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ABSTRACT 
 
 
SHARAYU YOGESH GHANGREKAR. A Path Planning and Obstacle Avoidance 

Algorithm for an Autonomous Robotic Vehicle. (Under the direction of Dr. James M. 

Conrad) 

 

Path planning in robotics is concerned with developing the logic for navigation of 

a robot.  Path planning still has a long way to go considering its deep impact on any 

robot’s functionality. Various path planning techniques have been tried and tested earlier, 

including probabilistic, integral and genetic approaches. The implementation details of 

most of these algorithms are proprietary to specific organizations.  The requirement of a 

customized strategy for collision free and concerted navigation of an All-Terrain Vehicle 

(ATV) led to the activities of this research. As a part of this research an algorithm has 

been developed and simulated to give a visual effect. The algorithm presented is 

evolutionary and capable of path planning for ATVs in the presence of completely known 

and newly-discovered obstacles. This algorithm helps the ATV to maneuver in an open 

field in a specific pattern and avoid the obstacles, if any, along its path. As part of the 

research the actual algorithm is implemented and simulated using C and WINAPI.  As a 

result, given the data of known obstacles and the field, the ATV can maneuver in a 

systematic and optimum manner towards its goal by avoiding all the obstacles in its path. 

This algorithm can also be deployed on an ATV using real time data from LIDAR and 

GPS. The logic of the algorithm can be extended for path planning in a completely 

dynamic environment. 
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1. Chapter 1: Introduction 
 
 

Autonomous robotics is one of the most key topics of this generation of research. 

It has a wide range of applications, such as construction, manufacturing, waste 

management, space exploration, and military transportation. One of the main areas of 

research, in order to achieve successful autonomous robots, is path planning. Path 

planning in robotics is defined as navigation that shall be collision free and most 

optimum for the autonomous vehicle to maneuver from a source to its destination. This 

thesis concentrates on building a path planning algorithm for an all terrain vehicle (ATV) 

used for travelling in an open field or forest. The novelty of this algorithm is that it does 

not simply create a path between a source to its destination, but it makes sure that the 

vehicle covers the entire field area when navigating from the source to its destination. 

Consider a case where a person has to travel from room A to an adjacent room B, 

wherein he does not know the path from A to B beforehand. Starting at A, the person will 

have no knowledge at all about the directions to go to B. Initially, he understands the fact 

that he has to get out of the present room and then go to room B. For this he has to sense 

an exit from the present room. He uses his eyes to understand the location of the door for 

room A. His eyes and brain makes him understand that there is no object in his way to the 

door if he can simply go towards the door in straight direction. He then uses this 

information collected from his sensory organs to direct himself towards the door and 
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hence towards room B. In other words, he uses his sensory organs (eyes) and control 

system (brain) to plan his path towards room B. 

An autonomous robot is such a person who has no beforehand data about 

navigation and which needs some algorithm to be used for creating the directions for 

navigation. Path planning does something similar in case of autonomous robots with the 

use of electronic sensors and control system (algorithm). The field of robotic mapping 

addresses the problem of robot navigation where the use of GPS is not available or 

possible. It considers the ability of a robot to survey its surroundings, build a virtual map 

and move along an optimal path. The robot uses Laser Detection and Ranging (LIDAR), 

ultrasound and other sensors for data collection to understand its surroundings. This data 

is used to build a virtual map of its surroundings and build a path on the fly as the robot 

proceeds. This is referred to as Mapping. A robot that navigates using this map must be 

able to accurately calculate its position with respect to the landmarks in the map, and 

locate itself in this map. This is known as Localization. To maneuver along an optimal 

path both mapping and localization is necessary. This field is referred to as Simultaneous 

Localization and Mapping (SLAM) [1, 2].  

Mapping starts from a point of zero data. As data is gathered new features are 

checked for repetition and then added or estimated accordingly. The basics of mapping is 

comprised of three parts: Data prediction (gather data using sensory inputs), data 

association (using some algorithm build an estimation of the environment) and map 

building (build a map using the earlier two steps which the robot can use for its 

trajectory). Mapping depicts the environment without any person physically measuring 



 3
the whole area. In short, mapping gives us a virtual or visual representation of the actual 

environment which shall be used by the robot to do any of its prescribed action. 

SLAM is a method which finds if it is possible for a mobile robot to be placed at 

an unknown location in an unknown environment, and for the robot to incrementally 

build a consistent map of the environment while simultaneously determining its location 

within this map. Over the years SLAM has been solved using various algorithms like 

Extended Kalman Filter (EKF) SLAM, Fast SLAM and Rao-Blackwellized. Most of 

these algorithms use various probabilistic and state space model based approaches. The 

need for a probabilistic solution arises because the data obtained from the sensors and 

from the movement of robot itself can be affected by noise. Furthermore the Gaussian 

and motion model are amongst few of the models used for robotic motion. Mapping and 

SLAM both require building a recursive solution, which would continually build a map 

from the point of start to the final destination.  Mapping happens to be one of the integral 

parts for any autonomous vehicle.  

For any ATV, path planning can only happen if the mapping and localization has 

been finished beforehand, i.e. only when the vehicle has complete knowledge of its 

surroundings and its own position in this surrounding, it can further plan its way towards 

the destination. Consider, for example, that a robot is positioned at a corner of a room and 

the room has only one door (See Figure 1-1). The Goal of the robot is to get out of the 

room autonomously without clashing with any of the walls. Mapping will give the robot 

some initial data of the surrounding environment. It will allow the robot to understand 

that it is positioned in some location totally blocked from all four sides surrounding it 

from a certain distance, with only one opening. With localization, it understands that, 
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given the above circumstances, it is currently positioned at one of the corners diagonally 

opposite to the opening from where it has to exit. So we see that the entire journey of the 

vehicle from its source to destination is comprised of mapping, localization and then path 

planning. To reach the goal the robot will have to move towards east first then north and 

then east again to get out through the door. As seen in Figure 1-2, there could be multiple 

ways to reach the goal, i.e. the robot could go straight diagonally from the corner towards 

the door or first go north and then towards east. It is the path planning which decides 

upon these logistics and formulates an algorithm for the robots trajectory. 

 

Figure 1-1 : Navigation of robot in a room 
 

In the above example if the robot moves towards east but then does not move 

towards north, there is a probability of 0.5 that the robot moves north and 0.5 that the 

robot does not do so. Various such possibilities are shown in Figure 1-2. So for mapping 

the formulation includes probability distribution for every single state of the robot. In 

general this functionality is represented as d(s0,a0,s1) – probability of transitioning from 

state s0 to state s1 when action a0 is applied. For every single possible state its state value 

is calculated considering how fair or difficult it will be to go to the goal from this state. 
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Figure 1-2 : Graphical representation of robot’s movement plan 
 

To make the planning robust, algorithms further take into consideration the 

undeterministic factors especially when in the outdoors using Gaussian noise distribution 

and Markov models. Hence a significant amount of computation and memory 

consumption is involved which eventually affects the frequency at which the robot can 

incorporate sensor data, which in turn implies accuracy.  

Using the inputs from mapping and the localization, path planning algorithm 

further builds the logistics for the vehicle to follow a suitable path to reach its goal. Path 

planning not only assigns proper directions for the vehicle’s trajectory but also handles 

the obstacles, if any, along its path. As per the algorithm presented in this research, an 

autonomous vehicle shall maneuver the entire field area in a predetermined fashion. 

Obstacles, if any, along the path are optimally avoided to resume back to the normal path. 

A base example would be as shown in Figure 1-3 and Figure 1-4: 
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Desired path for ATV, which includes an obstacle: 

 

Figure 1-3 : Obstacle in the normal path 
 
Path drawn from the algorithm: 
 

 
 

Figure 1-4 : Path around an obstacle 
 

The above example shows the obstacle avoidance part of the algorithm. The 

algorithm also takes care that the ATV moves around the obstacle and covers the entire 

field area. Certain assumptions are taken into consideration while developing this 

algorithm. Typically, a field is represented using a grid. Each grid will be divided into 

points or nodes. Data of any one point, its surroundings and its goal point is used for 

planning the path. The algorithm explains how and why these points are created, and how 

they are used to create the logistics for path planning. In depth reasoning will be provided 

for every step of the algorithm from its outlining to the developmental stage. The 

algorithm is comprised of various sub routines such as local path navigation, obstacle 

detection, initialization which will be elaborated in the following chapters. This approach 

plans an initial global path or route based on known information and then modifies the 

plan locally as the robot discovers obstacles with its sensors. The process repeats until the 
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robot reaches the goal or determines that it cannot. The programming is implemented 

using ‘C’ language. The scope of this research is limited to the development of a 

simulation based model of this algorithm.  

1.1 Motivation 
 

In July of 2002, nine miners in the Quecreek Mine in Sommerset, Pennsylvania 

were trapped underground for three and a half days after accidentally drilling into a 

nearby abandoned mine. A subsequent investigation attributed the cause of the accident 

to inaccurate maps [7]. Since the accident, mobile robots and SLAM have been 

investigated as a possible technology for acquiring accurate maps of abandoned mines.  

 

Figure 1-5 : Target Environments for Outdoor Robotic Mapping [7] 
 

Over the years, the basic estimation problem in mapping and path planning is well 

understood. However, there are still a number of open problems to be addressed. These 

include computational complexity, linearization effects, association of measurements to 

features, detection of loops in the robot’s path, and maintaining topological consistency 

as the maps get very large. Typically, for indoor environments, certain features are taken 

for granted, such as extensive planar regions. Most of these algorithms have been 
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successful for indoor applications; however, for outdoors the results have not been very 

satisfactory. This is because of complex outdoor environments and dynamic situations as 

shown in Figure 1-5. Also, when outdoors there are more chances that that the 

environment will change over time. 

This research concentrates on building a fairly optimal and robust path planning 

algorithm for maneuvering of autonomous vehicles in outdoor environment. It will be 

based on following main tasks:  

v  Get a clear picture as far as possible of the surroundings 

v  Localize the robot inside the map 

v  The path should be so that the vehicle covers the entire field area 

v  Algorithm built should be optimum enough for obstacle avoidance 

As part of this research, data gathered using LIDAR and processed through filters 

will be used for building the path. The Open source software tool Dev C++ Integrated 

Development Environment is studied and worked upon for the entire development. The 

solution best suited for outdoor environments, especially with dynamically changing 

factors and unexpected landmarks is worked upon. The vehicle under consideration 

traverses in the outdoors and is prone to obstacles such as tree locations. The initial map 

and position built will be used for routing the robot through the open field autonomously. 

Various factors, such as optimum path planning, self localization of the vehicle in the 

field map within some predetermined time frame and number and size of the obstacles 

determine the time frame in which the robotic vehicle shall complete its navigation. In 

order to cover all possible extreme localization failures, the functionality will be tested by 

introducing random obstacle cases. 



 9
 

1.2 Current Work 
 

This section addresses the current work that has been done in the field of mapping. 

The current work in path planning will be discussed in chapter two. The main purpose of 

robotic mapping is to make the robot’s mobility independent of devices such as a GPS in 

areas especially like underwater and airborne environments. Sensors, lasers, and LIDARs 

are used for data collection and for map integration.  

The paper “Simultaneous Localization and Mapping [Part I and Part II]” [1, 2] 

describes details of SLAM along with a few solution algorithms. Also, it focuses on the 

recursive Bayesian formula of the SLAM problem, in which the probability distributions 

or estimates of the absolute or relative locations of landmarks and vehicle pose are 

obtained.  

The paper “Probabilistic Mapping of an Environment by a Mobile Robot” [3] 

analyzes basics of mapping techniques for mobile robots in an indoor environment using 

a probabilistic model, maximum likelihood estimation, and a two step algorithm based on 

positioning and mapping respectively.  

The paper “Robotic Mapping: A Survey” [4] provides a comprehensive introduction 

to the field of robotic mapping with a focus on the indoor mapping. It describes and 

compares various probabilistic techniques as they are presently being applied to a vast 

array of mobile robot mapping problems.   

The paper “Fast SLAM: a Factored Solution to the Simultaneous Localization and 

Mapping Problem with Unknown Data Association” [7] describes the Fast SLAM 
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technique which samples the potential robotic paths instead of maintaining a 

parameterized distribution of solutions like the EKF. 

A Considerable amount of research work has been done in the area of indoor 

robotic mapping. This data and research proves crucial for exploring the outdoor tasks. 

Algorithms using probabilistic distribution [3], Bayesian approach [11], Gaussian 

elimination [4], state space matrices [2], and recursive Monte Carlo [10] sampling have 

been implemented.  Most of these algorithms simply distinguish between the scanned and 

unscanned areas. Stachniss and Burgard investigated occupancy grids [6] computing 

entropy of each cell in the grid to determine the utility of scanning from certain location. 

To distinguish color with each new input of data, new histograms are updated to fit 

changing conditions. 

Almost all of the algorithms explored implement a probabilistic model of mapping. 

Uncertainty and noise factors are the main reasons for this. Also these algorithms model 

the “uncertainty factor” in autonomous robots using probability theory. An alternative to 

represent the environment of a robot are coverage maps [6]. The coverage maps store in 

each cell a posterior about the coverage of that cell. 

The basic principle underlying virtually every single successful mapping algorithm is the 

Bayes Rule:  

 p (x|d) = � p (d|x) p(x)    [4] 

As the size of the map increases, the system tends to go slower. The map built can 

be guaranteed to converge but is subjected to local maxima. Currently some of the map 

building methods are: 
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• Line superposition method [32]: Builds a segment oriented geometric map of 

environment. Speeds up the processing. 

• RRT for occupancy grid [32]: Suitable for fusion of different sensors. Most 

common low level sensor based models of environment. 

• Occupancy grid based mapping [32]: Sensor data, gathered from multiple points 

of view, and is combined by Bayesian approach to allow the incremental updating 

of occupancy grid. Works for indoor environments and is robust to noise. 

• Feature extraction based on neural networks [32]: Based on “Growing Neural Gas 

Algorithm”. Here number of neurons (units) and the topology of the network are 

changed during self organization process. 

• Creating map from simple sharp sensors [32]: Sharp sensors are used for local 

navigation. 

• 3D environment mapping [32]: Laser rangefinders are used. Horizontal 

rangefinder is used for 2D mapping and localization and vertical one for 3D 

environment information. 

The path planning process could be run time or predetermined. The predetermined 

method builds the path before the next action is decided for the robot. In the run time 

method the path is built simultaneously along with the performance of any of the actions 

decided. For the outdoor environments the run time method proves to be more precise 

considering the impromptu conditions. 

Even some minimal amount of noise in path planning can cause a considerably 

chaotic situation. The probabilistic approaches in mapping takes care for such noises and 

their counter effect on the robot.  
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1.3 Organization of Thesis  
 

The thesis is organized into eight major chapters. Chapter 2 explains the concept of 

path planning and the requirement for this research. Chapter 3 describes the basic 

algorithm. Chapter 4 explains the reason behind every step of the algorithm and the 

assumptions upon which it is based. Chapter 5 includes the simulation details, tools used 

and the correlation between the algorithm and the animation. Chapter 6 tells about study 

heuristics, where the results and test cases are analyzed. Chapter 7 includes conclusion 

and future work. 

 
 
 
 
 
 
 
 
 
 
 
 
 



2 Chapter 2: Path Planning Overview 
 
 

Research in mobile robotics can be traced back to late 1940s, although most of the 

effort related to path planning is more recent and has been conducted during the 1980s. 

Thanks to such fields, such as artificial intelligence, mathematics, computer science and 

mechanical engineering that theoretical and practical understanding of some issues has 

received a major boost [13]. Planning refers to a preconceived scheme or method of 

acting or proceeding. In other words, we can say that it defines an operative intelligence. 

In this algorithm, path planning is done with respect to a mobile robot or an autonomous 

all terrain vehicles (ATV), in order to design or scheme its routing. This chapter 

elaborates the various aspects of path planning in robotics worked upon until now and the 

reason why this research was evolved. 

As the field of mobile robotics diversifies, so does the scope of path planning. 

Most of the mobile robots are customized for specific operation. Industrial robots are 

generally customized as per the specific industry and the industrial functionality. Robots 

used in medical field are customized for the specific surgery or any similar medical 

operation. Rovers to be used for exploration on other planets are customized for data 

collection related jobs. Hence all such customizable robots can be classified to have two 

parts of development. One part deals with the overall development of the robot, while the 

other deals with structuring the development as per the required customization. 
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A robot is any machine that resembles a human and does mechanical routine tasks 

automatically upon a command. Since it is a machine, whether an ATV or a still 

positioned robot, its functionality depends completely upon the set of instructions given 

to it. These set of instructions defined for any particular robot, mobile or immobile, 

defines its intelligence. In other words, since the robot is a machine, we can customize it 

for any specific functionality that we want it to work for. Currently various customizable 

robots are present in a successfully working stage [14]. Some such robots are: Pioneer(the 

Chornobyl reconnaissance robot), Helpmate(an assistant for the elderly and infirm ), The 

Brain Surgeon(a robot to help in surgery ), HazBot(a mobile robot for hazardous 

materials ), Dante(the Volcano Explorer), Urbie(the Urban Robot ), Underwater 

Explorer(explores a sunken fishing fleet), Serpentine Visual Inspection Robot(a small, 

light weight visual inspector), Antarctica 2000 Big Signal(the Nomad Rover hunts for 

meteorites in Antarctica), Stardust(a mission to collect and return comet dust to Earth ), 

Galileo(a journey to Jupiter) and many more planetary rovers.  Mobile robot is another 

such category with a lot of consideration these days. In this category the robot is suppose 

to move from one place to another for some specific purpose. This purpose could be 

mowing a lawn or shifting objects from one room to other in a home or simply exploring 

an open field. Depending upon the purpose, its navigation details are decided or 

customized. Development of the navigation details creates the need of a path planning 

algorithm for such mobile robots or ATVs. This algorithm decides the logic or scheme 

for navigation.  
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Present Path Planning Methods 

Until now various algorithms have been implemented for the present 

customizable robots. This section describes a few important algorithms or techniques 

currently used for path planning. 

2.1 Quad tree Multiresolution  
 

This technique is based on the A* search method [16]. A quad tree block is 

created with zeros representing free space and ones representing obstacles. A minimum 

cost path is found from the source to the goal. This cost depends on the actual distance 

travelled and also upon the clearance of the path from the obstacles. This is followed by 

finding a neighbor using the node expansion process. If any of the horizontal or vertical 

nodes is a grey node (non obstacle node), a leaf adjacent to this node being expanded is 

found. As a result, a list of nodes from the quad tree forms a set of paths from source to 

goal nodes. With this method the number of nodes searched is lower compared to that in 

the grid search method. 

2.2 Evolutionary Algorithm  
 

This algorithm uses an evolutionary navigator to unify the offline [global path] 

and online [collision avoidance] computation [17]. Nodes are classified as feasible or 

infeasible depending upon their proximity to any obstacle. An offline algorithm creates a 

global path from source to goal. Online algorithm creates a sub route in case of facing an 

obstacle. A chromosome is formed of an ordered list of path nodes. Each node of each 

chromosome has a feasibility and path cost associated with it. The path cost is the 
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Euclidian distance from the next node. The chromosomes are further used for crossover 

(of nodes), mutation (fine tuning co ordinates of nodes), insertion, deletion or swap. 

2.3 Use of Laplace’s Equation  
 

This method uses Laplace’s equation to constrain the generation of a potential 

function over regions of configuration space of an effector [18]. Use of Laplace equation 

helps to achieve computation on large parallel architectures. A harmonic function on a 

domain satisfies the min-max principle, hence creating local minima in regions 

impossible to traverse, if Laplace equation is imposed. If a function satisfies the 

Laplace’s equation in some region, then any critical point of the function in the interior of 

that region must be a saddle point, since local extrema of the function are not possible. 

Every harmonic function satisfies four properties: Analyticity, Polar, and Admissibility 

and that every critical point must be an isolated saddle point. The neighborhood of a 

given obstacle has a potential of not only this obstacle but also of all other obstacles. 

Using superposition the gradient for each maze is calculated. Numerical solutions to 

Laplace’s equation obtained from finite difference methods are well suited for tasks of 

finding solutions with arbitrary boundary conditions. This technique provides a fast 

method of creating paths in a robot configuration space. 

2.4 Hierarchical Strategy  
 

This technique focuses on finding a three dimensional solution (time being the 

third dimension) to avoid a collision with moving obstacles [19]. It is assumed that the 

obstacle cannot accelerate beyond a certain limit. A quad tree hierarchical representation 

is used for the three dimensional configuration. The 3D space and time is further 
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subdivided into eight subspaces of equal sizes called cells. These cells are termed as 

vertex, edge, empty and full cells. Initially, the entire universe is treated as a single cell 

which is represented by an octree containing one node. Depending on violation of the 

four basic conditions the cell gets further subdivided. A control point (C-point) is used to 

create the final skeleton of the path. C point comprises of L(x and y) and T (time) points. 

The L point is assigned as per the nine possible locations around a square. Depending 

upon the appropriate velocity, the T point is assigned in the search stage. Greater the 

number of L points in a plane, more is the degree of control attained. The main search 

procedure uses a priority queue, where the T point component of a C point serves as that 

point’s priority. Once an acceleration value is set it has to be maintained until next L 

point.  This method may not work in a search space. 

2.5 Numerical Potential Field Techniques 
 
In this method an entire graph is searched to create the path [20]. This technique 

is based on the use of multi scale pyramids of bitmap arrays for representing both the 

robot’s workspace and the used configuration space. This method avoids any pre 

computation otherwise required for creating a global path. This technique provides a 

solution with three degrees of freedom and two orders of magnitude faster than most of 

the previous methods. This approach incrementally builds a graph connecting the local 

minima of a potential function defined over the configuration space, and concurrently 

searching this graph until a goal configuration is attained. Using the bitmap configuration 

a workspace pyramid is built. Numerical potential fields are built in two steps: W-

potentials (computed for a selected point in a robot) and W potentials at various control 

points that forms a C potential. Four path planning techniques are put forth in this 
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research. The first one performs a best first search using C potential as cost function and 

hence is complete in resolution. The second one is based on the Monte Carlo method 

generating random motions until the local minima are obtained. The third method 

searches for ‘valleys’ in a C potential. This method is slower in speed and also with less 

degree of freedom compared to earlier two techniques. The fourth is a constrained motion 

technique based on ideals of earlier three. It uses the C potential (global minimal) and 

also the notion of a ‘valley’ while escaping encountered local minima. Experiments show 

that amongst all the four the random motion method has the best qualities and is highly 

parallelizable.  

2.6 Use of Intersecting Convex Shapes 
 

This technique is based on the Quine-McCluskey method of finding prime 

implicants in a logical expression [21]. It is used to isolate all of the largest, rectangular, 

and free convex areas in a specified environment. Convexity is identified with all the 

largest rectangular free areas. A graph is created with a node corresponding to each of 

such convex area. This method defines a convex area, as the one that is free of obstacles 

and has the property that any two points in that area can be joined by a straight line that 

lies entirely within that area. Each such rectangle is represented by a pair of binary strings 

each at most 2n + 1 bit long. This algorithm is similar to the Quine-McCluskey technique 

[l0]-[12] used to identify the prime implicants of a logical expression. Prime convex areas 

in which the source and destination points are located may be determined, and the graph 

may be traversed from the source node to the destination node using one of the varieties 

of techniques available. Since one node look ahead is used, path cost assignments cannot 

begin until the graph node path progresses at least to the third node. An exhaustive graph 
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search for optimal path is performed using a backtracking procedure. With this technique 

aligned objects are added randomly. This, results into a graph with the number of nodes 

bounded by the limit based on number of objects with distinct edges. This method 

requires relatively small amount of database to be maintained.  

2.7 Symbolic and Geometric Connectivity Graph 
 

Two methods based on the A* search algorithm – symbolic and geometric are 

presented [22]. The symbolic system uses inference rules to analyze and classify spatial 

relationships within the connectivity graph. The geometric method builds an exact path 

using connectivity information. The output of symbolic method is a symbolic description 

of the planned route while the geometric method builds a simple list of coordinate 

positions. The connectivity graph has adjacency relationships with different regions of 

free space. Based on number of incident arcs nodes are classified in four different 

categories. The symbolic or heuristic method represents a different order of traversal 

amongst the obstacles, that is, the order and side on which the obstacles are traversed is 

different for each alternative. A tandem process is created between A* search and the 

inference engine. The geometric system employs a RLC database and a free-space graph. 

In the geometric approach, a funnel (sequence of vertices) is meant to grow from tile to 

tile. For a given tile sequence, the ultimate result from such processing is the shortest 

path within that sequence. Symbolic system is used to exploit resolution hierarchy. 

Compared to the geometric method the symbolic system is shown to give better speed 

performance. 
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2.8 Need of a new Technique 
 

The techniques and algorithms stated above are only a few amongst the many 

others dedicated for path planning. However the research papers do not elaborate the 

implementation details for these techniques. The research currently undergoing (behind 

this algorithm) involves navigation of an ATV in an open field in a predetermined 

manner. Hence, along with obstacle avoidance, this algorithm has to also take care of 

following a specific route throughout its navigation. A certain amount of customization 

was hence required in this algorithm. This customization decided the particular manner in 

which the vehicle routing will occur. The logic for obstacle avoidance has also been 

created altogether new so as to match the customization. The requirements for this 

algorithm can be stated as: 

a) A path planning strategy for an autonomous ATV to be used in an open field 

b) The navigation of the ATV has to be so as to cover the entire area of the field 

c) Obstacles if any (known or newly-discovered) should be avoided in a manner so 

as to avoid them and then continue on the predetermined navigation route 

The reference papers do not describe the intricate details for the implementation 

of their algorithms into software. The details of logic development behind the algorithm 

were not found to be described in these papers. The reasoning for questions such as why 

any particular step is performed is the most important in such path planning techniques. 

Also, what is important is, understanding how a particular logic has been translated into 

the actual software.  

This algorithm and research takes care of all such details. All the requirements 

stated in the above paragraph led to the development of this research. This research also 
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describes in detail each and every step behind the logic of the algorithm. Development of 

simulation to get a visual effect of the algorithm is also a part of this research. As stated 

above this algorithm is developed and customized so as to be implemented on an 

autonomous ATV set to navigate in an open field.  

This algorithm, developed in two dimensions, is flexible enough to be carried 

forward and molded as per varied field or ATV or obstacle dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 Chapter 3: Algorithm 
 

The algorithm presented in this chapter basically explains the logic used for 

path planning from source to destination.  

Basic things that this algorithm takes care of are: 

a) Build a virtual map of the field 

b) Plan a path from source to destination considering known obstacles 

c) Plan the path so as to cover the entire field area 

d) Detect and avoid newly-discovered obstacles, in order to maintain the decided 

path 

 

A LIDAR is used on the autonomous vehicle for obstacle detection. The LIDAR 

will give information, such as how far and at what degree the obstacle is located. This 

information will be used by the path planning algorithm to modify its path so as to avoid 

the obstacle and re route the vehicle’s path. For this software, the information related to 

LIDAR will be taken as input from a file. 
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Figure 3-1 : Field Attributes 
 

3.1 Terminology Used 
 

1) Field: Any open space to be explored (forest or farm) 

2) Field width: Distance of the field in X direction 

3) Field length: Distance of the field in Y direction 

4) Source: Start point for the vehicle’s trajectory 

5) Destination: end point for the vehicle’s trajectory 

6) Vehicle: Autonomous All Terrain Vehicles (ATV). Any vehicle equipped 

with LIDAR and other hardware required for computation of the mapping 

7) Vehicle width: Maximum distance of the vehicle in direction perpendicular to  

       LIDAR 

8) LIDAR range: Maximum distance up to which the LIDAR can scan ahead of 

it as shown in Figure 3-2 

9) Scan Area: 180 degree area in front of the LIDAR 
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Figure 3-2 : LIDAR Attributes 
   

10) Scan Point: Point on the field where the vehicle will scan the 180 degree area  

 in front of it 

11) Number of X scan points: Number of scan points along the width of the field  

 (along the X direction) = Roundup (Field Width/Vehicle Width) +1 

12) Number of Y scan points: Number of scan points along the length of the field  

 (along the Y direction) = Roundup (Field Length / [Lidar Range/2] +1) 

13) X Scan range: Distance between any two scan points along the X direction 

      = Field Width / (Number of XScanPoints-1) 

14) Y Scan range: Distance between any two scan points along the Y direction 

      = FieldLength / (Number of YScanPoints) 

15) Total Number of Scan Points  = Number of X scan points * Number of Y scan  

 points 

16) Goal Point: Scan point with index number consecutively next to the current  

 scan point. In the above example shown in Figure 3-1, scan point 2 is the goal 

point of 1 and 21 is the goal point of 20 

17) Reach Points: All the scan points from where there is direct access (with a  
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 single hop) to the current scan point are called the reach points of the current  

 scan point. These are the scan points with a distance of plus or minus X scan  

 range and Y scan range from the current scan point. Every scan point will  

 have maximum of four points from where it can be reached.  In Figure 3-1  

 10, 22, 14 and 16 are the reach points of 15. 

18) Imaginary Square: A virtual square built around each known and newly-

discovered obstacle. This square decides a boundary around the obstacle 

which the ATV cannot cross. The margin kept on each side of the obstacle, to 

create the boundaries of this virtual square, is so as to keep the ATV at a safe 

enough distance away from the obstacle. This ensures that the vehicle does 

not collide with the obstacle. Also at the same time the margin is optimum 

enough for the ATV to go just around the obstacle. 

19) Local path: The sub route other than the main regular path to be followed 

during navigation. It is created to go around any obstacle. 

20) Start point of imaginary square route: Point from where a new local path 

around an obstacle starts.  

21) End point of imaginary square route: Point where the local path around an 

obstacle finishes. 
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3.2 Algorithm 
 
1) The field dimensions, vehicle dimensions, LIDAR range and information about 

any present known obstacles are given. 

2) Initially, a virtual map is built using the given data. This map will define the 

boundary of the field area to be covered and the trajectory of the vehicle 

required for the navigation considering the known obstacles. 

3) The navigation field for this algorithm is considered in two dimensions – X and 

Y. The X coordinates increment from left to right and the Y coordinates 

increment from top to bottom. 

4) A definite pattern is pre decided for the trajectory (as indicated by the black 

arrows in Figure 3-3). This pattern is so as to cover the entire field area. In this 

pattern the vehicle starts its navigation from the top left corner of the field. It 

maneuvers in straight lines along the length of the field and takes a turn towards 

right, only when it reaches the top or bottom field limits.  
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�

Figure 3-3 Pattern of Navigation in the field 
 
5) Initially, the location (in terms of X, Y coordinates) of the scan points, goal 

points, and reach points is calculated. Scan points on the boundary will have 

three reach points while scan points at the corners will have two reach points. 

6) The numbering of the scan points is done as per the particular pattern of 

trajectory required in this algorithm. 

7) The vehicle turns or rotations are taken care of by the mechanical section. 

8) The navigation starts from source and the ATV moves consecutively from the 

current scan point to its goal point. 

9) In case of no known or newly-discovered obstacles the vehicle continues 

moving along the specific pattern of trajectory till the last scan point 

(destination) is reached. 

10) For known obstacles, the following information is taken as input: 

• Number of obstacles 

• For each known obstacle: 
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Ø  Y coordinate of end point of the obstacle in north most direction 

Ø  Y coordinate of end point of the obstacle in south most direction 

Ø  X coordinate of end point of the obstacle in east most direction 

Ø  X coordinate of end point of the obstacle in west most direction 

11) Add a distance equal to half the vehicle width to all the above points, and 

calculate the northwest, northeast, southwest and southeast points.  

Draw an imaginary square that include these points as the corner points. See 

Figure 3-5 for reference. 

12) Consider a known obstacle for the given field as shown in Figure 3-4 

 
Figure 3-4 Field with Known Obstacles 
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Figure 3-5 Imaginary Square around the known obstacles 

 
 
 

 
Figure 3-6 Imaginary squares around know obstacles with local path defined 

 
13) When the vehicle reaches scan point 14, it finds the consecutively next scan 

point (in this case 15) to be marked as unreachable. Accordingly it understands 

about the imaginary square ahead and so cannot maneuver in the regular manner 

as shown in Figure 3-3. 
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14) Since the immediate next scan point after 14 is found to be not reachable, a 

search is made for the consecutively next scan points to be set as the new goal 

point. In this case since 15 and 16 both are unreachable 17 is marked as the new 

goal point for scan point 14. 

15) A local path is now devised for the ATV to go from 14 to 17. This local path 

around the obstacle can go from the left or the right hand side. The decision to 

go from left or right is based upon the shortest path criteria. The local path that 

includes least number of intermediate points to go from the source to its goal is 

considered to be the most optimum path.  

16) In case both the paths have the same number of intermediate points the left hand 

path is given preference. Since scan points on the left hand of the current scan 

point are going to be the earlier visited ones, there is probability of having no 

obstacles in the left local path. 

 

3.2.1 Logic for Local Path Creation 
 
1) As per this algorithm, three thumb rules are checked for in case of local path 

navigation: 

2) Choose the optimum path (left or right) based on number of intermediate scan 

points to be traversed 

3) Are there any common reach points between the goal point and current scan 

point? If yes, path is created through this common reach point. If no -  
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4) To begin a local path around an obstacle, intermediate goal points are created. 

Again reach point search based upon direction sequence set for that position 

and the last visited option is used to traverse the vehicle to it actual goal. 

5) A local path is a path that goes around the obstacle in order to avoid it and then 

resume the main path. In case of the main path, the ATV maneuvers using the 

consecutively numbered scan points along the trajectory. Similarly when in a 

local path, some set of scan point numbers are required to be arranged for the 

ATV to follow. 

6) Hence, as soon as it is understood that the actual goal is not reachable and a 

local path is required to go to the next possible goal a stack is built up. This 

stack stores the set of scan point numbers along which the ATV will have to 

maneuver in order to move around the obstacle. 

7) The main task of the algorithm, when a local path is about to start, is to reach 

the new goal point possibly using the most optimum path. 

8) As stated in the fourth point in Section 3.2 the predefined path of navigation for 

this algorithm is so as to move along the field from left to right. So at any 

location on the field the scan points to its left are the ones which have been 

passed upon earlier. 

9) Also other than  the boundary position when inside the field the ATV always 

maneuvers in vertical columns alternately going up and down (Figure 3-3) 

10) As will be seen in detail in Chapter 4, considering the maximum distance 

between any two scan points in X direction and the margin used to draw the 

imaginary square around an obstacle, at least one scan point will go inside the 
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imaginary square. Hence a situation would never arise such that the source scan 

point and its goal are horizontally on the same level (having the same Y 

positions and differing only in X positions). 

11)  As per this algorithm irrespective of the position of the obstacle in the field, the 

source scan point and the alternate goal scan point will always differ in their Y 

positions (irrespective of their X positions). 

12) Reach points of every scan point are the most important in developing the local 

path. Using a chain of reach points a stack is created in backtrack manner from 

the goal to the source scan point for the local path. 

13) Consider for example Figure 3-6. The local path from 14 to 17 consists of scan 

points 14, 11, 10, 9, 8 and 17. As can be seen from the Figure 3-3, starting from 

the source, every next point is a reach point of its preceding scan point. 

14) All the intermediate scan points in this local path are termed as alternate goals. 

In the above example 11, 10, 9 and 8 are the alternate goals formed in the local 

path from 14 to 17.  

15) Since the algorithm focuses on having an optimum local path, the local path will 

go from source to goal from either the left hand or right hand side depending 

upon which is the shortest path. 

16) This algorithm has the logic for obstacle avoidance based on Backtracking, 

Quadratic Positioning and Direction Sequence cases.   

17) Backtracking: To create a local path its intermediate points are decided from the 

goal scan point towards the source scan point. For local path creation, since the 

aim is to reach the goal point, a reach point that gives direct access to the goal 



 33
point is initially searched. A reach point that is in accordance with the direction 

sequence from the goal is selected. This assures that the reach point meets the 

algorithm’s criteria for a local path. This reach point is then termed as alternate 

goal. The same procedure continues till the source becomes a reach point of an 

alternate goal along the local path. 

18) A stack consisting of all such related reach points is made from the goal t the 

source. The number of elements of this stack hence represents the number of 

intermediate scan points to go from the source to goal. 

19) Two separate stacks of intermediate points are created considering the local path 

from left and right respectively. The stack counter of these two stacks is 

compared to decide which stack (left or right local path) has lesser number of 

intermediate points. The one with a least number of stack counters is marked as 

the optimum local path to be followed in order to go around the obstacle. 

20) Quadratic Positioning and Direction Sequence: As seen in point ‘viii’, two base 

cases are set:  

Source Y < Goal Y and Source Y > Goal Y 

In Figure 3-6, for the local path from scan point 14 to 17 Source Y < Goal Y, 

and from 20 to 23 the Source Y > Goal Y.  To create a chain of reach points 

from the goal to source, alternate goals are created starting from the main goal 

point. The quadratic case selection for deciding each of these intermediate scan 

points (reach points) in a local path is based on the position of the alternate goal 

with respect to the source scan point. Also for each case based on the 

positioning, preferences are set to choose the reach point on left, right, bottom 
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or top. Eight quadratic cases and specific sequence of four preferences is set for 

selecting each alternate goal. 

21) Two such tables are created considering local path from left and from right 

22) Quadratic Cases and sequence to be considered for reach point selection for left 

local path: 

T = Top, L = Left, B = Bottom, R = Right 

Table 1 : Case table for left local path 
 

Main case 1 Ysource < Ytarget   
Case No Condition Sequence 

1.1 (SourceY < AltGoalY) && (SourceX == AltGoalX) TLBR 

1.2 (SourceY < AltGoalY) && (SourceX > AltGoalX) TLBR 

1.3 (SourceY < AltGoalY) && (SourceX < AltGoalX) LBRT 

1.4 (SourceY == AltGoalY) && (SourceX > AltGoalX) RTLB 

1.5 (SourceY == AltGoalY) && (SourceX < AltGoalX) LTBR 

1.6 (SourceY > AltGoalY) && (SourceX == AltGoalX) BLRT 

1.7 (SourceY > AltGoalY) && (SourceX > AltGoalX) TRLB 

1.8 (SourceY > AltGoalY) && (SourceX < AltGoalX) BRLT 

Main case 2 Ysource > Ytarget   

2.1 (SourceY < AltGoalY) && (SourceX == AltGoalX) TLRB 

2.2 (SourceY < AltGoalY) && (SourceX > AltGoalX) RBLT 

2.3 (SourceY < AltGoalY) && (SourceX < AltGoalX) TLRB 

2.4 (SourceY == AltGoalY) && (SourceX > AltGoalX) RBTL 

2.5 (SourceY == AltGoalY) && (SourceX < AltGoalX) LTBR 

2.6 (SourceY > AltGoalY) && (SourceX == AltGoalX) LTRB 

2.7 (SourceY > AltGoalY) && (SourceX < AltGoalX) LTRB 

2.8 (SourceY > AltGoalY) && (SourceX > AltGoalX) BLTR 

 
 
23) Quadratic Cases and sequence to be considered for reach point selection for 

right local path: 
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Table 2 : Case table for right local path 

 
Main case 1 Ysource < Ytarget   

Case No Condition Sequence 

1.1 (SourceY < AltGoalY) && (SourceX == AltGoalX) TRBL 

1.2 (SourceY < AltGoalY) && (SourceX > AltGoalX) TLBR 

1.3 (SourceY < AltGoalY) && (SourceX < AltGoalX) TRBL 

1.4 (SourceY == AltGoalY) && (SourceX > AltGoalX) RTLB 

1.5 (SourceY == AltGoalY) && (SourceX < AltGoalX) LTRB 

1.6 (SourceY > AltGoalY) && (SourceX == AltGoalX) BLRT 

1.7 (SourceY > AltGoalY) && (SourceX > AltGoalX) TRLB 

1.8 (SourceY > AltGoalY) && (SourceX < AltGoalX) BLTR 

Main case 2 Ysource > Ytarget   

2.1 (SourceY < AltGoalY) && (SourceX == AltGoalX) TLRB 

2.2 (SourceY < AltGoalY) && (SourceX > AltGoalX) RBLT 

2.3 (SourceY < AltGoalY) && (SourceX < AltGoalX) TLBR 

2.4 (SourceY == AltGoalY) && (SourceX > AltGoalX) RBTL 

2.5 (SourceY == AltGoalY) && (SourceX < AltGoalX) LBRT 

2.6 (SourceY > AltGoalY) && (SourceX == AltGoalX) RTLB 

2.7 (SourceY > AltGoalY) && (SourceX < AltGoalX) BRTL 

2.8 (SourceY > AltGoalY) && (SourceX > AltGoalX) BLTR 

 

24) These cases and reach point preference sequence have been set based upon the 

following criteria : 

• Navigation from source to goal from the left hand or right side and 

• Depending upon the position of the alternate goal check that the reach 

point which directs the backtracking path towards the source 

25) As per this algorithm, to select the best reach point (alternate goal) in a local 

path initially the case number is matched depending upon the positioning of 
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source and alternate goal. As per the case, the best reach point is then selected 

(depending upon reach ability) based on the preference given in the sequence. 

26) A flag is also set to keep track of the last direction used, so that the reach point 

in opposite direction is not set and thus preventing the local path from going 

into a loop. 

27) For example, if the alternate goal satisfies the 2.8 case (left local path), its 

Bottom reach point is first checked for reach ability. If so it is returned and 

marked as the next alternate goal. If not reachable the Left reach point is 

checked and so on. 

28) A sequence of such reach points from the goal to source scan points creates the 

stack. Based on the least stack counter decision an optimum local path (left or 

right) is decided. Once the local path is ready the ATV uses this path for 

navigation from source to goal for every obstacle. Upon reaching the goal 

navigation along the regular path continues till the final destination. 

3.2.2 Avoidance of Newly-Discovered Obstacle  
 

The newly-discovered obstacle avoidance logic is same as that for the known 

obstacles. Only difference is that it is used to create to local path for newly-

discovered obstacles run time when the newly-discovered obstacles are detected 

during navigation. If the goal point of the current scan point is not reachable due to 

presence of a newly-discovered obstacle, the goal point is checked for reach ability 

from any of its other reach points. The data given by the LIDAR scan range as input 

is considered while taking decisions to reach the goal point from any of its reach 

point. 
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3.3 Example 
 
 
1) Consider the example shown in Figure 3-7 and the local path from scan point 

14(source) to scan point 17(goal). 

 
Figure 3-7 : Obstacle and imaginary square 

 
2) Initially, the source Y (Y coordinate of 14) is less than goal Y(Y coordinate of 

17). So main case 1(local left path) is considered for deciding the local path. 

3) Initially 17 acts as the alternate goal. So we have case 1.1 ((SourceY < 

AltGoalY) and (SourceX == AltGoalX)). As per the sequence preference is first 

given to the ‘top’ reach point of 17. In this case it happens to be scan point 16. 

Since 16 is not reachable (inside the imaginary square) next preference of the 

‘left’ reach point is checked. Reach point number 8 of alternate goal 17 on its 

left is reachable and so is set the new alternate goal. This is shown in Figure 3-

8. 
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Figure 3-8 : Case 1.1 to decide next scan point to be 8 

 
4) With 8 as the alternate goal and 14 as the source case number 1.2 is considered. 

As per the sequence preference the ‘Top’ reach point number 9 of alternate goal 

8 is reachable and set as new alternate goal. This is shown in Figure 3-9. 

 

 
Figure 3-9 : Case 1.2 to decide next scan point to be 9 

 
5) The same case continues for alternate goal points 9 and 10. For both these cases 

since first reach point preference on ‘Top’ is available 10 becomes the alternate 
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goal of 9, and similarly 11 becomes the alternate goal of 10. This is shown in 

Figure 3-10. 

�

Figure 3-10 : Case 1.2 to decide next scan points to be 10 and 11 
 
6) When 11 is the alternate goal point the case now changes to 1.4. As per the 

sequence preference the ‘Right’ reach point number 14 of alternate goal 11 is 

reachable. Also here 14 is the source point. 
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7) So the reach point chain of sequence (left stack) started from the goal has 

reached the source and the local path from 14 to 17 from left hand side is 

created.  

8) The same procedure is repeated considering the cases from the table for right 

hand side local path. This local path creates a stack consisting of scan point 14, 

23, 26, 27, 28, 29, 20 and 17. It has a stack counter of 8 compared to the stack 

counter of the left stack which was 6. The decision to go from left is finalized, 

and the scan points in the left stack are used for the actual local path navigation. 

This is shown in Figure 3-11. 

�

Figure 3-11 : Local path created around obstacle using different cases 
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3.4 Computational Analysis of the algorithm 
 

3.4.1 Computational Complexity of Obstacle avoidance 
 

1) The obstacle avoidance routine in this algorithm can be categorized to be a 

modified version of the breadth first search (BFS) technique.  

2) The BFS is a graph search algorithm and explores all the neighboring nodes. Then 

for each of those nearest nodes, it explores their unexplored neighbor nodes, and 

so on, until it finds the goal. Consider for example the following tree structure 

shown in figure 3-12 used to represent a search from source to goal point: 

 

Figure 3-12 : Computational technique used for obstacle avoidance 
 

3) In this example, the search begins from the root at depth level 1. If the goal is not 

found, the search proceeds to the second level. Here, all the nodes throughout the 

breadth of the level are searched for from left to right. So P1, P2 and P3 are 

searched to match with the goal. If not, the search proceeds to the third depth 

level. Again here all the nodes throughout the breadth of this level (P1C1, P1C2, 

P1C3 ….. P3C3) are searched.  

4) Accordingly, the search complexity of the BFS algorithm is O(b^d) where b is the 

branching factor (number of children for each node) of the tree(3 in the above 

example) and d is the depth required to search the goal.  
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5) The modification done to the BFS in this algorithm is so that at every depth level, 

the best possible node is selected based on the logic (case tables) developed, and 

only that node is explored further.  

6) So, considering above example, P1, P2 and P3 are searched to match the goal. If 

none of them is the goal, the best possible node, which will lead to the goal, is 

considered. For example, if P2 is the best node the child nodes of only P2 are 

further explored in depth level 3. Likewise, if the goal is found at depth level d the 

maximum number of nodes that are required to be explored are b*d.  

7) In this algorithm the modified BFS is called twice, once for the left and then for 

the right hand local path. Consider the depth level of search for left local path is lD 

and the depth level of search for right local path is rD. In this case complexity 

would be (b* lD) + (b* rD) = b * (lD + rD). 

8) In the above example, shown in figure 3-12, the branching factor is 3. For the tree 

structure of this algorithm for obstacle avoidance, any parent node is going to be 

the base scan point and its child nodes will represent its reach points. 

Accordingly, for this algorithm, the branching factor is four (maximum number of 

reach points for any scan point).So, the worst case depth for this algorithm would 

be the total number of scan points (n). In the worst case scenario, all scan points 

(n) can have depth of d. 

9) If only BFS (without any modifications) had been considered for the obstacle 

avoidance routine in this algorithm, the complexity would have been O((4n)^n).  

10)  For BFS (with the modifications done in this algorithm), the complexity is 

O(4(n+n)*n) = O(8n^ 2). 
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3.4.2 Computational Complexity of Navigation 
 
Overall, there are 10 for loops in the software (considering no obstacles) used to create 

the trajectory and navigate the vehicle along this trajectory from the source to its 

destination. Each for loop has a length of n. So, considering a field without any obstacle, 

the algorithm carries out only the navigation routine with a complexity of O(10n).  

3.4.3 Computational Complexity of algorithm  
 
            = complexity of navigation + complexity of obstacle avoidance 

            = O(10n) + O(8n^ 2) = O(10n+8n^ 2) 

3.4.4 Example to describe the modified BFS in this algorithm 
 
Consider the following example in figure 3-13 to create a left local path from scan point 

14 to 17. The following computation is done to develop the stack from left hand side of 

the obstacle. As described in the algorithm, the stack for the local path is crated from the 

goal point to the source point. So in this case, the stack creation will start from point 17 

and aim to reach till 14. 
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Figure 3-13 : Example for computational technique 
 

 

 

Left reach point - 8 is selected as the best node for depth level 2 as per Case 1.1 

So, as shown in figure 3-14, the child nodes of only node 8 are explored for depth level 3. 

 

Figure 3-14 : Modified BFS at depth level 2 
 

 

 

Top reach point - 9 is selected as the best node for depth level 3 as per Case 1.2 
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So, as shown in figure 3-15, the child nodes of only node 9 are explored for depth level 4. 

 

Figure 3-15 : Modified BFS at depth level 3 
 

 

 

Top reach point - 10 is selected as the best node for depth level 4 as per Case 1.2 

So, as shown in figure 3-16, the child nodes of only node 10 are explored for depth level 

5. 

 

Figure 3-16 : Modified BFS at depth level 4 
 

 

 

 

 



 46
Top reach point - 11 is selected as the best node for depth level 5 as per Case 1.2 

So, as shown in figure 3-17, the child nodes of only node 11 are explored for depth level 

6. 

 

Figure 3-17 : Modified BFS at depth level 5 
 

Top reach point - 14(source) is selected as the best node for depth level 6 as per Case 

1.4

 

Figure 3-18 : Modified BFS at depth level 6 
 

Note: Nodes in pink color are discarded due to unreachability. Nodes in green color are 

the ones as best selected as per the case table. 
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3.5 Data Structure 
 

Structure to store X and Y co-ordinates of any scan point: 

struct  Coordinates { 
                  int X; 
                  int Y 
      }; 
 
Coordinates Curr, Next, Prev; 

Structure to store the known obstacle data: 

struct Obst 
{ 
     Coordinates North, South, East, West; 
} 

 

Structure to represent various attributes of a scan point: 

struct ScanPt 
{ 
    Coordinates Source, Goal, Igoal; 
    //Coordinates ReachPtCords [4];        // coordinates of reach points 
    int ScanPtNumsOfReachPts [4];       // stores scan point number of each of reach points 
    int ScanPtNum;                      // number to identify a scan point 
    int GoalPtNum;                      // number to identify Goal of current scan point 
    int ReachPtAccessibility [10][10];   // identifies accessibility of each reach point 
    int NumOfReachPts;                  // total number of reach points for a particular scan point 
    int Visited;                       // indicates of the scan point is already visited 
    int IsScanPointReachable;          // indicates if the scan point can be reached 
    int ObstacleNo;                     // identifies the obstacle which makes this point unreachbale 
    int AltGoalPtNum;                   // alternate goal pt in case of known obstacles 
    int Weightage;                      //Weightage for every ScanPoint. The ones visited more times get more Weightage 
} ScanPtArr [10000], SimulationScanPtArr [10000]; 

 
 

3.6 Pseudo Code 
The algorithm is categorized into seven routines: 

Ø  Initialization 

Ø  CreateImaginarySquare  

Ø  Newly-discovered Obstacle detection 

Ø  Move vehicle 

Ø  Local Path Navigation 
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Ø  Navigate through Field 

3.6.1 Initialization 
For all scan points, calculates X and Y co-ordinates, goal point, reach points. 

ScanPtNumber = 1; 
iCounter = 1; 
Number of XScanPoints = Roundup (FieldWidth/VehicleWidth) +1 
Number of YScanPoint: Roundup (FieldLength / [Lidar Range/2]) +1 
XScanRange = FieldWidth / (Number of XScanPoints-1) 
YScanRange = FieldLength / (Number of YScanPoints-1) 
Total Number of Scan Points = Number of XScanPoints * Number of YScanPoints 
Temp = Number of YScanPoint; 
for (iCountX=0; iCountX< Number of XScanPoints; iCountX ++) 
{ 
 for (iCountY=0; iCountY< Number of YScanPoints; iCountY ++) 
 { 
  Xcord = (iCountX * XScanRange); 
      Ycord = ( iCountY  * YScanRange); 
  if ((iCountX is odd)    

{  
  ScanPtNumber = iCounter +Number of YScanPoints – (iCountY*2) - 1; 

} 
else 

 ScanPtNumber = iCounter; 
ScanPt [ScanPtNumber].ScanPtNum = ScanPtNumber; 

 ScanPt [ScanPtNumber].Source.X = Xcord = current.X; 
  ScanPt [ScanPtNumber].Source.Y = Ycord = current.Y; 

iCounter++; 
NumOfReachPoints = 0; 

} 
 
for (all scan points) 
{ 
     Calculate X and Y coordinates of all possible reach points; 
    Find the scan point numbers with those coordinates; 
    Assign these scan point numbers as the reach points; 

}  //end for 
For(icount=1;icount<Total Number of Scan Points;icount++) 
{ 
  ScanPt [ScanPtNumber].Goal.X = ScanPt [ScanPtNumber+1].Source.X ; 
  ScanPt [ScanPtNumber].Goal.Y = ScanPt [ScanPtNumber+1].Source.Y; 
} 

3.6.2 Create Imaginary Square 

Using the data of known obstacles this routine creates a virtual square around 

the obstacles. 

Input:   Number of obstacles 

Extreme North, South, East, West points of each known obstacle 

 

CreateImgSqr (NoOfObst, north, south, east, west); 
{ 

for (NoOfObst) 
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{ 
 Add a distance = half the vehicle width to each of north, south east, west coordinates; 
 North east coordinates = Y coordinate of north and X of east; 
 North west coordinates = Y coordinate of north and X of west; 
South east coordinates = Y coordinate of south and X of east; 
 South west coordinates = Y coordinate of south and X of west; 
 
// determine imaginary scan points 
for (i =0; i < = field length; i+=Yscan range) 
{ 
 if ((i>south) && (i<north)) 
 ImgScanPt1.X = Northwest.X; 
 ImgScanPt2.X = Northeast.X; 
 ImgScanPt1.Y =ImgScanPt2.Y =i; 
} 
for (i =0; i < = field width; i+=Xscan range) 
{ 
 if ((i>west) && (i<east)) 
 ImgScanPt1.X = Northwest.X; 
 ImgScanPt2.X = Northeast.X; 
 ImgScanPt1.Y =ImgScanPt2.Y =i; 
} 
for (all scan points in this imaginary square) 
{ 

IsScanPointReachable = 0; 
ScanPt.ObstNo = sequence number of obstacle; 

} 

3.6.3 Obstacle Detection 

This function gets input from LIDAR and calculates obstacle position with 

respect to scan points.   

Input: Current scan point, Next scan point 

Output: 1 [If obstacle exists between current scan point and its goal points] 

       0 [If obstacle does not exist between current scan point and its goal 

points] 

ObstacleDetection (Current scan point, Next scan point) 

Detects if an obstacle is present between the current and its next scan point. 

The LIDAR operation can be used for this function. 

3.6.4 Move Vehicle 

Based on co-ordinates of previous scan point, current scan point, and goal 

scan point this function decides the direction [straight, left or right] to be taken 
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to reach the goal point. This function calls mechanical routine to actually 

move the vehicle to be positioned at the goal point. 

Input: Current, Previous, Next Scan point 

MoveVehicle (startPt, endPt, prevPt) 
 { 
 if (endPt.X == prevPt.X) 
  then, Direction = Straight; 
 else 
 { 
  val = ((endPt.Y- prevPt.Y) / (endPt.X – prevPt.X));    
  If (startscan point > goal scan point) 
  val = - val; 
  if (val == 0) 
    Direction = Straight; 
  else if (val >0) 
    Direction = Right; 
  elseif (val <0) 
    Direction = Left; 
 } 

Call mechanicalMove (Direction, startPt, endPt); 
 } 

 

3.6.5 Local Path Navigation 

This function navigates the vehicle around the obstacle to reach back to its 

normal path. It calculates intermediate goal points around the obstacle and 

hence creates a local path. 

Input: Goal Scan Point Number 

LocalPathNav (SourceScanPtNum, GoalPtNum) 
 { 
  Create two stacks; 
  Store the source scan point number; 
  Store the goal scan point number in as the first element of both the stacks; 
  Find the alternate goals in the left local path; 
  Store each of these alternate goals in the left stack; 
  Check if reach point of alternate goal is same as the source scan point; 
  If so, left local path is completed; 
  Repeat the same procedure to create a right local path; 
  Based upon the shorter of the two an optimum path is selected; 

Pop the optimum stack scan point numbers and call move vehicle function; 
  If a new newly-discovered obstacle is in the path of the local path, then call the local path 
function  

again with the new source and goal point numbers; 
  Continue the recursive process until the original goal is reached; 

} 
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3.6.6 Find Optimum Intermediate Goal Point  

Based on the table of cases above this function finds the most optimum scan 

point that could form the alternate goal. It calculates intermediate goal points 

around the obstacle based on the algorithm criteria and hence creates a local 

path. 

Input: Source scan point, alternate goal scan point number 

Output: The best possible intermediate reach point 

FindOptimumLocalGoalPt (int SourcePt, int AltGoalPt) 
{ 
 Based on the source and alternate goal point Y coordinates determine the main case number; 
 Based on the main case number, X and Y coordinates of alternate goal and source scan point number the  

particular case number is selected from the table above; 
 As per the case number the reach point availability is checked for as per the sequence of preference  

mentioned in the table; 
If the reach point in the sequence is reachable, it is returned, 
Else the next reachable reach point in the sequence is opted; 
If none of the reach points in the sequence are reachable, the particular scan point is marked unreachable  
as well; 

} 
 

3.6.7 Navigate Through Field 

For every scan point in the field, it checks for presence of obstacle. If so, then 

the vehicle navigates through a local path. Else the vehicle moves along its 

normal path. 

NavigateField () 
 { 
   for (all scan points) 
    { 
           if (Next scan point is not reachable) 
          LocalPathNav (SourceScanPtNum, Goal.ScanPtNum); 

       else 
       { 

             if (ObstacleDetection (Current scan point, Next scan point) == 0)//no newly-discovered 
obstacle 
            MoveVehicle (currentscanPt, goalscanPt, (current-1) scanPt); 
            else 
            LocalPathNav (SourceScanPtNum, Goal.ScanPtNum); 
              } 

          } 
 } 



4 Chapter 4: Role of Logistics and Assumptions in Path 
Planning 

 
 

Decision making is a vital process in any artificial intelligence project. The 

question why has to be answered for any single step considered. Decision making works 

in parallel with the role of logistics for this algorithm development. Path planning is only 

a secondary step to mapping. It can only be done in a known environment. For a robot, 

SLAM creates this virtual environment. Hence, discrepancies, if any, in mapping are 

carried forward in the implementation of path planning. Accordingly, utmost care has to 

be taken during the logic development of the algorithm so as to make the navigation as 

fault tolerant as possible. Also, being the very first version of this research, there are 

some basic assumptions that are defined. This chapter elaborates all such assumptions 

along with the importance of logistics to develop the algorithm. 

�
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4.1 Assumptions 
 

There are various assumptions that have been considered before evaluating 

this algorithm: 

1) The field (outdoor operation space, open field or forest) will always be  

rectangular. 

2) There will be no obstacles on the boundary of the field. 

3) Information about the location and size of all the existing (known) obstacles 

will be provided.  

4) The Dimensions of the field will be provided.  

5) The Dimensions of the vehicle (length and width) to be used for maneuvering 

shall be provided. 

6) The LIDAR has a maximum operating range of 80 meters. 

7) A 90 degree turn is decided upon any time the vehicle has to turn. 

8) Field is considered only in two dimensions, X and Y.  With these assumptions 

as prerequisites, the algorithm is still capable of detecting new obstacles, 

avoiding them, and maintaining the predefined route. 

9) For any autonomous motion there is a difference between predicted motion and 

the actual motion. Furthermore, the difference in motion could be in terms of 

distance travelled, direction of travel, speed of travel, and angle of turn. There 

are varied factors which affect the intensity of this difference. A few of such 

factors are the mechanical factors of the vehicle, the sensor inputs to the vehicle, 

the fault tolerance intensity of the algorithm logic, the external environment or 

the ground conditions. This algorithm is primararily developed and tested for 
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the simulation stage. The algorithm focuses on optimum management of the 

input data, so as to process and provide path planning in a systematic manner. 

Since the algorithm is for path planning of an autonomous vehicle every single 

step of the algorithm implementation should have a valid reason. 

4.2 Logic 
 
Here we see the details of how very fairly the input resources have been used 

for the logic development. The reasoning for particular steps, equations and formulas 

used in the code and algorithm will be explained here. 

4.2.1 Data Structure 

Three data structures are used: Coordinates, Obstacle and ScanPt. 

1) Coordinates stores the Cartesian coordinates of any scan point. This structure is 

used while referring to the current, next and previous scan points while moving 

the vehicle. 

2) Obst stores all the parameters related to the known obstacles, and its related 

imaginary square such as the boundary coordinates of these obstacles. 

3) ScanPt stores all the parameters related to a scan point. These parameters 

include the scan point’s reach ability, its number, its visited status, number of 

reach points it has, its actual and alternate goal point number. This structure is 

used while referring to any particular scan point during simulation as well. 

4.2.2 Formulas 

 
• The number of X and Y scan points are calculated using:  
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�

Equation 4-1 
 

�

Equation 4-2 
 
This algorithm plans the path for the ATV such that the entire are of the 

rectangular field is covered in a parallel zigzag manner along the length of the field.  

The black arrows shown in Figure 3-3 indicate the direction of navigation in 

which the ATV should maneuver. The distance between any two adjacent scan points 

in the X direction is suppose to be so that when the vehicle is at any one of the two 

adjacent points, half the distance between them is covered. The distance between any 

two adjacent scan points should be just enough for an entire vehicle width, so that 

eventually when the ATV maneuvers up and down, the entire field area between these 

points is covered. Hence, to calculate the distance between any two X scan points the 

entire field with is divided by the vehicle width. The “+1” in the formula ensures the 

first and last scan points in X direction. The distance between any two scan points in 

the Y direction is supposed to be so that the vehicle can maneuver from one point to 

the next safely with proper obstacle detection. At every scan point the LIDAR scans 

the area in front of it to check for safety in order to move forward. Consider the case 

if the distance between two consecutive scan points in Y direction is set to LIDAR 

range as in Figure 4-1 
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Figure 4-1 : Y scan range = LIDAR range 

 
As seen in this case the shaded area is not covered in LIDAR range to check 

for presence of any obstacle.  

 
Figure 4-2 : Y scan range = LIDAR range / 2 

 
 
On the other hand, as seen in Figure 4-2 with a distance of LIDAR range/2 the 

shaded area which cannot be detected for obstacles is reduced by a large margin. 

Hence, this algorithm considers the distance between any two scan points in the Y 

direction to be LIDAR range/2. This distance can be further changed as per the 

requirement for resolution of obstacle detection. Accordingly the number of scan 

points in X and Y direction are calculated as shown in equation 4-1 and 4-2. 

• The Number of X and Y scan points are then used to calculate the scan range in X 

and Y direction and the total number of scan points. 

 

 

Equation 4-3  
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• The X and Y coordinates for each scan point is calculated as per the distance of 

the scan point from the source point in X and Y direction respectively.  

 

Equation 4-4 
 

• The number of reach points for every scan point depends on the scan point’s 

location. If the scan point is on any of the field boundaries, it has 3 reach points. If 

it is at any of the four corners, it has two reach points. For all the scan point inside 

the field there are four reach points. All of these three cases for creating reach 

points are taken care by the following formulas : 

 

Equation 4-5 
 

In case, if the left condition is true, and the scan point has a reach point on its left 

with a distance of Xscan range away from the current. Similarly the coordinates 

for reach point on all remaining sides are calculated 

• To find the alternate goal point in case if the actual goal point lies inside an 

imaginary square and is not reachable the formula used is : 
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Equation 4-6 
 
This routine ensures that in case an imaginary square is present in front of a 

scan point the consecutively next scan point number whichever is reachable is 

assigned as the alternative goal point. 

• To calculate the direction of navigation from one scan point to the next a 

tangential formula is used : 

 

Equation 4-7 
 
The direction of navigation is decided based upon on the previous, current and 

next scan point’s X and Y coordinates. The ‘if’ statement here checks if the current 

and next scan point does not have the same X coordinate. If so it means it has to 

divert from its straight path. The dFactor then decides left or right turn. The fact that 

the X coordinates increase from left to right while the Y coordinates increase from 

top to bottom is used to decide the direction.  In this formula, if the dFactor is greater 

than zero, it indicates a left turn because as seen from the formulas there are two 

cases where the dFactor could be positive: 



 59
Ø  If the current X is less than goal X: which means the current scan point is on 

the left of the goal X (considering that the X coordinates increase from left to 

right) and so to go to the goal the vehicle has to take a left turn 

Ø  If the previous Y is less than the current Y: which means the previous scan 

point is placed above the current Y (considering that the Y coordinates 

increase from top to bottom). And then the current and goal X are different. 

• Another similar formula is used in case if the Y coordinates of previous and 

current scan points are same and at the same time the Y coordinates of current and 

goal are not same. Similar logic as mentioned in the above point is used in this to 

decide the direction of navigation. 

• The case table mentioned in chapter 3 is the core for finding the best possible 

intermediate reach point in a local path. It is represented in the 

FindoptimumReachPoint function.  

if (SourceY < TargetY)//--------------MAIN CASE 1------------------------------ 
     { 
        if ((SourceY < AltGoalY) && (SourceX == AltGoalX))//CASE 1.1 
        { 
                    fprintf (fpOut,"\nInside Case 1.1\n"); 
               //consider reach pt on top 
               ReachPt = ScanPtArr [AltGoalPt].ScanPtNumsOfReachPts [2]; 
               ReachPt = CheckIfTemporaryInAccessible (ReachPt); 
               //if top reachpt is reachable AND chk if OffPathDirection is not BOTTOMDIR 
               if ((ReachPt! = -99) && (ScanPtArr [ReachPt].IsScanPointReachable ==  
     1) && (OffPathDirection! = BOTTOMDIR)) 
               { 
                   BestReachPt = ReachPt; 
                   OffPathDirection = TOPDIR; 
                   return (BestReachPt); 
               }             
               else 
               {    //consider reach pt on left 
                    ReachPt = ScanPtArr [AltGoalPt].ScanPtNumsOfReachPts [0];  
                    ReachPt = CheckIfTemporaryInAccessible (ReachPt); 
                    //if left reachpt is reachable AND chk if OffPathDirection is not RIGHTDIR                    
                    if ((ReachPt! = -99) && (ScanPtArr [ReachPt].IsScanPointReachable ==   

   1) && (OffPathDirection! = RIGHTDIR)) 
                   { 
                       BestReachPt = ReachPt; 
                       OffPathDirection = LEFTDIR; 
                       return (BestReachPt); 
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                   } 
                   else 
                   {//consider reach pt on BOTTOM 
                        ReachPt = ScanPtArr [AltGoalPt].ScanPtNumsOfReachPts [3]; 
                        ReachPt = CheckIfTemporaryInAccessible (ReachPt);  
                        //if BOTTOM reachpt is reachable 
                        if ((ReachPt! = -99) && (ScanPtArr [ReachPt].IsScanPointReachable  
     == 1) && (OffPathDirection! = TOPDIR)) 
                        { 
                           BestReachPt = ReachPt; 
                           OffPathDirection = BOTTOMDIR; 
                           return (BestReachPt); 
                        }   
                        else 
                        {//consider reach pt on right 
                            ReachPt = ScanPtArr [AltGoalPt].ScanPtNumsOfReachPts [1];  
                            ReachPt = CheckIfTemporaryInAccessible (ReachPt); 
                            //if right reachpt is reachable 
                            if ((ReachPt! = -99) && (ScanPtArr [ReachPt].IsScanPointReachable  
     == 1) && (OffPathDirection! = LEFTDIR)) 
                            { 
                               BestReachPt = ReachPt; 
                               OffPathDirection = RIGHTDIR; 
                               return (BestReachPt); 
                            }//end case right  
                            else 
                            { 
                                OffPathDirection = NULLDIR; // if none of the reach points are accessible 
                                return (AltGoalPt);//return the same alt goal with offpathdir flag nullified 
                            } 
                        }//end case bottom   
                   }//end case left 
               }///end case top 
        }////CASE 1.1 

The above snippet of code indicates the formulation for only case 1.1. Similar ‘if else’ 

statements are used to represent the remaining cases. Depending upon the source and 

goal positioning the case number is decided and accordingly the reach point 

preference if selected. For instance consider case 1.1 for example. The source Y 

coordinate is smaller than the goal Y, which means that the source is above the goal 

scan point. Further, particularly in case 1.1, the alternate goal (intermediate scan 

point) and source scan point have same X coordinate and differ only in their Y 

coordinates. That is, in this case both source and alternate goal are on the same 

vertical column with the source positioned above the alternate goal. In order to 

backtrack the local path from goal to source, the first preference is naturally given to 
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the Top reach point to check if there is a direct access to reach the source point. 

Followed by that, since the left points (in local left path) are given the utmost 

importance, the reach point on Left is preferred. Again if the left reach point is not 

reachable then as per the algorithm criteria the Bottom reach point is checked for 

availability. And then the preference is given to the Right reach point. Accordingly 

the reach point preference sequence for case 1.1 is ‘TLBR’. Similarly the preferences 

are set for all of the remaining cases in both left and right local path functions. 

4.2.3 Code 

The code can be classified into sub categories. One category deals with the 

logic of algorithm development and the other deals with the simulation development. 

Chapter 5 elaborates the simulation development part of the software. Here we see 

how the code is implemented in terms of the algorithm logistics. 

• Initially the field, LIDAR and vehicle parameters are read in from an input file in 

the ReadInputLineFromFile function. 

• The parameters for all the known obstacles are read in from the input file 

• Given the field and vehicle parameters the scan points are created for the entire 

field in the CreateScanGoalPts function 

• Also, numbers are assigned to scan points exactly as per the requirement of the 

predefined trajectory of navigation. The location of the scan points on the field is 

also considered for numbering. Hence the scan point with a number consecutively 

next to the current scan point number is assigned as its goal scan point. 

Ø  Initially all the scan points are marked as reachable and not visited 

Ø  Reach points are created 
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• The coordinates of all the known obstacles is used to create an imaginary square 

around the known obstacles. This square is created such that it has its boundaries 

at a distance of half the vehicle width away from the extreme north, south, east 

and west limits of the obstacle. This gives the vehicle optimum space to maneuver 

around the obstacle taking care that the ATV does not collide with the obstacle. 

Accordingly the four corners of the imaginary square are detected 

• In case of a known obstacle, the scan points lying inside the imaginary square are 

now termed as not reachable. The ScanPtInsideImSqr function detects and marks 

all such scan points lying inside imaginary square as unreachable. Also, an 

alternate goal point is assigned to the last reachable point.  

• After all the above assignments are made, the code is now ready to actually 

navigate the ATV. This is done by the NavigateField function. Here the move 

vehicle function is called to locate the ATV at appropriate scan point by going in 

appropriate direction.  

• The very first thing checked for, in navigated field, is if there are any known 

obstacles present. If no such obstacle is present, based on the above initializations 

and assignments the MoveVehicle function holds the routine to physically move 

the vehicle from one scan point to the one having its consecutively next goal. In 

this manner it eventually continues its navigation till the last scan point 

(destination). The direction of navigation required to go to the next scan point is 

also calculated before the ATV is actually moved to the next scan point.   

• In case if a known obstacle is present in front of a scan point the LocalPathNav 

function is called. The first step in this function is to find the next best possible 
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reachable scan point along the same path as it would be without the obstacle. This 

is termed as the new goal point. As per the algorithm this function maneuvers the 

vehicle around the obstacle [along the scan points] in an optimum manner such 

that the path with shorter distance is preferred. 

• A reach point is any scan point which is at a distance of X or Y scan range from 

the current scan point, and hence, has a direct access to the current scan point. 

Reach points for all scan points are created at the time of initialization itself. 

Reach points are the most important factors in creating the local path. If the 

alternate goal point has any reach point which is also the reach point of the source 

point, the ATV has direct route to go to the alternate goal through this reach point. 

If not so, local goals (intermediate scan points in the local path) are further 

created. 

• The FindOptimumLocalGoalPt function does this routine. It uses the case tables 

described in chapter 3 to decide for the most optimum alternate (local) goal. The 

following criteria points are taken care of to find out the most optimum alternate 

goal point : 

Ø  If not the source scan point itself  

Ø  If reachable (not present in any imaginary square) 

Ø  If it meets the left or right local path direction of routing 

This function uses the concept of quadratic positioning of the source and the goal 

scan points to decide the best possible reach points. The criteria points mentioned 

above are implemented in the FindOptimumReachPoint function and used to 

decide the reach point preference in each case. The local goals are stored in a 
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stack ‘stackScanPtArray’ in the same sequence in which they are created from the 

FindOptimumLocalGoalPt. The process is kept in a recursion until a local goal is 

found whose reach point is same as the reach point of the source. Once such a 

local goal is found the stack (left or right) is ready to be used for navigation. 

• The OptimumPathDecision function creates both the left and right stack as per the 

local path from left and right hand side respectively around the obstacle. This 

function then compares the stack length and accordingly selects the path with a 

shorter path length 

• MoveVehicle function is called with the scan points in sequence from the selected 

stack. 

• The local navigation function is implemented in a recursive manner. So that in 

case of facing an newly-discovered obstacle or imaginary square while already 

navigating in the first local path, its previous local path is stored on a stack and 

local navigation for the new obstacle is developed. Eventually the ATV routes 

itself to the original goal.  Thereafter the ATV continues its regular path along the 

consecutive scan points.  

• The logic for newly-discovered obstacle avoidance is same but is built run time 

when the newly-discovered obstacle is detected. The LIDAR data is used for 

newly-discovered obstacle detection. This data in coordination with the logic for 

creating the local path is used for newly-discovered obstacle avoidance. 

 

 



5 Chapter 5: Simulation and Graphics Details 
 

Simulation is the representation of the behavior or characteristics of one system 

through the use of another system. It is used in many contexts, including the modeling of 

a natural or human system, in order to gain insight into its functioning. Other contexts 

include simulation of technology for performance optimization, safety engineering, 

testing, training and education. Simulation can be used to show the eventual real effects 

of alternative conditions and courses of action.  The implementation of simulation for this 

algorithm elaborates on the last sentence. Simulation of this algorithm has helped to 

achieve a working model for the logic behind the algorithm. In this simulation, a 

mathematical model of the algorithm has been depicted, primararily to give the essential 

visual effects for better understanding of this algorithm. Another important reason for 

simulating this algorithm was to verify the effect of the software output before being 

actually implemented on an ATV. There are various ways for implementing simulation. 

This chapter provides details of the simulation technique used for this algorithm, reasons 

behind it and the tools used for simulation and coding in general.  

There are varied tools that are used for simulation graphics today. To list a few 

are – AC3D, Animation Master (Hash), AutoCAD (Autodesk), FreeHand (Adobe 

Systems), Inkscape, CorelDraw (CompuServe Incorporated) and Bryce (DAZ 3D Inc.). 

Few of the animation and 3D simulation graphics tools available as open source studio or 

suits are: Art of illusion, Blender, Breve, Cal3D, Cairo, Dia, Imgseek, Mesa, OGRE 3D, 
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Open Scene Graph, and GIMP.  These tools work based on different programs, such as 

Visio, GNU, Java, Visual Basic and C++.  

5.1 Path of Development of the Research Along With Platform 
Selection 

 
As a part of this research, the path planning algorithm was developed, implemented in 

software and also simulated to give its visual effect. The research initiated based on the 

reasons stated in chapter 2. Initially a rough scope of the entire research was planned and 

framed. The entire course of research started with development of a pseudo code of the 

algorithm. The data structure and pseudo code were scrutinized to meet the requirements 

of the research. Windows operating system and C language was decided upon for the 

software development of this algorithm. Development of this algorithm is only the first 

step of a huge research. Going ahead, new additions are possible in terms of algorithm, 

software and its actual implementation on an ATV. With all these factors Windows OS 

was an obvious choice, considering following main reasons: 

• Windows provide several user friendly software development tools enhancing 

productivity of the developer.  

• Specialized hardware drivers and auxiliary software tools are more readily 

available for Windows than for any other operating system, providing for easy 

hardware and software integration 

• Familiarity with most of the users 

C language also became an upfront choice due to following reasons: 

• Popularity, versatility and portability 
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• Provides dynamic memory management, interactive execution environment and 

interactive trace 

• Provides powerful debugging facility, flexible input-output and faster execution 

Dev C++ studio version 4.9.9.2 is used for software development [23]. Bloodshed Dev 

C++ is a fully featured Integrated Development Environment (IDE). It uses Mingw 

("Minimalistic GNU for Windows") port of GNU Compiler Collection (GCC) as its 

compiler. Some its outstanding features are: 

• Supports GCC based compilers 

• Supports Windows API programming 

• Integrated debugging 

• Project Manager 

• Quickly creates Windows, console, static libraries and DLLs 

• Makefile creation 

• Tool Manager 

• CVS support 

Dev C++ comes with everything required to compile and link, both console mode and 

Graphic User Interface (GUI) programs that will run on Windows. It allows the 

programming to be done in C as well as C++. The explanatory notes mentioned in [25] 

show the steps required to download, Install, Configure, Compile, Link and Run a 

program using Dev C++. Overall the main reason for choosing the Dev C++ was the user 

friendly IDE along with the GUI interface supported by it. 

Using Dev C++ and using C language the basic code representing the algorithm was 

developed. This code was developed using the console output. Starting from navigation 
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in a field with no obstacles, to one with known obstacle and then lastly with newly-

discovered obstacles, the printf outputs on console depicted the exact journey to the 

ATV. Once the entire navigation of the ATV as per the code was found exactly in line 

with the proposed algorithm, the simulation part was considered. The simulation of this 

algorithm depicts exactly the same logic, as that done by the code with the console 

output. Only this time the output was in terms of a windows application giving a visual 

representation of the algorithm. 

5.2 Graphics and Simulation Tools Used 
 

An API (Application Programming Interface) is an interface by which the 

application program accesses operating system and other services. API is a set of 

routines, data structures, object classes and/or protocols provided by libraries and/or 

operating system services in order to support the building of applications. The Microsoft 

Windows API provides services used by all Windows-based applications [26]. It provides 

graphical user interface (GUI), access to system resources such as memory and devices, 

display graphics and formatted text, incorporate audio, video, networking, or security. A 

graphical user interface (GUI) is a human-computer interface (i.e., a way for humans to 

interact with computers) that uses windows, icons and menus and which can be 

manipulated by a mouse [28]. An icon is a small picture or symbol in a GUI that 

represents a program (or command), a file, a directory or a device (such as a hard disk or 

floppy).  In windows, it is the Graphical Device Interface (GDI) which provides the 

functions and related structures that an application can use to generate graphical output 

for displays, printers and other devices. These functions are used to draw lines, curves, 

closed figures, text and bitmap images.  
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Programming for simulation using windows API gives the application a freedom to 

return a device context handle to identify a display device.  Using the graphical features 

of windows API programming, such as Bitmaps, brushes, pens, clipping, region, 

windows color system and coordinate spaces, enhanced the development of simulation 

for this algorithm. 

To create an application a compiler that runs on Microsoft windows application is 

required. This requirement was completely satisfied by the Dev C++ IDE since it works 

on windows. Almost all of the structures of Win API are C objects which further made it 

easy to integrate the basic algorithm representing code for simulation. With Win API, it is 

possible to achieve full features of animation along with timing controls. For this 

algorithm, the graphical elements in coordination with timing controls are used to create 

simulation.  

5.2.1 Getting Started with Win API Programming 

The following steps will brief about getting started for creating an application using Win 

API. 

1) Open the Dev C++ IDE and create a new project in windows application. 

2) C language is selected 

3) The ‘.dev’ file is saved in the respective folder 

4) The default program is compiled, linked and executed to get a windows application 

5.2.2 Some of the Basic Functions and Structures with Win API [29] 

1) int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR  

        lpCmdLine, int nCmdShow) 
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 WinMain is a function equivalent to main ( ) from DOS. Program starts its execution  

 from this function. Its parameters: 

 HINSTANCE hInstance: Handle to the programs executable module (the .exe file in 

memory)  

HINSTANCE hPrevInstance: Always NULL for Win32 programs 

LPSTR lpCmdLine: The command line arguments as a single string 

int nCmdShow: Controls how the window being built will be displayed 

 The object that is displayed on the screen is called as a window. Since there can be 

varied windows in a program, a control is required to known where they are when, 

and why. This main window is created using an object that can be called a class 

(strictly, a structure).  In order to create an application a variable of either 

WNDCLASS or WNDCLASSEX type is required to be declared. Upon declaring a 

WNDCLASSEX variable, the compiler allocates an amount of memory space for it, 

as it does for all other variables. Various parameters of the main window such as its 

style, extra memory, background color and its instance are set inside this structure.   

  

2) CreateWindowEx( ) 

 Once the main window is created it is used as a parent to create child windows. This 

function helps to specify that a window is a child of another window. Various 

parameters for the child window such as its top, height, width, style, caption, and 

instance along with a handle of the parent class are passed as parameters. 

3) LRESULT CALLBACK MessageProcedure(HWND hWnd, UINT uMsg, WPARAM  

wParam, LPARAM lParam) 
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 To help the users with computer interaction, the operating system provides a series 

of objects called Windows controls. Each control creates messages and sends them 

to the operating system. Four main parts of information related to a message are sent 

to the OS: 

• Identity of the object (handle or HWND) that sends a message.  

• A positive natural number (UNIT) corresponding to the particular message to 

identify  what message is being sent 

• A 32 bit type word parameter (WPARAM) as an additional information for 

processing the message 

• A 32 bit type long parameter (LPARAM) as an additional information for processing 

the message 

 Windows Procedure is actually a function pointer to manage the messages sent. 

Since it returns a 32 bit integer, it is called as long result (LRESULT). 

 To manage these messages, they are handled by a function pointer called a Windows 

Procedure. All the required messages are listed and processed one after another 

using the switch case structure in this function. Some of the basic messages (cases) 

used in this algorithm are: 

 WM_CREATE: Message to create a new window. 

 WM_TIMER: Message to indicate that the timer has expired 

  WM_PAINT: Message to request painting certain part of the application’s window 

 WM_MOUSEMOVE: Message given to a window when the mouse moves 

 WM_LBUTTONDOWN: This Message is given when the left mouse button is 

pressed while the cursor is in client window area 
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 WM_LBUTTONUP: This Message is given when the left mouse button is released 

while the cursor is in client window area 

WM_CLOSE: Message to terminate the window 

WM_DESTROY: Message sent while destroying a window 

4) PostQuitMessage(0) 

Message to close a window.  

5) RegisterClassEx(&WndClass) 

The window class is made available to other controls that are a part of the application  

using the registration function. 

6) Rectangle(HDC hdc, int nLeftRect, int nTopRect, int nRightRect, int nBottomRect); 

 Function used to draw a rectangle. The left, top, right and bottom coordinates of the 

window where the rectangle is to be drawn are passed as its parameters. 

7) Ellipse(HDC hdc, int nLeftRect, int nTopRect, int nRightRect, int nBottomRect); 

 Function used to draw an ellipse. This ellipse fits in a rectangle. The parameters of 

this rectangle are passed. 

8) MoveToEx(HDC hdc, int X, int Y, LPPOINT lpPoint); 

 Function used to originate drawing of a line. The origin of a line is given in terms of 

X and Y. 

9) LineTo(HDC hdc, int nXEnd, int nYEnd); 

 The end of a line is specified in terms of X and Y parameters. 

10) RGB(BYTE byRed, BYTE byGreen, BYTE byBlue); 

Three separate numerical values ranging from 0 to 255 are passed as parameters to set  

the required color. 
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11) SelectObject(): 

 This function selects a new control to a specified device context. 

12) DeleteObject(): 

 Deletes a logical pen, brush, font, bitmap, region, or palette, hence setting free all 

system resources associated with the object. After the object is deleted, the specified 

handle is no longer valid 

13) TextOut(HDC hdc, int nXStart, int nYStart, LPCTSTR lpString, int cbString); 

 Writes a character string at the location given by X Y coordinates. cbString specifies 

the length of the string. 

14) SetBkColor(HDC hdc, COLORREF crColor); 

 Function used to highlight the text output 

15) SetTextColor(HDC hdc, COLORREF crColor); 

Decides the color of the text output 

16) BOOL BitBlt(HDC hdcDest, int nXDest,  int nYDest,  int nWidth,  int nHeight,  HDC 

hdcSrc,  int nXSrc,  int nYSrc,  DWORD dwRop ); 

 Transfers pixels from a specified source rectangle to a specified destination 

rectangle. It also alters the pixels according to the selected raster operation (ROP) 

code. 

17) UINT_PTR SetTimer(   HWND hWnd,UINT_PTR nIDEvent, UINT uElapse, 

   TIMERPROC lpTimerFunc); 

Creates a timer with the specific timeout value (uElapse) 

18) CreateSolidBrush(COLOREF crColor); 

 Creates a logical brush with the color specified to be used for painting 
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19) TextOut(  HDC hdc, int nXStart,  int nYStart, LPCTSTR lpString, int cbString); 

 Writes a character string at the specified location, using the currently selected font, 

background color, and text color 

20) LoadBitmap(HINSTANCE hInstance, LPCTSTR lpBitmapName); 

 Loads the particular bitmap resource from the executable file for a module 

5.2.3 Customization of Programming in Win API for the Algorithm 

All the functions mentioned in 5.2.2 for the WinAPI controls are used along with the 

functions representing the basic algorithm’s logic mentioned in chapter 4 to develop the 

simulation for this algorithm. This section elaborates how the graphical representation of 

the code is done using the Win API functions. Here the main intention is to display a 

field, a vehicle, known or newly-discovered obstacles and the navigation of the vehicle as 

per the algorithm. The field and known obstacles are static objects (not going to change 

position with respect to time throughout the execution) and hence are painted initially. 

Handling the coordination between the navigation related functions and Win API 

functions to accordingly show the required animation on the field, has been the main task 

of this simulation. 

1) A basic windows API program is built and executed to create a window 

2) The caption, length and width of the window are set in the createwindowex function 

3) The background color for the window is set using the windclass function 

4) A WM_PAINT switch case is added to the windows Procedure and a rectangle is 

drawn in the window using the ‘rectangle’ function.  

5) As seen in the chapter of logistics, the field, LIDAR, vehicle, as well as the known 

obstacle parameters are taken as input from a file. The input field length and width 



 75
are used to determine the left, right, top and bottom parameters for the ‘rectangle’ 

function. The window application which represents a rectangular field is drawn 

inside the entire windows screen. An X offset and a Y offset is set to decide the top 

left corner of this rectangular field. To draw the width of the rectangle the width 

(input from read file) is added to the X offset. Similarly the length of field is added 

to the Y offset. Accordingly the rectangular field is positioned on the windows 

screen as per the offset values. 

6) The ATV is displayed as bitmap image of a small car. A car bitmap image of size 

32 * 32 is created and stored in the application folder with a name Car. The same 

image with inverted colors is stored as another bitmap image with a name CarMask. 

The car mask image is used to show animation when the vehicle is to be showed as 

maneuvering from one place to another. An image resource is required to take the 

bitmap as an input to the simulation. A new resource file is created called as 

“images.rc”. This file holds the ‘.bmp’ extensions for both the images. Initially two 

bitmap handles are defined for the Car and the CarMask images as hbmCar and 

hbmCarMask respectively. 

7) WM_CREATE switch case is created to initialize various parameters of the 

program. The bitmaps of Car and CarMask are assigned to the bitmap handles 

hbmCar and hbmCarMask respectively. An object reference for the car bitmap is 

returned to the application. A timer is set using the settimer function which decides 

the speed of navigation of the Car in simulation. The functions to initialize variable, 

create scan point, reach point, from the data of known obstacles create the 

imaginary squares, determine the scan points inside the imaginary squares, create 
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alternate  goal points, are all executed in this switch case.  Since for this algorithm, 

the source for navigation in the field is the top left corner of the field, the Car 

Image’s X and Y for the bitmap are set to the offset values. 

8) The WM_PAINT switch case is primararily used to display all drawings on the 

window (field). The drawings include: 

• Rectangle function to draw the field. Input parameters are set as Xoffset (Left), 

YOffset (top), Xoffset+Field width (right), Yoffset + field length (bottom). 

• Using the create solidbrush function a color is set for the field. The select object 

function is used to set a new brush color for the field rectangle. Once the rectangle 

is drawn this object is deleted. 

• Rectangles without any solid color fills are drawn around all the known obstacles 

to represent their respective imaginary squares. Input parameters are set as: 

 KnownObstacle[].ImgSqrNW.X(left), KnownObstacle[].ImgSqrNW.Y(top),  

KnownObstacle[].ImgSqrNE.X(right),  KnownObstacle[].ImgSqrSW.Y(bottom). 

The imaginary square corners created using the create imaginary square function 

are used here. 

• All scan points are represented as an ellipse in the form of a circle.  At all the scan 

point locations, determined by their respective X and Y locations, an ellipse is 

drawn with inputs as: (SimulationScanPtArr[].Source.X-4.0)(left), 

SimulationScanPtArr[].Source.Y-4.0)(top), 

(SimulationScanPtArr[].Source.X+4.0)(right), 

(SimulationScanPtArr[].Source.Y+4.0)(bottom). The ‘+4’ and ‘-4’ margins are 

provided to draw the rectangle of the ellipse around the exact scan point. A new 
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solid brush with a new color is set for the scan points and deleted after drawing 

the scan points. Similarly, a new solid brush with a different color is set for the 

scan points which are marked unreachable (so that all points inside any imaginary 

square will be seen in a different color to distinguish them as unreachable). 

9) All the scan points are numbered just next to the respective circles. The textout 

function is used to assign numbers to all the scan points. The inputs used are: 

(SimulationScanPtArr [temp].Source.X-9)(X start position), (SimulationScanPtArr 

[temp].Source.Y-30.0) )(Y start position), sVar(string), strlen(sVar)(length of the 

string).The scan point numbers created in the CreateScanGoalPts function are 

converted into a string and used as input. The X and Y start positions are set so that 

the numbers are positioned above just each scan point. 

10) Known obstacles are drawn to be in the form of an ellipse. The shape of the ellipse 

is decided upon the X (west, east) and Y (top, bottom) coordinates of the 

boundaries of these obstacles given as inputs. Using a new solid brush(new color), 

the ellipse function is called for all the known obstacles with inputs as: 

KnownObstacle[].west(left), KnownObstacle[iCounter].north(top), 

KnownObstacle[iCounter].east(right), KnownObstacle[iCounter].south(bottom). 

11) The field diagram is labeled using textout function. A particular highlight color and 

background color is set for this text using the SetBkColor and the SetTextColor 

functions. 

12) Three switch cases WM_LBUTTONDOWN, WM_LBUTTONUP and 

WM_MOUSEMOVE are used to draw the newly-discovered obstacle run time 

during navigation. All of these messages are related to mouse activity. The 
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WM_LBUTTONDOWN message indicates windows about a regular left hand 

mouse click on the application window. The X and Y coordinates of the point 

where the mouse is first clicked are stored. The WM_LBUTTONUP message gives 

an indication when the mouse click on the application window is released. The 

WM_MOUSEMOVE message is given every time the mouse is dragged from one 

X-Y coordinate to another. So if a mouse is clicked on an application window and 

dragged to some other point on the window and then released, the last X-Y 

coordinate given by the WM_MOUSEMOVE message will be that for the point of 

release. 

13) Using the above three messages a free line can be drawn on the application window 

whose starting and end points are recorded. Such a line is used to represent the 

newly-discovered obstacle. The X coordinate of all the intermediate points are 

considered to determine the left and right boundaries of the newly-discovered 

obstacle. Similarly, the Y coordinate of all the intermediate points are considered to 

determine the top and bottom boundaries of the newly-discovered obstacle. So a 

specific pattern for drawing the newly-discovered obstacle is defined such that it 

can be drawn in the form of a line which can extend from left to right, bottom to top 

or both simultaneously. 

14) The WM_LBUTTONUP message also initiates drawing of a line using the MoveTo 

function. The WM_MOUSEMOVE message holds a LineTo function. So every 

time the line is dragged from the point it was clicked a new X-Y coordinate a new 

end point for the line is set. The point where the mouse is released is the last point 

of which the X-Y coordinates are given to the LineTo function. 
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15) Such a continuous line represents the newly-discovered obstacle. Because this 

obstacle is drawn run time, as soon as the mouse is released (the line is finished 

drawing) the imaginary square around this newly-discovered obstacle should be 

drawn.  This imaginary square is drawn using the stored X, Y coordinates for the 

point of click and those recorded in the WM_MOUSEMOVE routine. This 

imaginary square is drawn in the WM_LBUTTONUP switch case when all the 

required X Y coordinates are already stored. 

16) The X – Y coordinates at the point of click (WM_LBUTTONDOWN) are stored as 

the zeroth element of an array. When the line is dragged, every time a new X-Y 

coordinate is recorded (WM_MOUSEMOVE) it is stored as the consecutively next 

element of the array. Accordingly, the last element of the array is the X-Y 

coordinate of the point of release.  

17) To draw an newly-discovered obstacle the mouse when once clicked should be 

dragged continuously (without releasing the buttondown) till the desired shape of 

the obstacle is drawn. 

18) Both the X and Y arrays are then subjected to bubble sort in the 

WM_LBUTTONUP routine to arrange the elements of the array in an ascending 

manner. Hence, the zeroth element of the X array now holds the least X coordinate 

recorded throughout the trajectory of the continuous line (leftmost point of the 

trajectory). The last element of the X array holds the most maximum X coordinate 

recorded throughout the trajectory of the continuous line (rightmost point of the 

trajectory). The zeroth element of the Y array holds the least Y coordinate recorded 

throughout the trajectory of the continuous line (topmost point of the trajectory). 
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The last element of the Y array holds the most maximum Y coordinate recorded 

throughout the trajectory of the continuous line (bottommost point of the 

trajectory). 

19) These four elements (leftmost, rightmost, topmost and bottommost) are used to 

define and draw the boundary of the imaginary square around the newly-discovered 

obstacle. The left boundary of the imaginary square for newly-discovered obstacle 

is set as ‘Unknown_X_Arr [0] - (VehicleWidth/2)’. Right boundary is 

‘Unknown_X_Arr [counterISqr-1] + (VehicleWidth/2’. Top boundary is 

‘Unknown_Y_Arr [0] - (VehicleWidth/2)’. Bottom boundary is ‘Unknown_Y_Arr 

[counterISqr-1] + (VehicleWidth/2)’.  

20) Using the MoveToEx and the LineTo functions a rectangle representing the 

imaginary square is drawn around the newly-discovered obstacle with the above 

parameters. The scan points inside the imaginary square for newly-discovered 

obstacles are marked as unreachable and their respective new goal points are 

created. 

21) The main task in simulation is to show an animated version of the algorithm for the 

maneuvering of the ATV. This algorithm implements the animation using the timer 

basis. Every time a timer value is expired the ATV position is updated. That is, its 

earlier position is erased, a new position is assigned to the ATV and the ATV image 

is drawn at the new location. This timer value decides the speed of maneuvering of 

the ATV (car) in the simulation. 

22) After every certain time interval the ATV is moved to its next goal scan point. The 

WM_TIMER switch case takes control of such timer related functions. This 
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message indicates expiry of the timer and hence a signal to move to the ATV to a 

new scan point. Three main functions are called upon this timer expiry: EraseCar 

(), UpdateCar () and DrawCar (). 

23) The EraseCar () function creates a small rectangle as per the width and height of 

the car image and fills this rectangle with a solid brush color. For this simulation, 

this color is kept same as that of the field. Accordingly when the car image is erased 

its positioned will be seen as a blank on the field. 

24) The UpdateCar () function is the most important function to represent the path 

planning navigation in simulation. In this function, the logically next position where 

the car image is supposed to be displayed (next position of the ATV as per the 

algorithm) is decided. The navigate field function elaborated in chapter 4 (logistics) 

is implemented here.  The move vehicle or the local path navigation function is 

called based on the conditions of reach ability of the next point. 

25) The DrawCar () function initially allocates a block of computer memory that would 

hold the bitmap image. The CarMask and the Car bitmap objects are selected and 

the corresponding pixels are transferred from the memory (source) to the 

application (destination). 

26) Since the computation of the new ATV position (in the navigate field function) 

takes much lesser time than that required for the timer to expire and call the update 

Car function, by the time the update car function is called the new location of the 

car Image is ready to b drawn. This pattern of simulation continues till the ATV 

reaches the final destination of the field. 

 



6 Chapter 6: Study Heuristics 
 

Given certain conditions, simulation results are always idealistic, unless otherwise 

provided with some known errors. This chapter analyzes and tabulates the results of the 

algorithm development along with its deviation, if any, from the expected results. Also, 

the heuristics behind this research will be elaborated. 

The main challenge while starting this thesis has been to develop a new path 

planning algorithm, to implement it in software and to simulate it. To do this, it was 

required to organize the study in such a manner so as to build a clear evidence for the 

working model of the algorithm. The path planning concepts in various papers studied for 

this research had some direct contrasts and similarities. Development of an altogether 

new method for path planning, making it executable and proving that this method is 

optimum to implement has been the main task.  

Software Output 
 

Testing all the different cases in the both the quadratic case tables mentioned in 

chapter 3 (algorithm) has been one of the major tasks of this research. These tests 

validated that if the obstacles are positioned at different locations along the ATV’s 

trajectory, the solution comes under one of the 16 cases in the table. Using the preference 

solution for that case, the navigation is maintained as per algorithm.  
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Following are the results for a few of the test cases: 

1) Source 28 and goal: 30 (Base case 1). The local path is backtracked from 30 to 28 

from left hand side. The stack counter for right hand local path is found to be more 

(9) compared to the left hand stack counter (5). This can be verified from the 

simulation output as seen in Figure 6-1. 

   �
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Figure 6-1: Simulation output of different scan points when going around the obstacle (left hand path 
case) 
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2) Source: 50 and goal: 52(Base case 1). The local path is backtracked from 52 to 50 

from right hand side. The stack counter for right hand local path is found to be less 

(5) compared to the left hand stack counter (9). This can be verified from the 

simulation output as seen in Figure 6-2. 
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Figure 6-2 : Simulation output of different scan points when going around the obstacle (right hand 
path case) 
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3) Source: 93 and goal: 96(Base case2). The local path is backtracked from 96 to 93 

from left hand side. The stack counter for left hand local path (10) is found to be 

less compared to the right hand stack counter (12).  This can be verified from the 

simulation output as seen in Figure 6-3. 

 

 
 

 
 
 
 
 
 
 
 
 



 86

 
 

 
 

 
 

 
 
Figure 6-3 : Simulation output of different scan points when going around the obstacle (base case 1) 



7 Chapter 7: Conclusion and Future Work 
 
 

An optimum path planning algorithm serves as the basic structure for the 

navigation of an autonomous ATV. The work is aimed towards navigation in open fields 

with occasional obstacles. The algorithm and its software have been simulated to give 

real world application. The following conclusions can be drawn from the presented 

algorithm: 

1) The algorithm presented fulfills its purpose of navigation in a specific pattern, 

obstacle avoidance and optimum routing 

2) All known and newly-discovered obstacles are avoided during navigation so that 

the vehicle can return quickly to original navigation path 

3) The algorithm and the implemented software can be easily customized as per 

changes in requirements 

4) No complex computation and mathematics is involved thus making it easy for 

future implementations 

5) With the concept of an imaginary square around each obstacle, the algorithm 

ensures that the ATV will keep safe distance from obstacle when travelling around 

it. 

6) A field of any dimension along with any number of obstacles (of any dimensions) 

can be used as input in the simulation to validate the algorithm 
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7) The simulation depicts an appropriate representation of the algorithm and its 

software. It is found to be beneficial to verify the output of the algorithm before 

being actually implemented on an ATV 

As stated in earlier chapters this research is only a part of a large research program 

which will allow an ATV to navigate in any given terrain. This research creates a base for 

the navigation part of the entire work. The algorithm presented is so that its software can 

be used for implementation on an ATV. The presented software has been aimed towards 

simulation, and hence, would require some obvious extra mechanical and electrical inputs 

so as to allow it to be used on an ATV. The following points are the possible future work 

for this algorithm and system: 

1) Addition of functionality for inputs from sensors such as LIDARS, GPS and other 

electrical inputs  

2) Addition of functionality for outputs to motor drives and other mechanical ATV 

parts related to navigation 

3) Addition of filters and probabilities to avoid noise effects when actually 

implemented on an ATV 

4) Provision to make the navigation fault tolerant in presence of erroneous sensors or 

faulty maps 

5) Detection of predicted motion and actual motion of the ATV and accordingly adjust 

the algorithm run time 

6) Modification of the coordinate system and units as per the sensor inputs 

7) Modification of the algorithm and the software for moving obstacles and multiple 

ATVs maneuvering simultaneously in the field 
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8) Modification of the algorithm and the software for any uneven terrain of any shape 

9) Ability to get information about height or depth of the obstacle and to make the 

ATV capable of crossing the obstacle instead of going around it 
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