt);
 }
 else
 {//consider reach pt on right
 ReachPt = ScanPtArr [AltGoalPt].ScanPtNumsOfReachPts [1];
 ReachPt = CheckIfTemporaryInAccessible (ReachPt);
 //if right reachpt is reachable
 if ((ReachPt! = -99) && (ScanPtArr [ReachPt].IsScanPointReachable
 == 1) && (OffPathDirection! = LEFTDIR))
 {
 BestReachPt = ReachPt;
 OffPathDirection = RIGHTDIR;
 return (BestReachPt);
 }//end case right
 else
 {
 OffPathDirection = NULLDIR; // if none of the reach points are accessible
 return (AltGoalPt);//return the same alt goal with offpathdir flag nullified
 }
 }//end case bottom
 }//end case left
 }///end case top
 }////CASE 1.1

The above snippet of code indicates the formulation for only case 1.1. Similar ‘if else’

statements are used to represent the remaining cases. Depending upon the source and

goal positioning the case number is decided and accordingly the reach point

preference if selected. For instance consider case 1.1 for example. The source Y

coordinate is smaller than the goal Y, which means that the source is above the goal

scan point. Further, particularly in case 1.1, the alternate goal (intermediate scan

point) and source scan point have same X coordinate and differ only in their Y

coordinates. That is, in this case both source and alternate goal are on the same

vertical column with the source positioned above the alternate goal. In order to

backtrack the local path from goal to source, the first preference is naturally given to

 61
the Top reach point to check if there is a direct access to reach the source point.

Followed by that, since the left points (in local left path) are given the utmost

importance, the reach point on Left is preferred. Again if the left reach point is not

reachable then as per the algorithm criteria the Bottom reach point is checked for

availability. And then the preference is given to the Right reach point. Accordingly

the reach point preference sequence for case 1.1 is ‘TLBR’. Similarly the preferences

are set for all of the remaining cases in both left and right local path functions.

4.2.3 Code

The code can be classified into sub categories. One category deals with the

logic of algorithm development and the other deals with the simulation development.

Chapter 5 elaborates the simulation development part of the software. Here we see

how the code is implemented in terms of the algorithm logistics.

• Initially the field, LIDAR and vehicle parameters are read in from an input file in

the ReadInputLineFromFile function.

• The parameters for all the known obstacles are read in from the input file

• Given the field and vehicle parameters the scan points are created for the entire

field in the CreateScanGoalPts function

• Also, numbers are assigned to scan points exactly as per the requirement of the

predefined trajectory of navigation. The location of the scan points on the field is

also considered for numbering. Hence the scan point with a number consecutively

next to the current scan point number is assigned as its goal scan point.

Ø Initially all the scan points are marked as reachable and not visited

Ø Reach points are created

 62

• The coordinates of all the known obstacles is used to create an imaginary square

around the known obstacles. This square is created such that it has its boundaries

at a distance of half the vehicle width away from the extreme north, south, east

and west limits of the obstacle. This gives the vehicle optimum space to maneuver

around the obstacle taking care that the ATV does not collide with the obstacle.

Accordingly the four corners of the imaginary square are detected

• In case of a known obstacle, the scan points lying inside the imaginary square are

now termed as not reachable. The ScanPtInsideImSqr function detects and marks

all such scan points lying inside imaginary square as unreachable. Also, an

alternate goal point is assigned to the last reachable point.

• After all the above assignments are made, the code is now ready to actually

navigate the ATV. This is done by the NavigateField function. Here the move

vehicle function is called to locate the ATV at appropriate scan point by going in

appropriate direction.

• The very first thing checked for, in navigated field, is if there are any known

obstacles present. If no such obstacle is present, based on the above initializations

and assignments the MoveVehicle function holds the routine to physically move

the vehicle from one scan point to the one having its consecutively next goal. In

this manner it eventually continues its navigation till the last scan point

(destination). The direction of navigation required to go to the next scan point is

also calculated before the ATV is actually moved to the next scan point.

• In case if a known obstacle is present in front of a scan point the LocalPathNav

function is called. The first step in this function is to find the next best possible

 63
reachable scan point along the same path as it would be without the obstacle. This

is termed as the new goal point. As per the algorithm this function maneuvers the

vehicle around the obstacle [along the scan points] in an optimum manner such

that the path with shorter distance is preferred.

• A reach point is any scan point which is at a distance of X or Y scan range from

the current scan point, and hence, has a direct access to the current scan point.

Reach points for all scan points are created at the time of initialization itself.

Reach points are the most important factors in creating the local path. If the

alternate goal point has any reach point which is also the reach point of the source

point, the ATV has direct route to go to the alternate goal through this reach point.

If not so, local goals (intermediate scan points in the local path) are further

created.

• The FindOptimumLocalGoalPt function does this routine. It uses the case tables

described in chapter 3 to decide for the most optimum alternate (local) goal. The

following criteria points are taken care of to find out the most optimum alternate

goal point :

Ø If not the source scan point itself

Ø If reachable (not present in any imaginary square)

Ø If it meets the left or right local path direction of routing

This function uses the concept of quadratic positioning of the source and the goal

scan points to decide the best possible reach points. The criteria points mentioned

above are implemented in the FindOptimumReachPoint function and used to

decide the reach point preference in each case. The local goals are stored in a

 64
stack ‘stackScanPtArray’ in the same sequence in which they are created from the

FindOptimumLocalGoalPt. The process is kept in a recursion until a local goal is

found whose reach point is same as the reach point of the source. Once such a

local goal is found the stack (left or right) is ready to be used for navigation.

• The OptimumPathDecision function creates both the left and right stack as per the

local path from left and right hand side respectively around the obstacle. This

function then compares the stack length and accordingly selects the path with a

shorter path length

• MoveVehicle function is called with the scan points in sequence from the selected

stack.

• The local navigation function is implemented in a recursive manner. So that in

case of facing an newly-discovered obstacle or imaginary square while already

navigating in the first local path, its previous local path is stored on a stack and

local navigation for the new obstacle is developed. Eventually the ATV routes

itself to the original goal. Thereafter the ATV continues its regular path along the

consecutive scan points.

• The logic for newly-discovered obstacle avoidance is same but is built run time

when the newly-discovered obstacle is detected. The LIDAR data is used for

newly-discovered obstacle detection. This data in coordination with the logic for

creating the local path is used for newly-discovered obstacle avoidance.

5 Chapter 5: Simulation and Graphics Details

Simulation is the representation of the behavior or characteristics of one system

through the use of another system. It is used in many contexts, including the modeling of

a natural or human system, in order to gain insight into its functioning. Other contexts

include simulation of technology for performance optimization, safety engineering,

testing, training and education. Simulation can be used to show the eventual real effects

of alternative conditions and courses of action. The implementation of simulation for this

algorithm elaborates on the last sentence. Simulation of this algorithm has helped to

achieve a working model for the logic behind the algorithm. In this simulation, a

mathematical model of the algorithm has been depicted, primararily to give the essential

visual effects for better understanding of this algorithm. Another important reason for

simulating this algorithm was to verify the effect of the software output before being

actually implemented on an ATV. There are various ways for implementing simulation.

This chapter provides details of the simulation technique used for this algorithm, reasons

behind it and the tools used for simulation and coding in general.

There are varied tools that are used for simulation graphics today. To list a few

are – AC3D, Animation Master (Hash), AutoCAD (Autodesk), FreeHand (Adobe

Systems), Inkscape, CorelDraw (CompuServe Incorporated) and Bryce (DAZ 3D Inc.).

Few of the animation and 3D simulation graphics tools available as open source studio or

suits are: Art of illusion, Blender, Breve, Cal3D, Cairo, Dia, Imgseek, Mesa, OGRE 3D,

 66
Open Scene Graph, and GIMP. These tools work based on different programs, such as

Visio, GNU, Java, Visual Basic and C++.

5.1 Path of Development of the Research Along With Platform
Selection

As a part of this research, the path planning algorithm was developed, implemented in

software and also simulated to give its visual effect. The research initiated based on the

reasons stated in chapter 2. Initially a rough scope of the entire research was planned and

framed. The entire course of research started with development of a pseudo code of the

algorithm. The data structure and pseudo code were scrutinized to meet the requirements

of the research. Windows operating system and C language was decided upon for the

software development of this algorithm. Development of this algorithm is only the first

step of a huge research. Going ahead, new additions are possible in terms of algorithm,

software and its actual implementation on an ATV. With all these factors Windows OS

was an obvious choice, considering following main reasons:

• Windows provide several user friendly software development tools enhancing

productivity of the developer.

• Specialized hardware drivers and auxiliary software tools are more readily

available for Windows than for any other operating system, providing for easy

hardware and software integration

• Familiarity with most of the users

C language also became an upfront choice due to following reasons:

• Popularity, versatility and portability

 67

• Provides dynamic memory management, interactive execution environment and

interactive trace

• Provides powerful debugging facility, flexible input-output and faster execution

Dev C++ studio version 4.9.9.2 is used for software development [23]. Bloodshed Dev

C++ is a fully featured Integrated Development Environment (IDE). It uses Mingw

("Minimalistic GNU for Windows") port of GNU Compiler Collection (GCC) as its

compiler. Some its outstanding features are:

• Supports GCC based compilers

• Supports Windows API programming

• Integrated debugging

• Project Manager

• Quickly creates Windows, console, static libraries and DLLs

• Makefile creation

• Tool Manager

• CVS support

Dev C++ comes with everything required to compile and link, both console mode and

Graphic User Interface (GUI) programs that will run on Windows. It allows the

programming to be done in C as well as C++. The explanatory notes mentioned in [25]

show the steps required to download, Install, Configure, Compile, Link and Run a

program using Dev C++. Overall the main reason for choosing the Dev C++ was the user

friendly IDE along with the GUI interface supported by it.

Using Dev C++ and using C language the basic code representing the algorithm was

developed. This code was developed using the console output. Starting from navigation

 68
in a field with no obstacles, to one with known obstacle and then lastly with newly-

discovered obstacles, the printf outputs on console depicted the exact journey to the

ATV. Once the entire navigation of the ATV as per the code was found exactly in line

with the proposed algorithm, the simulation part was considered. The simulation of this

algorithm depicts exactly the same logic, as that done by the code with the console

output. Only this time the output was in terms of a windows application giving a visual

representation of the algorithm.

5.2 Graphics and Simulation Tools Used

An API (Application Programming Interface) is an interface by which the

application program accesses operating system and other services. API is a set of

routines, data structures, object classes and/or protocols provided by libraries and/or

operating system services in order to support the building of applications. The Microsoft

Windows API provides services used by all Windows-based applications [26]. It provides

graphical user interface (GUI), access to system resources such as memory and devices,

display graphics and formatted text, incorporate audio, video, networking, or security. A

graphical user interface (GUI) is a human-computer interface (i.e., a way for humans to

interact with computers) that uses windows, icons and menus and which can be

manipulated by a mouse [28]. An icon is a small picture or symbol in a GUI that

represents a program (or command), a file, a directory or a device (such as a hard disk or

floppy). In windows, it is the Graphical Device Interface (GDI) which provides the

functions and related structures that an application can use to generate graphical output

for displays, printers and other devices. These functions are used to draw lines, curves,

closed figures, text and bitmap images.

 69
Programming for simulation using windows API gives the application a freedom to

return a device context handle to identify a display device. Using the graphical features

of windows API programming, such as Bitmaps, brushes, pens, clipping, region,

windows color system and coordinate spaces, enhanced the development of simulation

for this algorithm.

To create an application a compiler that runs on Microsoft windows application is

required. This requirement was completely satisfied by the Dev C++ IDE since it works

on windows. Almost all of the structures of Win API are C objects which further made it

easy to integrate the basic algorithm representing code for simulation. With Win API, it is

possible to achieve full features of animation along with timing controls. For this

algorithm, the graphical elements in coordination with timing controls are used to create

simulation.

5.2.1 Getting Started with Win API Programming

The following steps will brief about getting started for creating an application using Win

API.

1) Open the Dev C++ IDE and create a new project in windows application.

2) C language is selected

3) The ‘.dev’ file is saved in the respective folder

4) The default program is compiled, linked and executed to get a windows application

5.2.2 Some of the Basic Functions and Structures with Win API [29]

1) int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR

 lpCmdLine, int nCmdShow)

 70
 WinMain is a function equivalent to main () from DOS. Program starts its execution

 from this function. Its parameters:

 HINSTANCE hInstance: Handle to the programs executable module (the .exe file in

memory)

HINSTANCE hPrevInstance: Always NULL for Win32 programs

LPSTR lpCmdLine: The command line arguments as a single string

int nCmdShow: Controls how the window being built will be displayed

 The object that is displayed on the screen is called as a window. Since there can be

varied windows in a program, a control is required to known where they are when,

and why. This main window is created using an object that can be called a class

(strictly, a structure). In order to create an application a variable of either

WNDCLASS or WNDCLASSEX type is required to be declared. Upon declaring a

WNDCLASSEX variable, the compiler allocates an amount of memory space for it,

as it does for all other variables. Various parameters of the main window such as its

style, extra memory, background color and its instance are set inside this structure.

2) CreateWindowEx()

 Once the main window is created it is used as a parent to create child windows. This

function helps to specify that a window is a child of another window. Various

parameters for the child window such as its top, height, width, style, caption, and

instance along with a handle of the parent class are passed as parameters.

3) LRESULT CALLBACK MessageProcedure(HWND hWnd, UINT uMsg, WPARAM

wParam, LPARAM lParam)

 71
 To help the users with computer interaction, the operating system provides a series

of objects called Windows controls. Each control creates messages and sends them

to the operating system. Four main parts of information related to a message are sent

to the OS:

• Identity of the object (handle or HWND) that sends a message.

• A positive natural number (UNIT) corresponding to the particular message to

identify what message is being sent

• A 32 bit type word parameter (WPARAM) as an additional information for

processing the message

• A 32 bit type long parameter (LPARAM) as an additional information for processing

the message

 Windows Procedure is actually a function pointer to manage the messages sent.

Since it returns a 32 bit integer, it is called as long result (LRESULT).

 To manage these messages, they are handled by a function pointer called a Windows

Procedure. All the required messages are listed and processed one after another

using the switch case structure in this function. Some of the basic messages (cases)

used in this algorithm are:

 WM_CREATE: Message to create a new window.

 WM_TIMER: Message to indicate that the timer has expired

 WM_PAINT: Message to request painting certain part of the application’s window

 WM_MOUSEMOVE: Message given to a window when the mouse moves

 WM_LBUTTONDOWN: This Message is given when the left mouse button is

pressed while the cursor is in client window area

 72
 WM_LBUTTONUP: This Message is given when the left mouse button is released

while the cursor is in client window area

WM_CLOSE: Message to terminate the window

WM_DESTROY: Message sent while destroying a window

4) PostQuitMessage(0)

Message to close a window.

5) RegisterClassEx(&WndClass)

The window class is made available to other controls that are a part of the application

using the registration function.

6) Rectangle(HDC hdc, int nLeftRect, int nTopRect, int nRightRect, int nBottomRect);

 Function used to draw a rectangle. The left, top, right and bottom coordinates of the

window where the rectangle is to be drawn are passed as its parameters.

7) Ellipse(HDC hdc, int nLeftRect, int nTopRect, int nRightRect, int nBottomRect);

 Function used to draw an ellipse. This ellipse fits in a rectangle. The parameters of

this rectangle are passed.

8) MoveToEx(HDC hdc, int X, int Y, LPPOINT lpPoint);

 Function used to originate drawing of a line. The origin of a line is given in terms of

X and Y.

9) LineTo(HDC hdc, int nXEnd, int nYEnd);

 The end of a line is specified in terms of X and Y parameters.

10) RGB(BYTE byRed, BYTE byGreen, BYTE byBlue);

Three separate numerical values ranging from 0 to 255 are passed as parameters to set

the required color.

 73
11) SelectObject():

 This function selects a new control to a specified device context.

12) DeleteObject():

 Deletes a logical pen, brush, font, bitmap, region, or palette, hence setting free all

system resources associated with the object. After the object is deleted, the specified

handle is no longer valid

13) TextOut(HDC hdc, int nXStart, int nYStart, LPCTSTR lpString, int cbString);

 Writes a character string at the location given by X Y coordinates. cbString specifies

the length of the string.

14) SetBkColor(HDC hdc, COLORREF crColor);

 Function used to highlight the text output

15) SetTextColor(HDC hdc, COLORREF crColor);

Decides the color of the text output

16) BOOL BitBlt(HDC hdcDest, int nXDest, int nYDest, int nWidth, int nHeight, HDC

hdcSrc, int nXSrc, int nYSrc, DWORD dwRop);

 Transfers pixels from a specified source rectangle to a specified destination

rectangle. It also alters the pixels according to the selected raster operation (ROP)

code.

17) UINT_PTR SetTimer(HWND hWnd,UINT_PTR nIDEvent, UINT uElapse,

 TIMERPROC lpTimerFunc);

Creates a timer with the specific timeout value (uElapse)

18) CreateSolidBrush(COLOREF crColor);

 Creates a logical brush with the color specified to be used for painting

 74
19) TextOut(HDC hdc, int nXStart, int nYStart, LPCTSTR lpString, int cbString);

 Writes a character string at the specified location, using the currently selected font,

background color, and text color

20) LoadBitmap(HINSTANCE hInstance, LPCTSTR lpBitmapName);

 Loads the particular bitmap resource from the executable file for a module

5.2.3 Customization of Programming in Win API for the Algorithm

All the functions mentioned in 5.2.2 for the WinAPI controls are used along with the

functions representing the basic algorithm’s logic mentioned in chapter 4 to develop the

simulation for this algorithm. This section elaborates how the graphical representation of

the code is done using the Win API functions. Here the main intention is to display a

field, a vehicle, known or newly-discovered obstacles and the navigation of the vehicle as

per the algorithm. The field and known obstacles are static objects (not going to change

position with respect to time throughout the execution) and hence are painted initially.

Handling the coordination between the navigation related functions and Win API

functions to accordingly show the required animation on the field, has been the main task

of this simulation.

1) A basic windows API program is built and executed to create a window

2) The caption, length and width of the window are set in the createwindowex function

3) The background color for the window is set using the windclass function

4) A WM_PAINT switch case is added to the windows Procedure and a rectangle is

drawn in the window using the ‘rectangle’ function.

5) As seen in the chapter of logistics, the field, LIDAR, vehicle, as well as the known

obstacle parameters are taken as input from a file. The input field length and width

 75
are used to determine the left, right, top and bottom parameters for the ‘rectangle’

function. The window application which represents a rectangular field is drawn

inside the entire windows screen. An X offset and a Y offset is set to decide the top

left corner of this rectangular field. To draw the width of the rectangle the width

(input from read file) is added to the X offset. Similarly the length of field is added

to the Y offset. Accordingly the rectangular field is positioned on the windows

screen as per the offset values.

6) The ATV is displayed as bitmap image of a small car. A car bitmap image of size

32 * 32 is created and stored in the application folder with a name Car. The same

image with inverted colors is stored as another bitmap image with a name CarMask.

The car mask image is used to show animation when the vehicle is to be showed as

maneuvering from one place to another. An image resource is required to take the

bitmap as an input to the simulation. A new resource file is created called as

“images.rc”. This file holds the ‘.bmp’ extensions for both the images. Initially two

bitmap handles are defined for the Car and the CarMask images as hbmCar and

hbmCarMask respectively.

7) WM_CREATE switch case is created to initialize various parameters of the

program. The bitmaps of Car and CarMask are assigned to the bitmap handles

hbmCar and hbmCarMask respectively. An object reference for the car bitmap is

returned to the application. A timer is set using the settimer function which decides

the speed of navigation of the Car in simulation. The functions to initialize variable,

create scan point, reach point, from the data of known obstacles create the

imaginary squares, determine the scan points inside the imaginary squares, create

 76
alternate goal points, are all executed in this switch case. Since for this algorithm,

the source for navigation in the field is the top left corner of the field, the Car

Image’s X and Y for the bitmap are set to the offset values.

8) The WM_PAINT switch case is primararily used to display all drawings on the

window (field). The drawings include:

• Rectangle function to draw the field. Input parameters are set as Xoffset (Left),

YOffset (top), Xoffset+Field width (right), Yoffset + field length (bottom).

• Using the create solidbrush function a color is set for the field. The select object

function is used to set a new brush color for the field rectangle. Once the rectangle

is drawn this object is deleted.

• Rectangles without any solid color fills are drawn around all the known obstacles

to represent their respective imaginary squares. Input parameters are set as:

 KnownObstacle[].ImgSqrNW.X(left), KnownObstacle[].ImgSqrNW.Y(top),

KnownObstacle[].ImgSqrNE.X(right), KnownObstacle[].ImgSqrSW.Y(bottom).

The imaginary square corners created using the create imaginary square function

are used here.

• All scan points are represented as an ellipse in the form of a circle. At all the scan

point locations, determined by their respective X and Y locations, an ellipse is

drawn with inputs as: (SimulationScanPtArr[].Source.X-4.0)(left),

SimulationScanPtArr[].Source.Y-4.0)(top),

(SimulationScanPtArr[].Source.X+4.0)(right),

(SimulationScanPtArr[].Source.Y+4.0)(bottom). The ‘+4’ and ‘-4’ margins are

provided to draw the rectangle of the ellipse around the exact scan point. A new

 77
solid brush with a new color is set for the scan points and deleted after drawing

the scan points. Similarly, a new solid brush with a different color is set for the

scan points which are marked unreachable (so that all points inside any imaginary

square will be seen in a different color to distinguish them as unreachable).

9) All the scan points are numbered just next to the respective circles. The textout

function is used to assign numbers to all the scan points. The inputs used are:

(SimulationScanPtArr [temp].Source.X-9)(X start position), (SimulationScanPtArr

[temp].Source.Y-30.0))(Y start position), sVar(string), strlen(sVar)(length of the

string).The scan point numbers created in the CreateScanGoalPts function are

converted into a string and used as input. The X and Y start positions are set so that

the numbers are positioned above just each scan point.

10) Known obstacles are drawn to be in the form of an ellipse. The shape of the ellipse

is decided upon the X (west, east) and Y (top, bottom) coordinates of the

boundaries of these obstacles given as inputs. Using a new solid brush(new color),

the ellipse function is called for all the known obstacles with inputs as:

KnownObstacle[].west(left), KnownObstacle[iCounter].north(top),

KnownObstacle[iCounter].east(right), KnownObstacle[iCounter].south(bottom).

11) The field diagram is labeled using textout function. A particular highlight color and

background color is set for this text using the SetBkColor and the SetTextColor

functions.

12) Three switch cases WM_LBUTTONDOWN, WM_LBUTTONUP and

WM_MOUSEMOVE are used to draw the newly-discovered obstacle run time

during navigation. All of these messages are related to mouse activity. The

 78
WM_LBUTTONDOWN message indicates windows about a regular left hand

mouse click on the application window. The X and Y coordinates of the point

where the mouse is first clicked are stored. The WM_LBUTTONUP message gives

an indication when the mouse click on the application window is released. The

WM_MOUSEMOVE message is given every time the mouse is dragged from one

X-Y coordinate to another. So if a mouse is clicked on an application window and

dragged to some other point on the window and then released, the last X-Y

coordinate given by the WM_MOUSEMOVE message will be that for the point of

release.

13) Using the above three messages a free line can be drawn on the application window

whose starting and end points are recorded. Such a line is used to represent the

newly-discovered obstacle. The X coordinate of all the intermediate points are

considered to determine the left and right boundaries of the newly-discovered

obstacle. Similarly, the Y coordinate of all the intermediate points are considered to

determine the top and bottom boundaries of the newly-discovered obstacle. So a

specific pattern for drawing the newly-discovered obstacle is defined such that it

can be drawn in the form of a line which can extend from left to right, bottom to top

or both simultaneously.

14) The WM_LBUTTONUP message also initiates drawing of a line using the MoveTo

function. The WM_MOUSEMOVE message holds a LineTo function. So every

time the line is dragged from the point it was clicked a new X-Y coordinate a new

end point for the line is set. The point where the mouse is released is the last point

of which the X-Y coordinates are given to the LineTo function.

 79
15) Such a continuous line represents the newly-discovered obstacle. Because this

obstacle is drawn run time, as soon as the mouse is released (the line is finished

drawing) the imaginary square around this newly-discovered obstacle should be

drawn. This imaginary square is drawn using the stored X, Y coordinates for the

point of click and those recorded in the WM_MOUSEMOVE routine. This

imaginary square is drawn in the WM_LBUTTONUP switch case when all the

required X Y coordinates are already stored.

16) The X – Y coordinates at the point of click (WM_LBUTTONDOWN) are stored as

the zeroth element of an array. When the line is dragged, every time a new X-Y

coordinate is recorded (WM_MOUSEMOVE) it is stored as the consecutively next

element of the array. Accordingly, the last element of the array is the X-Y

coordinate of the point of release.

17) To draw an newly-discovered obstacle the mouse when once clicked should be

dragged continuously (without releasing the buttondown) till the desired shape of

the obstacle is drawn.

18) Both the X and Y arrays are then subjected to bubble sort in the

WM_LBUTTONUP routine to arrange the elements of the array in an ascending

manner. Hence, the zeroth element of the X array now holds the least X coordinate

recorded throughout the trajectory of the continuous line (leftmost point of the

trajectory). The last element of the X array holds the most maximum X coordinate

recorded throughout the trajectory of the continuous line (rightmost point of the

trajectory). The zeroth element of the Y array holds the least Y coordinate recorded

throughout the trajectory of the continuous line (topmost point of the trajectory).

 80
The last element of the Y array holds the most maximum Y coordinate recorded

throughout the trajectory of the continuous line (bottommost point of the

trajectory).

19) These four elements (leftmost, rightmost, topmost and bottommost) are used to

define and draw the boundary of the imaginary square around the newly-discovered

obstacle. The left boundary of the imaginary square for newly-discovered obstacle

is set as ‘Unknown_X_Arr [0] - (VehicleWidth/2)’. Right boundary is

‘Unknown_X_Arr [counterISqr-1] + (VehicleWidth/2’. Top boundary is

‘Unknown_Y_Arr [0] - (VehicleWidth/2)’. Bottom boundary is ‘Unknown_Y_Arr

[counterISqr-1] + (VehicleWidth/2)’.

20) Using the MoveToEx and the LineTo functions a rectangle representing the

imaginary square is drawn around the newly-discovered obstacle with the above

parameters. The scan points inside the imaginary square for newly-discovered

obstacles are marked as unreachable and their respective new goal points are

created.

21) The main task in simulation is to show an animated version of the algorithm for the

maneuvering of the ATV. This algorithm implements the animation using the timer

basis. Every time a timer value is expired the ATV position is updated. That is, its

earlier position is erased, a new position is assigned to the ATV and the ATV image

is drawn at the new location. This timer value decides the speed of maneuvering of

the ATV (car) in the simulation.

22) After every certain time interval the ATV is moved to its next goal scan point. The

WM_TIMER switch case takes control of such timer related functions. This

 81
message indicates expiry of the timer and hence a signal to move to the ATV to a

new scan point. Three main functions are called upon this timer expiry: EraseCar

(), UpdateCar () and DrawCar ().

23) The EraseCar () function creates a small rectangle as per the width and height of

the car image and fills this rectangle with a solid brush color. For this simulation,

this color is kept same as that of the field. Accordingly when the car image is erased

its positioned will be seen as a blank on the field.

24) The UpdateCar () function is the most important function to represent the path

planning navigation in simulation. In this function, the logically next position where

the car image is supposed to be displayed (next position of the ATV as per the

algorithm) is decided. The navigate field function elaborated in chapter 4 (logistics)

is implemented here. The move vehicle or the local path navigation function is

called based on the conditions of reach ability of the next point.

25) The DrawCar () function initially allocates a block of computer memory that would

hold the bitmap image. The CarMask and the Car bitmap objects are selected and

the corresponding pixels are transferred from the memory (source) to the

application (destination).

26) Since the computation of the new ATV position (in the navigate field function)

takes much lesser time than that required for the timer to expire and call the update

Car function, by the time the update car function is called the new location of the

car Image is ready to b drawn. This pattern of simulation continues till the ATV

reaches the final destination of the field.

6 Chapter 6: Study Heuristics

Given certain conditions, simulation results are always idealistic, unless otherwise

provided with some known errors. This chapter analyzes and tabulates the results of the

algorithm development along with its deviation, if any, from the expected results. Also,

the heuristics behind this research will be elaborated.

The main challenge while starting this thesis has been to develop a new path

planning algorithm, to implement it in software and to simulate it. To do this, it was

required to organize the study in such a manner so as to build a clear evidence for the

working model of the algorithm. The path planning concepts in various papers studied for

this research had some direct contrasts and similarities. Development of an altogether

new method for path planning, making it executable and proving that this method is

optimum to implement has been the main task.

Software Output

Testing all the different cases in the both the quadratic case tables mentioned in

chapter 3 (algorithm) has been one of the major tasks of this research. These tests

validated that if the obstacles are positioned at different locations along the ATV’s

trajectory, the solution comes under one of the 16 cases in the table. Using the preference

solution for that case, the navigation is maintained as per algorithm.

 83
Following are the results for a few of the test cases:

1) Source 28 and goal: 30 (Base case 1). The local path is backtracked from 30 to 28

from left hand side. The stack counter for right hand local path is found to be more

(9) compared to the left hand stack counter (5). This can be verified from the

simulation output as seen in Figure 6-1.

 �

�

� �

Figure 6-1: Simulation output of different scan points when going around the obstacle (left hand path
case)

 84
2) Source: 50 and goal: 52(Base case 1). The local path is backtracked from 52 to 50

from right hand side. The stack counter for right hand local path is found to be less

(5) compared to the left hand stack counter (9). This can be verified from the

simulation output as seen in Figure 6-2.

�
�

�
�

�

Figure 6-2 : Simulation output of different scan points when going around the obstacle (right hand
path case)

 85
3) Source: 93 and goal: 96(Base case2). The local path is backtracked from 96 to 93

from left hand side. The stack counter for left hand local path (10) is found to be

less compared to the right hand stack counter (12). This can be verified from the

simulation output as seen in Figure 6-3.

 86

Figure 6-3 : Simulation output of different scan points when going around the obstacle (base case 1)

7 Chapter 7: Conclusion and Future Work

An optimum path planning algorithm serves as the basic structure for the

navigation of an autonomous ATV. The work is aimed towards navigation in open fields

with occasional obstacles. The algorithm and its software have been simulated to give

real world application. The following conclusions can be drawn from the presented

algorithm:

1) The algorithm presented fulfills its purpose of navigation in a specific pattern,

obstacle avoidance and optimum routing

2) All known and newly-discovered obstacles are avoided during navigation so that

the vehicle can return quickly to original navigation path

3) The algorithm and the implemented software can be easily customized as per

changes in requirements

4) No complex computation and mathematics is involved thus making it easy for

future implementations

5) With the concept of an imaginary square around each obstacle, the algorithm

ensures that the ATV will keep safe distance from obstacle when travelling around

it.

6) A field of any dimension along with any number of obstacles (of any dimensions)

can be used as input in the simulation to validate the algorithm

 88
7) The simulation depicts an appropriate representation of the algorithm and its

software. It is found to be beneficial to verify the output of the algorithm before

being actually implemented on an ATV

As stated in earlier chapters this research is only a part of a large research program

which will allow an ATV to navigate in any given terrain. This research creates a base for

the navigation part of the entire work. The algorithm presented is so that its software can

be used for implementation on an ATV. The presented software has been aimed towards

simulation, and hence, would require some obvious extra mechanical and electrical inputs

so as to allow it to be used on an ATV. The following points are the possible future work

for this algorithm and system:

1) Addition of functionality for inputs from sensors such as LIDARS, GPS and other

electrical inputs

2) Addition of functionality for outputs to motor drives and other mechanical ATV

parts related to navigation

3) Addition of filters and probabilities to avoid noise effects when actually

implemented on an ATV

4) Provision to make the navigation fault tolerant in presence of erroneous sensors or

faulty maps

5) Detection of predicted motion and actual motion of the ATV and accordingly adjust

the algorithm run time

6) Modification of the coordinate system and units as per the sensor inputs

7) Modification of the algorithm and the software for moving obstacles and multiple

ATVs maneuvering simultaneously in the field

 89
8) Modification of the algorithm and the software for any uneven terrain of any shape

9) Ability to get information about height or depth of the obstacle and to make the

ATV capable of crossing the obstacle instead of going around it

 90

8 Bibliography

1. Hugh Durrant-Whyte and Tim Bailey. JUNE 2006. Simultaneous Localization and

Mapping - Part I. IEEE Robotics & Automation Magazine 99 TUTORIAL.

2. Hugh Durrant-Whyte and Tim Bailey. JUNE 2006. Simultaneous Localization and
Mapping – Part II. IEEE Robotics & Automation Magazine 99 TUTORIAL.

3. Sebastian Thrun, Dieter Fox and Wolfram Burgard. May 1998. Probabilistic
Mapping of an Environment by a Mobile Robot. IEEE International Conference on
Robotics & Automation Leuven, Belgium.

4. Sebastian Thrun. Robotic Mapping: A Survey. Research sponsored by DARPA’s
MARS Program (Contract number N66001-01-C-6018) and the National Science
Foundation (CAREER grant number IIS-9876136 and regular grant number IIS-
9877033).

5. Makarenko, A.A. Williams, S.B. Bourgault, F. Durrant-Whyte, H.F. 2002. An
experiment in integrated exploration. Intelligent Robots and System, IEEE/RSJ
International Conference.

6. Cyril1 Stachniss and Wolfram Burgard. October 2003. Mapping and Exploration
with Mobile Robots using Coverage Maps. IEEURSJ Intl. Conference on Intelligent
Robots and Systems Las Vegas. Nevada.

7. Michael Montemerlo, Sebastian Thrun, Daphne Koller and BenWegbreit. 2002.
Fast SLAM: A Factored Solution to the Simultaneous Localization and Mapping
Problem with Unknown Data Association. National Conference of Association for
the Advancement of Artificial Intelligence.

8. http://msdn.microsoft.com/en-us/robotics/default.aspx

9. Microsoft robotic software used for simulation.

10. Borenstein, J. and Koren, Y. May 1990. Real-time Obstacle Avoidance for Fast
Mobile Robots in Cluttered Environments. Robotics and Automation, IEEE
International Conference.

11. Dieter Fox, Wolfram Burgardy, Frank Dellaert, Sebastian Thrun. 1999. Monte
Carlo Localization: Efficient Position Estimation for Mobile Robots. Sixteenth
National Conference on Artificial Intelligence (AAAI-99), Orlando, Florida.

12. Wolfram Burgard and Dieter Fox and Daniel Hennig and Timo Schmidt. 1996.
Estimating the Absolute Position of a Mobile Robot Using Position Probability
Grids. Fourteenth National Conference on Artificial Intelligence (AAAI-96).

13. W. S. Wijesoma, K. W. Lee and J. Ibañez-Guzmán . April 2005. Motion

 91
Constrained Simultaneous Localization and Mapping in Neighborhood
Environments. IEEE International Conference on Robotics and Automation
Barcelona, Spain.

14. Jean-Claude Latombe. 1991.Robot Motion Planning. Book, Edition: 2, Published by
Springer.

15. http://inventors.about.com/gi/dynamic/offsite.htm?site=http://prime.jsc.nasa.gov/R
OV/library.html

16. List of few of the varied typed of robots used currently.

17. Colin R. McInnes. 2000. Autonomous Path Planning for On-Orbit Servicing
Vehicle. Department of Aerospace Engineering, University of Glasgow, Scotland,
UK.

18. Subbarao Kambhampati and Larry S. Davis.1986. Multiresolution Path Planning for
Mobile Robots. IEEE Journal of Robotics and Automation, Vol. RA-2, no3.

19. Hoi-Shan Lin Jing Xiaot and Zbigniew Michalewiczt. 1994. Evolutionary
Algorithm for Path Planning in Mobile Robot Environment Evolutionary
Computation, IEEE World Congress on Computational Intelligence.

20. C. I. Connolly, J. B. Burns, R. Weiss. March 6, 1990. Path Planning Using
Laplace’s Equation. Robotics and Automation, IEEE International Conference.
Amherst, MA.

21. Kikuo Fujimura and Hanan Samet. February 1999. A Hierarchical Strategy for Pat
Planning Among Moving Obstacles. IEEE transactions on robotics and Automation,
Vol.5, no. 1.

22. JCrGme Barraquand, Bruno Langlois, and Jean-Claude Latombe. 1992. Numerical
Potential Field Techniques for Robot Path Planning. IEEE transactions on Systems,
Man and Cybernetics, Vol.22, no. 2.

23. J. Sanjiv Singh and Megnad D. Wagh. April 1987. Robot Path Planning using
Intersecting Convex Shapes: Analysis and Simulation. IEEE Journal of Robotics
and Automation, Vol. FA-3, no. 2.

24. Peter D. Holmes and Erland R. A. Jungert. May 1992. Symbolic and Geometric
Connectivity Graph Methods for Route Planning in Digitized Maps. IEEE
transactions on Pattern analysis and Machine intelligence, Vol. 14, no. 5.

25. http://www.bloodshed.net/devcpp.html

Dev C++ IDE used for software development.

26. http://bloodshed-dev-c.en.softonic.com/

 92
Source to Download Dev C++

27. http://csjava.occ.cccd.edu/~gilberts/devcpp5/

Explanatory notes for getting started with Dev C++

28. http://msdn.microsoft.com/en-us/library/cc433218(VS.85).aspx

Microsoft Windows API details

29. http://msdn.microsoft.com/en-us/library/cc433218(VS.85).aspx

Microsoft Windows API reference

30. http://www.linfo.org/gui.html

GUI Definition and information

31. http://www.functionx.com/win32/index.htm

Win API details

32. Dieter Fox, Wolfram Burgardy, Frank Dellaert, Sebastian Thrun. 1999. Monte
Carlo Localization: Efficient Position Estimation for Mobile Robots. Sixteenth
National Conference on Artificial Intelligence (AAAI-99), Orlando, Florida.

33. Sebastian Thrun, Wolfram Burgard, Dieter Fox. April 2000. A Real-Time
Algorithm for Mobile Robot Mapping with Applications to Multi-Robot and 3D
Mapping. IEEE International Conference on Robotics and Automation, San
Francisco.

34. http://imr.felk.cvut.cz/Research/mapping/mapping.html

List of current map building methods

