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ABSTRACT 

 

 

SUNIL KUMAR REDDY GURRAM. Implementation of controller area network (CAN) 

bus in an autonomous all-terrain vehicle. (Under the direction of DR. JAMES M. 

CONRAD) 

 

 

The University of North Carolina Charlotte is provided with a Honda Four Trax 

Ranch ATV by Zapata Engineering (a small business firm located in Charlotte, NC) 

which is intended to tow a trailer of ground sensing equipment. The mechanical control 

system of the all-terrain vehicle (ATV) is converted to an electronic control system and is 

interfaced to a wireless radio system. The control system of the ATV is designed to run 

autonomously with the help of LIDAR, GPS and camera and can also be controlled over 

the wireless radio system. In order to improve the control system design and reduce the 

wiring, a Controller Area Network (CAN) control system has been implemented which is 

very flexible and reliable. 

A CAN control system contains electronic control units (ECU) which 

communicate over CAN protocol. CAN protocol is a serial communication protocol 

which is internationally standardized by ISO and it creates a two line differential bus for 

communication. It is a widely used real time communication protocol designed mainly 

for in vehicle networking but also gained popularity in many embedded applications. 

This thesis presents a design and implementation of a prototype CAN control system for 

the ATV with the LIDAR, GPS and IMU connected to the ECU.   
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CHAPTER 1: INTRODUCTION 

 

 

 The recent technology trends in the automobile industry are bringing more safety 

and comfort in a vehicle by incorporating automation techniques like collision avoidance, 

air bag deployment and entertainment devices. In the process of making an automated 

vehicle, there was a rapid increase in the use of electronic control units (ECU) in the 

vehicle. Therefore, there was a need for a special communication system for achieving 

the communication between the ECUs in a vehicle. Initially, multiplexed communication 

was implemented which decreased the interconnections (cables) between the ECUs. The 

main problem with the multiplexed communication system was it could not communicate 

data in real time. In 1980‟s, BOSCH corporation designed a multi master serial 

communication protocol called Controller Area Network (CAN) protocol for robust and 

real time for in-vehicle networking. 

The first vehicle with the CAN protocol was implemented in 1986 and reduced 

2km of wiring and 50kgs of weight in the vehicle. Since then, CAN protocol has become 

the most widely used communication protocol for in-vehicle networks. Today, the CAN 

protocol is advancing into many automated systems like vehicle automation, home 

automation and medical equipment. 
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1.1 UNC Charlotte Background 

In the Embedded Systems Research lab at UNC Charlotte, researchers had the 

task of building an autonomous all terrain vehicle (ATV) which can be used to tow a 

trailer, carrying sensitive ground scanning equipment. The ATV was designed to run 

autonomously with the help of a Light Detection and Ranging (LIDAR) unit, camera and 

GPS. A PC is used to give instructions through a microcontroller to the control circuitry 

of the vehicle based upon the data from sensor equipment (LIDAR and GPS).  The 

project was named as Zapatabot. 

1.2 Past of the Zapatabot 

 The main aim of the Zapata bot project is to design an autonomous robotic vehicle 

which can tow a trailer in diversified terrains. The University of North Carolina at 

Charlotte decided to use Honda “Four Trax Rancher AT” ATV and the project was 

named Zapata bot as it was funded by  Zapata Engineering, a small business firm. The 

project was divided between five design teams:  

 Localization team – This team was responsible for gathering data from GPS and 

other sensors which provide localization information. 

 Environmental sensing team – This team was responsible for gathering and 

analyzing environmental data from different sensors like LIDAR, SONAR and a 

camera. A PC is used on the ATV to analyze the data.  

 Mapping team – This team was responsible to create a map of the surrounding 

area with the data acquired from the localization and environmental sensing 

teams. 
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 Path planning team – This team was responsible to move the ATV in the desired 

path avoiding obstacles. 

 ATV control circuitry team – This team was responsible for designing the control 

circuitry for the ATV such that it can be controlled wirelessly. The control 

circuitry has been designed in such a way that it can be interfaced to any 

microcontroller to run the ATV autonomously. 

The QSK30P evaluation board with a Renesas M16C/30P group microcontroller o 

controls the power steering, throttle and the braking system using a stepper motor and a 

servo motor. The microcontroller on the evaluation board is programmable over USB 

through an IDE developed by renesas called “High-performance Embedded Workshop”. 

The microcontroller uses the on chip peripheral devices like timers for controlling the 

motors with a PWM pulse and a UART for communicating with the PC. The data 

accumulated from different sensors are sent to the PC. The PC analyzes the data and 

issues corresponding instructions to the control circuitry through the microcontroller. The 

ATV is wirelessly controlled using the Spectrum DX6 remote with a Spectrum BR6000 

receiver.   

1.3 Thesis Contribution 

In order to make the Zapatabot design and performance more effective, 

researchers had an idea of implementing an advanced microcontroller which could create 

a communication bus for the LIDAR and GPS data. They have decided to implement 

CAN bus on the ATV as it was the widely used communication bus for in -vehicle 

networking.  The other advantages of using CAN bus are: 
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 Reduction in the amount of I/O ports used in a microcontroller. 

 Reduction in the interconnections 

 Real time communication 

 Error detection and fault confinement  

 This thesis focuses on the development of a CAN network for the ATV. The 

Renesas RX62N is the CAN controller which creates a CAN bus for the communication 

of data. The CAN module on RX62N group implements one channel of CAN protocol 

according to the specification of ISO 11898-1. Each CAN controller on the bus is called a 

node. Each node is configured to receive data from the sensor equipment (LIDAR, GPS 

and IMU). The data is finally transmitted to the PC over CAN bus.  

1.4 Organization of thesis 

 The rest of thesis is organized as follows. Chapter 2 describes the basics of CAN 

protocol and its operation. Chapter 3 presents the previous implementations of the CAN 

protocol in robotics. Chapter 4 explains the implementation of the CAN protocol on 

Zapatabot. Chapter 5 provides the results of the implementation. Finally, Chapter 6 

provides the conclusion and future work of the thesis and the references used for this 

thesis are provided in the end.  



 

 

CHAPTER 2: CAN BASICS 

 

 

2.1 Overview 

Controller Area Network (CAN) is an asynchronous serial communication 

protocol which follows ISO 11898 standards and is widely accepted in automobiles due 

to its real time performance, reliability and compatibility with wide range of devices. 

CAN is a two wire differential bus with data rates up to 1Mbps and offers a very high 

level of security. Its robust, low cost and versatile technology made CAN applicable in 

other areas of applications where inter processor communication or elimination of 

excessive wiring is needed. Some of the areas it is widely used are industrial machinery, 

avionics, medical equipments and home automation etc. 

2.1.1 Characteristics of CAN protocol 

 The main characteristics of CAN protocol are  

 Multi master hierarchy 

 Priority based bus access 

 Baud rate up to 1MBits/sec 

 Error detection and fault confinement 
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  A CAN bus is a half duplex, two wire differential bus. The two lines, CAN_L 

and CAN_H, form the communication bus for the nodes to transmit data or information. 

The logic levels used on the bus are dominant and recessive levels, where dominant level 

is referred when TTL = 0V and recessive level is referred when TTL = 5V. The dominant 

level always overrides recessive level and this concept is used to implement the bus 

arbitration.    

  The voltage levels on the CAN bus varies from 1.5 volts to 3.5 volts. The logic 

levels are calculated as the voltage difference between the two lines. 

                       (2.1)  

If the difference voltage (      ) is 2 volts, it is considered as a dominant level and if it is 0 

volts, it is considered as a recessive level. 

In the CAN protocol, nodes communicate data or information through messages 

termed as frames. A frame is transmitted on to the bus only when the bus is in idle state. 

There are four different types of frames which are used for communication over CAN 

bus.  

 Data Frame – Used to send data 

 Remote Frame – Used to request data 

 Error Frame – Used to report an error condition 

 Overload Frame – Used to request a delay between two data or remote frames. 

The frames transmitted from one node will be received by all the other nodes on the 

network using message broadcasting. The message filtering which is provided by the 

CAN controller hardware, decides whether the received frame is relevant to that node or 
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not. If any error occurs due to reception or transmission, an error frame will be 

transmitted on the bus to let the network know of the error. Since the error frame starts 

with a 6 dominant bits, it will have highest priority when the bus is idle. As soon as the 

error is detected, the CAN protocol implements the fault confinement techniques to 

overcome the error. The fault confinement feature in the CAN protocol differentiates 

between a temporary error and a permanent failure of a node. If the error is due to 

permanent failure of the node, it automatically detaches the defective node from the bus 

without causing any problems to the network. 

2.2 Structure of a node in CAN network 

 The CAN controller implements only three layer of the ISO/OSI Reference model 

in a node. It creates a bridge from Data link layer to Application layer (as shown in 

FIGURE 2.1) in order to limit the resources and to improve the performance. The other 

layers i.e. Layer 3 to Layer 6 are implemented in higher layer protocols like CANopen, 

J1939 and DeviceNet. The physical layer and data link layer are integrated on the CAN 

controller chips and the libraries for the connection between the data link layer and the 

application layer are provided by the CAN chip manufacturers. 
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FIGURE 2.1: ISO/OSI Reference model for CAN protocol. 

 

2.3 Types of Frames and their Architectures 

 As mentioned earlier CAN provides four different types of message frames for 

communication, the architecture of each frame is discussed in this section.  

2.3.1 Data and Remote Frame 

 The architecture of the data and the remote frame are exactly the same. A data 

frame has higher priority than a remote frame. Each data and remote frame starts with a 

Start Of Frame (SOF) field and end with an End Of Frame (EOF) field. The FIGURE 2.2 

gives architecture of data and remote frames.  
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FIGURE 2.2: Architecture of Data and Remote frame. 

The following are the fields in data and remote frame: 

 SOF field (1 bit) – Indicates the beginning of the frame. A single dominant bit 

represents a start of a frame. It is also used for data transfer synchronization. 

 Arbitration Field – This contains two sub fields, Message Identifier and RTR 

field.  

o Message Identifier (11/29 bits) – This field contains a message ID for each 

frame which is either 11 (standard ID) or 29 (Extended ID) bits. No two 

message frames in the CAN network should have the same message ID. A 

message ID which has a low decimal value is considered as a high priority 

message.  

o Remote Transmission Request (RTR) (1 bit) – The RTR field 

distinguishes a data frame from a remote frame. 

 Control Field (6 bits) – This contains two sub fields, IDE and DLC field 

o Identifier Extension (IDE) Bit (1 bit) – This bit indicates the format of the 

message ID in the frame, either a standard 11-bit format or extended 29-

bit format.  
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o Data Length Code (DLC) field (4 bits) – This field is used to set the 

amount of data being transferred from one node to other node. In a remote 

frame, these bits represent the amount of data it is requesting. The 

following are the values of the DLC bits for the corresponding amount of 

data. 

TABLE 2.1: Setting of DLC field for required amount of data. 

DLC (3 bits)  Amount of data 

dddd 0 bytes 

dddr 1 byte 

ddrd 2 bytes 

ddrr 3 bytes 

drdd 4 bytes 

drdr 5 bytes 

drrd 6 bytes 

drrr 7 bytes 

rddd 8 bytes 

Where “r” represents recessive level. 

   “d” represents dominant level. 

 

 Data Field – This field contains the actual data and it is not applicable for remote 

frame. 
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 CRC field (16 bits) – The CRC field consists of the CRC Sequence and a CRC 

Delimiter bit. 

o CRC Sequence field (15 bits) – This 15 bit field contains the frame check 

sequence without the stuffing bits. 

o CRC Delimiter bit (1 bit) – This bit is used to provide processing time for 

the CRC Sequence field.  

 ACK field (2 bits) – The ACK field consists of a 1 bit Acknowledgement Slot 

field and Acknowledgment Delimiter bit (which is always recessive).  

 EOF field (7 bits) – Indicates the end of the frame. A seven bit continuous 

recessive bit represents the end of frame. 

A node uses data frame to transmit data to any other node on the network. The 

RTR field determines whether the message frame should act as data frame or a remote 

frame. When the RTR bit is set to dominant level, then the message frame will act as a 

data frame. A maximum of 8 bytes of data can be transferred using a single data frame. 

Each data frame will be assigned a unique message ID using which the node decides 

whether the data is relevant or not. 

A remote frame is used to request a data frame from any node on the network. 

When the RTR bit is set to recessive level, then the message frame will act as a remote 

frame. While requesting data from a node, the length of the data field in control field 

(DLC bits) of the remote frame should be same as the requesting data frame otherwise a 

bus collision occurs. As soon as the remote frame is accepted by a node, a data frame will 
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be transmitted on to the bus with the requested data. When two or more nodes on the 

network request the same message at the same time a bus collision occurs.  

2.3.2 Error Frame 

 An error frame is transmitted onto the bus whenever a transmission or reception 

error occurs due to a faulty node or bus problems. An error frame consists of three fields  

 Error flag (6 bits) – It is 6 dominant bits which indicates the transmitting or 

receiving error on the bus. 

 Error Delimiter (8 bits) – It is represented as a sequence of 8 recessive bits. After 

transmitting the error flag each node transmits a single recessive bit and waits for 

the bus level to change to recessive. Only after the bus level is recessive, the 

remaining 7 recessive bits will be sent onto the bus. 

 Interframe Space (3 bits) – It is represented as minimum space between any type 

(data, remote, error, overload) of frame and a following data or remote frame. It 

contains of 3 recessive bits.  

The error delimiter and the Interframe space are used to synchronize the nodes to the 

error frame transmitted on to the bus. 

2.3.3 Overload frame 

 The overload frame takes the same form of the error frame but the overload frame 

is used to request a delay between the transmission of the next data or remote frame. It 

consists of two fields, Overload flag and an Overload delimiter. 
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 Overload flag (6 bits) – It contains 6 dominant bits which indicates the 

transmitting or receiving error on the bus. 

 Overload Delimiter (8 bits) – It is represented as a sequence of 8 recessive bits. 

After transmitting the error flag each node transmits a single recessive bit and 

waits for the bus level to change recessive. Only after the bus level is recessive, 

the remaining 7 recessive bits will be sent onto the bus. 

 Interframe Space (3 bits) – It is represented as minimum space between frames of 

any type (data, remote, error, overload) of frame and a following data or remote 

frame. It transmits 3 consecutive recessive bits on to the bus. When the Interframe 

space is being transmitted, no node on the network is allowed to transmit any of 

the frames except the overload frame. 

2.4 Bus Arbitration 

 In a single bus communication protocol, when two or more nodes request access 

to the bus then the bus arbitration technique comes in. Usually bus access will be given to 

a node with a high priority. The bus arbitration technique also reduces data collisions.  

CAN protocol provides a non-destructive bus arbitration mechanism. It assigns a 

recessive level to the bus only if all the nodes on the bus output a recessive level and it 

assigns a dominant level if any one of the nodes on the network output a dominant level. 

When a dominant bit and recessive bit request access for the bus, the dominant bit is 

given the access as it is considered as the high priority.  So the bus arbitration on CAN 

network follows an AND gate logic as shown in table. 
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TABLE 2.2: Bus arbitration on CAN bus 

Node1 Node 2 Bus logic level 

Dominant Dominant Dominant 

Dominant Recessive Dominant 

Recessive Dominant Dominant 

Recessive Recessive Recessive 

 

 When transmitting a frame on to the bus, the bus access to a node will be given 

based upon the message ID of the frame. As the dominant level is considered as high 

priority, the message ID with more dominant bits is considered as a high priority 

message. When the bus is idle, the bus access will be assigned to the node which 

transmits a message with a higher priority. 

2.5 Message Broadcasting 

 CAN protocol is based on message broadcasting mechanism, in which the frames 

transmitted from one node is received by every other node on the network. The receiving 

nodes will only react to the data that is relevant to them. Messages in CAN are not 

acknowledged due to unnecessary increase of traffic. But the receiving node checks for 

the frame consistency and acknowledges the consistency. If the acknowledge is not 

received from any or all the nodes of the network, the transmitting node posts an error 

message to the bus. If any of the nodes are unable to decode the transmitted message due 

to internal malfunction or any other problem, the entire bus will be notified of the error 

and the node re-transmits the frame. If there is an internal malfunction in a node, that 
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particular node reports an error for each frame it receives. Due to this most bandwidth of 

the network will be allocated to error frames as they have higher priority (starts with 6 

consecutive dominant bits). To overcome this problem the CAN protocol supports a bus 

off state in a node, in which the node will be detached from the bus if it reports an error 

for more than a pre defined value. The bus off state of a node is implemented to avoid the 

breakdown of the network due to a single node.   

 While broadcasting data frames on the bus, each node on the bus receives every 

data frame transmitted on to the bus. As CAN protocol does not support IDs for the nodes 

and the receiver does not know the information of the transmitter of the frame, each data 

frame goes through an acceptance filtering process at the receiving node, which is 

dependent on the message ID (standard or extended) of the frame.  

 The process of data requesting in CAN protocol is carried out by the remote 

frame. The RTR bit in a frame decides whether the frame is a remote frame or data 

frame. When the RTR bit is set to recessive level the frame will act as a remote frame. 

When a node is requesting a data frame from another node, the message identifier section 

(ID bits) and data length section (DLC bits) in the remote frame should be of same value 

of that in the data frame that is requested otherwise an error will be reported on the bus. 

2.6 Data Transfer Synchronization 

 Each node in the CAN network will have different oscillators running at different 

frequencies, so to make all the nodes work synchronously while transferring data, the 

CAN protocol uses the falling edge of the SOF bit (transition from recessive to dominant 

bus level). 
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 The bit coding used in CAN bus is Non-Return-to-Zero principle in which the bit 

level remains constant during the entire bit time, which creates a node synchronization 

problem during the transmission of larger bit blocks of same polarity. To overcome this 

problem CAN protocol uses bit stuffing mechanism.  

Bit Stuffing: The CAN protocol allows only 5 consecutive bits of same polarity between 

the SOF bit and Data field. If more than 5 consecutive bits of same polarity are 

transmitted on to the bus it will be considered as an error condition. So to transmit data 

with more than 5 consecutive bits of same polarity the CAN protocol inserts a 

complementary bit of opposite polarity at the transmitter end and at the receiver end the 

filtering should be performed to get rid of the stuffed bit. Bit stuffing is applied only in 

data and remote frames and it is not applicable after CRC field.  

2.7 Error detection and Fault confinement 

 The CAN protocol implements a series of error detection mechanisms which 

contributes to the high level of reliability and error resistance. It also implements fault 

confinement mechanisms for proper function of the network. The error detection 

mechanisms implemented are 

 Bit monitoring – Transmitter compares each bit that is transmitted on to the bus 

with the data it is transmitting and reports an error if there is change in the data 

transmitted. 

 Checksum check – Every data and remote frame has a 15-bit CRC filed which 

carries the checksum of the frame and is used to detect errors at the receiver. 
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 Bit stuffing – CAN protocol allows only 5 consecutive bits of same polarity. Bit 

stuffing is implemented during transmission of more than 5 consecutive bits of 

same polarity. If more than 5 consecutive bits of same polarity are transmitted, the 

bus takes it as an error frame as the first 6 bits of the error frame are dominant 

bits. 

 Frame check: Each transmitting and receiving node checks for the consistency of 

the frames.  

 Acknowledge check: Each receiving node transmits frame consistency 

acknowledge to the transmitting node.  

Whenever an error occurs on the bus, each node on the network receives the error frame 

and the transmitting node serves the error by re-transmitting the frame. 

 The CAN protocol implements fault confinement techniques to ensure that the 

communication on the network never fails. Consider a situation in which a node has an 

internal malfunction caused due to electrical disturbances and transmits error frame for 

every frame it receives. For serving these kind of errors, CAN protocol is supplied with 

two counters, a transmit error counter and a receive error counter. The corresponding 

counter is incremented each time a failure in the transmission/reception occurs. The 

counter is decremented whenever there is a successful transmission/reception. The 

counter value does not decrement when the value is zero. Based upon the values of two 

counters the CAN nodes will have three states, Error active, Error passive and Bus off 

state.  
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 Error active state – Every node after reset starts with this state in which it 

transmits an error flag (6 consecutive dominant bits) whenever it receives an error 

frame.  

 Error passive state – A node enters into this state when a receive error counter or 

transmit error counter value is equal to or greater than 127. When the node is in 

error passive state, it transmits an error flag with 6 consecutive recessive bits. 

 Bus off state – A node enters into this state when a transmit error counter value 

increases more than 255.  

2.8 Benefits of using CAN 

 Controller Area Network is a serial communication protocol which is mainly used 

for reducing wired interconnections in a vehicle. Some of the benefits in implementing 

CAN protocol in automobiles are 

 Reduced wired interconnections 

 Low cost implementation 

 Speed, reliability and error resistance  

 Worldwide acceptance



 

 

CHAPTER 3: LITERATURE REVIEW 

 

 

 This section discusses about some of the CAN protocol designs used to build an 

autonomous robot. The following are some of the designs of CAN protocol implemented 

in robotics  

 In a paper titled “Application of Controller Area Network to Mobile Robots”, 

architecture of the mobile robot with CAN protocol is discussed. Architecture of 

the robot contains obstacle avoidance, contour following, dead reckoning, 

planning, vision, regulation and user interface modules [10].  

 In a paper titled “A CAN architecture for an intelligent mobile robot”, an 

intelligent autonomous robot using CAN bus is designed. It mainly focuses on the 

real time analysis of sensor systems, data fusion algorithms and field buses [5]. 

 In a paper titled “Localization of a Mobile Robot using Images of a Moving 

Target”, design of an autonomous robot which tracks a particular object using a 

CCD camera is discussed. In this design, control of the motor movement for the 

wheels and camera are acquired over CAN bus [2]. 

 In a paper titled “Development of a Home service Robot ISAAC”, a home service 

robot used for vacuum cleaning and home security is designed. The robot consists 
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of sensors and a USB camera. The sensor data is communicated over CAN bus 

and for the rest of the data TCP/IP protocol is implemented [3]. 

From the literature review, each CAN node designed carries a different firmware 

which limits the use of it only to that particular application. Keeping in mind the 

reusability of the device, a design of an RS232-CAN communication bridge has been 

implemented. The RS232-CAN communication bridge can be used in any application 

where a CAN bus needs to be implemented and the devices which give digital data can be 

programmed to output data on a serial port. The module implementation has been tested 

as a vehicle network bus for the ATV.  



 

 

CHAPTER 4: DESIGN OF THE ZAPATABOT 

 

 

The FIGURE 4.1 shows the ATV used for the design of the Zapatabot. 

 

FIGURE 4.1: Zapatabot ATV. 

 

4.1 Mechanical Design 

The main task of the mechanical design of the ATV is to interface the vehicle 

controls to a motor or actuator for electrical interface to a motor driver and a 

microcontroller. The mechanical design is based on a previous project done by Richard 

McKinney and the UNC Charlotte Senior Design Program [11]. The following are the 

mechanical components of the ATV that need to be interfaced to a microcontroller.



22 

 

4.1.1 Steering 

A DC motor is provided to the steering system with the Honda Fourtrax EPS. In 

order to interface the steering system to a microcontroller, the power assist system has 

been detached and the DC motor is used as the steering motor. An analog rotary encoder 

sensor is mounted to the bottom of the steering shaft as a feedback for the directional 

position of the steering column and the current angular heading of the vehicle. 

 

FIGURE 4.2: DC steering motor [11]. 

4.1.2 Throttle 

The throttle body of the Honda ATV has a spring return and it returns to an idle 

position when it is not engaged. The vehicle does not move or slowly comes to stop when 

the throttle is in an idle position. A standard servo from parallax has been interfaced to 

control the throttle. The FIGURE 4.3 shows the servo installed to the throttle body with 

the help of a bracket (white in color). 
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FIGURE 4.3: Servo motor mounted to vehicle‟s throttle body [11]. 

4.1.3 Braking 

The Honda “Four Trax Rancher EPS” ATV is provided with a hand brake, which 

is linked to a brake on one of the front wheels. The foot brake is linked to a brake on the 

rear axle. A bracket has been designed to attach the electromechanical linear actuator to 

the foot brake and the linear actuator is controlled by a motor. 

 

FIGURE 4.4: H-bridge motor control mounted to linear actuator for braking [11]. 

4.2 Electrical Design  

 The following (FIGURE 4.5) block diagram shows the design of the Zapatabot 
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FIGURE 4.5: Design of the ATV [16]. 

A Renesas QSK/62P microcontroller is used for controlling the motors 

corresponding to the data from the sensors. The sensors are connected to the PC and the 

motors are controlled through H-bridges. The PC sends data to the microcontroller 

through a serial RS232 interface. In autonomous mode of the ATV, the PC analyzes the 

data from different sensors interfaced to it and sends corresponding instructions to the 

microcontroller which moves the motors accordingly. The sensors used for localization 

and path planning are LIDAR, camera and GPS. Though the camera part is not fully 

implemented, the LIDAR and GPS have been implemented and tested. An IMU is also in 

plan to be implemented on the ATV. A wireless radio system was used to control the 
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ATV remotely when not in autonomous mode.  A Spektrum „DX6‟ transmitter and 

„BR6000‟ receiver are used a wireless radio system.  

4.2.1 Light Detection And Ranging (LIDAR) 

The first and foremost task in an autonomous robot is detecting the obstacles in its 

path and re routing the robot away from the obstacle. In Zapatabot, a SICK LMS 200 

LIDAR is being used for detecting the obstacles. LIDAR is also known as laser range 

finder which measures distance of an object based upon the principle of “time of flight”. 

The FIGURE 4.6 shows the LIDAR used on the ATV. 

 

FIGURE 4.6: SICK LMS 200 LIDAR [16]. 

The SICK LMS 200 LIDAR covers a distance up to 80 meters with a 180 degree 

field of view, which gives a two dimensional view of the world. It uses a rotating mirror 

to sweep a 180 degrees field of view and has a refresh rate of 80 times a second. The data 

from the LIDAR is transferred on to the user interface through RS-232 serial 

communication. The RS-232 data contains the distance the laser beam has travelled (i.e. 
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distance of the object from the LIDAR) at 180 different points as the LIDAR is 

configured for 180 degrees field of view. If we need less precise data we can also 

configure LIDAR for only 100 degree field of view which gives you only 100 data 

points. The angular resolution can also be switched between 0.25 or 0.5 or 1 degree. For 

example if you setup the LIDAR 180 degrees field of view and a angular resolution of 

0.5 degrees, we get 360(180/0.5) data  points. 

4.2.2 Global Positioning System (GPS) 

The Global Positioning System (GPS) is a satellite based navigation system which 

receives information from the satellites and uses triangulation method to determine the 

exact location. For a GPS receiver to get an exact 2D position (latitude and longitude) it 

should receive data from at least three satellites and for 3D position (latitude, longitude 

and altitude) it should receive data from four or more satellites. The GPS on the ATV is 

used to obtain the positional information of the vehicle.  

Most of the GPS receivers available in the market provide accuracy between 1.5 

meters and 10 meters. For the ATV, as the positional information is mainly used to 

calculate the speed and the distance travelled, a GPS with accuracy up to 5 meters is 

acceptable. So the researchers chose a Garmin GPS 25LP series GPS sensor board, which 

tracks up to twelve satellites providing every one second navigation updates.  The 

GPS25-HVS receiver operates from 6 volts to 40 volts DC voltage and outputs the data 

on a RS232 serial port. It provides a position accuracy of 15 meters with non differential 

GPS and less than 5 meters accuracy with a differential GPS. The FIGURE 4.7shows the 

GPS 25HVS receiver with the antenna (black wire) attached to it. 
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FIGURE 4.7: Garmin GPS25HVS receiver with the antenna. 

4.2.3 Inertial Measurement Unit (IMU) 

The Inertial Measurement Unit (IMU) is a device which measures the velocity, 

orientation and gravitational forces by using the accelerometers and gyroscopes. The 

IMU with a group of inertial sensors (gyroscopes and accelerometers) can be used in two 

ways, an IMU which transfers raw data from the inertial sensors and an Inertial 

Navigation System (INS) which transfers data to a navigation system which calculates 

position, velocity and attitude of a vehicle. 

A 9 Degrees Of Freedom Razor IMU is used on the ATV for the inertial 

measurement of the vehicle. It provides 9 degrees of inertial measurement with two gyros 

(single axis and dual axis), one triple axis accelerometer and one triple axis digital 
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magnetometer.  It is Attitude and Heading System (AHRS) compatible, which takes the 

raw data and estimates only the attitude of the vehicle. The IMU device comes with an on 

board ATmega328 which collects the data from the sensors and the outputs the data on a 

serial port. The output pins are compatible to be interfaced with FTDI Basic Breakout, 

Bluetooth Mate and XBee Explorer. The FIGURE 4.8 shows the IMU used on the ATV. 

 

FIGURE 4.8: 9 DOF Razor IMU [17].



 

 

CHAPTER 5: IMPLEMENTATION OF CAN ON ZAPATABOT  

 

 

 The main goal of the design is to distribute the control over the CAN bus. The 

initial design of the autonomous ATV is as shown in Error! Reference source not found.. 

As the design shows a lot of I/O ports are used to interface each device to the 

microcontroller and more interconnections (wires) would make the hardware look 

clumsy. Instead we can substitute all the interconnections by using a single two wire 

CAN bus. The advantages of implementing CAN bus on the ATV would be 

 Decreased wire harnesses 

 Easy installation of devices on to the bus 

 Error detection and fault confinement 

 Does not affect the operation of the bus if a particular node breaks down. 

 Real time performance  

 Robust to noisy environments 

5.1 Renesas RX62N Evaluation Board 

 The Renesas RX62N group has a RX family/RX600 series 32-bit CPU which 

features high performance and high speed. The rx62n group is equipped with two 

channels of Usb 2.0, one channel of Ethernet, one channel of CAN bus protocol, timers, 
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independent watchdog timer and brown out detectors (power on reset and low level 

voltage detection).  The FIGURE 5.1 shows the Renesas RX62N evaluation board. 

 

FIGURE 5.1: Renesas RX62N evaluation board. 

   The CAN module on RX62N group implements one channel of CAN bus protocol 

according to the specification of ISO 11898-1. This allows communication of messages 

in both standard identifier (11 bits) and extended identifier (29 bits) and allows data rates 

up to 1 Mbps.  

5.2 Implementation of CAN protocol on RX62N 

 In the implementation part of the CAN protocol, a CAN bus has been created 

where all the nodes can be connected and tested for correct operation. An algorithm has 

been developed for CAN communication between RX62N microcontrollers. The 
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discussion in this section would be about the CAN communication on RX62N and an in 

detail explanation of the algorithm.   

 The CAN protocol on RX62N is configured using some set up registers and the 

mailboxes are used for transmission and reception of data. It has totally 32 mailboxes that 

can be configured in two different modes  

 Normal mailbox mode: In which all 32 mailboxes can be configured to either 

transmission or reception mailboxes. 

 FIFO mailbox mode: In which 24 mailboxes can be configured to either 

transmission or reception mailboxes. In the remaining 8 mailboxes, first four 

mailboxes can be configured as FIFO transmission and the other four mailboxes 

are configured as FIFO reception mailboxes. 

  A transmission mailbox carries the data to be transmitted onto the bus and the 

reception mailbox stores the received data. A status register is available for RX62N 

which records the status of all the events occur in a particular node. Bus off state of a 

node can also be checked by reading this register. 

5.2.1 Self Testing of CAN module on RX62N 

The test modes on RX62N microcontroller allow us to test the CAN module 

without connecting the external bus. When a test mode is enabled, the CAN transmit pin 

(CTx0) is virtually connected to the CAN receive pin (CRx0) and checks for the 

transmission errors. In all the test modes the CTx0 pin outputs only recessive bits. There 

are three different kinds of test modes available each one featuring different forms of 

testing the CAN bus.  
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 Listen only mode: In this mode, the node can receive valid data and remote 

frames and the node just monitors the bus. This mode is mainly used for baud rate 

detection. The FIGURE 5.2 shows the connections of CTx0 and CRx0 pins in listen 

only mode 

 

FIGURE 5.2: CTx0 and CRx0 connections for listen only mode [4]. 

 Self test mode 0 (External loopback): In self test mode 0 the microcontroller 

receives its own transmitted messages, stores them in a mailbox and sends an 

ACK bit. This mode is used to test the CAN transceiver so the CAN transmit pin 

(CTX0) and CAN receive pin (CRX0) should be connected to the transceiver.  

The FIGURE 5.3 shows the connections of CTx0 and CRx0 pins in self test 0 

mode. 



33 

 

 

FIGURE 5.3: CTx0 and CRx0 connections for self test mode 0 [4]. 

 Self test mode 1 (Internal Loopback): This mode is used for self test functions. In 

self test mode 1 the microcontroller receives its own transmitted messages, stores 

them in a mailbox and sends an ACK bit.  In this mode the CTX0 and CRX0 pins 

are internally connected and the input from the CRX0 pins is ignored. The Error! 

Reference source not found. shows the connections of CTx0 and CRx0 pins in self 

test 1 mode. 

 

FIGURE 5.4: CTx0 and CRx0 connections for self test 1 mode [4]. 

These modes can be set up using the CAN0 test control register in RX62N 

microcontroller. 
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5.2.2 Baud Rate of CAN protocol 

 The baud rate of the CAN protocol can be set to a maximum of 1Mbps. It can be 

varied using the external clock source, settings of the internal clock source and prescaler 

values in the set up registers. The formula used to calculate the baud rate of CAN bus is   

                                      (5.1)  

Where Segment Length is used to synchronize data between two nodes as each node may 

or may not have the same clock frequency. The default baud rate on the CAN bus used in 

this project is 500Kbps. 

5.2.3 Interrupts of CAN protocol on RX62N 

The CAN module on RX62N provides with the following interrupts. 

 Transmission complete interrupt 

 Reception complete interrupt 

 Error interrupt 

 Transmit FIFO interrupt 

 Receive FIFO interrupt 

The first two interrupts are used in normal mailbox mode of the CAN protocol 

whereas the last two interrupts are used in FIFO mailbox mode. The error interrupt is 

enabled for all the mailboxes in either normal mailbox mode or FIFO mailbox mode. In 

this project only the reception complete interrupt is being used. 

5.2.4 Algorithm of CAN protocol on RX62N 

The following is the pseudo code for the transmission of data on to the CAN bus 

using polling 
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 Enable CAN module. 

 Enable the ports for transmission and reception. 

 Switch CAN module to reset mode. 

 Select the type of mailbox (normal or FIFO), ID (standard or extended). 

 Set up required clock speed and corresponding baud rate. 

 Select the required test mode if needed. 

 Switch CAN module to halt mode or operation mode. 

 Select a mailbox for transmission and clear the mailbox. 

 Select the length of the data. Set the id and enter the required transmitting data 

into the mailbox. 

 Clear the transmission enable bit of the CAN bus. 

 Select the type of transmission (one shot or continuous). 

 Set the transmission enable bit of the CAN bus. 

 When the sending of data is successful, the sent data status flag will be enabled. 

 Clear the sent data status flag for the next transmission. 

 Clear the transmission enable bit and set it again for the next transmission.  

 

The following is the pseudo code for receiving of data on the CAN bus using polling 

 Enable CAN module. 

 Enable the ports for transmission and reception. 

 Switch CAN module to reset mode. 

 Select the type of mailbox (normal or FIFO), ID (standard or extended). 
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 Set up required clock speed and corresponding baud rate. 

 Select the required test mode if needed. 

 Switch CAN module to halt mode or operation mode. 

 Select a mailbox for receiving and clear the mailbox. 

 Set the required id in the mailbox to receive data only with that particular id. 

 Switch CAN module to halt mode. 

 Enable the mask for message filtering with a particular id. 

 When the data is received the new data status flag will be enabled and the 

reception complete interrupt occurs. 

 When the reception complete interrupt occurs, the received data is saved in a 

queue. 

5.3 CAN Control System for the ATV 

The FIGURE 5.5 shows the control system design of the ATV with the CAN bus.  
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FIGURE 5.5: Control System design of the ATV with CAN bus. 

Each node on the CAN bus uses the above transmission and reception algorithms 

to communicate data over the CAN bus. Each node is termed as an ECU which 

communicates data with the device connected to it through RS232 serial protocol. The 

data from the ECU is sent on the CAN bus which is received by all the nodes on the bus 

and the message filtering technique decides whether to act upon the data or not. In this 

thesis, the ECU‟s with LIDAR, GPS and IMU have been implemented and tested. This 

section discusses about how the data is controlled and transmitted on to the CAN bus. 
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5.3.1 Requesting Data from LIDAR 

 As mentioned earlier the LIDAR used in this design is a SICK LMS 200. The data 

from the LIDAR is communicated over RS232 serial protocol with default settings of 

9600 baud rate, 180 degrees angular range, 0.5 degrees angular resolution and 

measurements in mm. Commands should be sent to the LIDAR to change the settings and 

the LIDAR goes back to default settings each time it is powered down.  

The commands used for changing the settings are listed out. The following are the 

commands to be sent to the LIDAR to change the baud rate 

 

FIGURE 5.6: Commands to change the baud rate [16]. 

The following are the commands to be sent to the LIDAR to change the angular range 

and resolution 

 

FIGURE 5.7: Commands to change the angular range and resolution [16]. 

Depending on the selected combination of angular range and angular resolution, the 

following are the amount of data values received in the output string 
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FIGURE 5.8: Number of data values based upon the settings [16]. 

The LIDAR acknowledges each command with a reply command which lets us know 

whether the change of the setting was successful or not. There is also a special command 

for the LIDAR to tell it to start the distance measurement and the distance measurement 

data would be received in continuous mode. 

 

FIGURE 5.9: Command to start the continuous stream of data [16]. 

 The data from the LIDAR starts with a header which contains the information of the data 

being sent. The FIGURE 5.10 shows format of the data from the LIDAR. 
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FIGURE 5.10: Description of the output data string [16]. 

As shown in the FIGURE 5.10, the data will be accompanied with a 7 byte header and a 

CRC checksum field at the end of the string. The data comes in the form of packets and 

the received packets will be in the format as shown in FIGURE 5.11. 

 

FIGURE 5.11: Packets of output string [16]. 

As the LIDAR sends a continuous stream of data, there is also a special command to stop 

the continuous data. 

 

FIGURE 5.12: Command to stop the continuous stream of data [16]. 
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The main task of the RX62N microcontroller is to save the distance measurement data 

along with the header and an ID which differentiates LIDAR data from the other data. 

The ID to be set for the LIDAR data can be selected by the user and the selection of ID 

for the data from the sensors will be discussed in further chapters.  

5.3.2 Requesting Data from GPS 

The Garmin GPS 25HVS used on the ATV is configured to the default settings of 

NMEA Version 2.0 ASCII output, 4800 baud rate and an output frequency of 1Hz. It 

outputs data on a RS232 serial port. For polling of data on the GPS, the NMEA 0183 

standard provides an Output Sentence Enable/Disable. The format of the sentence is as 

follows  

$PGRMO,<1>,<2>*hh<CR><LF> 

Where  <1> Target sentence description (e.g., PGRMT, GPGSV, etc.) 

<2> Target sentence mode, where: 

0 = disable specified sentence 

1 = enable specified sentence 

2 = disable all output sentences 

3 = enable all output sentences (except GPALM) 

This sentence can be used to request any required NMEA sentence from the GPS. The 

requested sentence will be transmitted every second in ASCII format. For example to 

enable transmission of all the output sentences the format would be 
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$PGRMO,,3<CR><LF> and to stop the continuous transmission of sentences the format 

of the sentence would be $PGRMO,,2<CR><LF>.  

5.3.3 Requesting Data from IMU 

The IMU used on the ATV is a 9 degree of freedom Razor IMU which has four 

sensors. 

 Single axis gyro 

 Dual axis gyro 

 Triple axis accelerometer 

 Triple axis magnetometer 

The IMU contains an onboard ATmega328 which collects the data from the sensors and 

outputs the data on a RS232 serial port. The IMU is configured to output data at a rate of 

19200 baud. The ATmega328 triggers the continuous transmission of data at the 

reception of “Ctrl + z” command.   



 

 

CHAPTER 6: PROTOTYPE DESIGN 

 

 

As the modules (LIDAR, GPS, IMU and H-Bridge) being implemented on the 

ATV are RS232 based devices, a communication bridge between RS232 and CAN would 

make interfacing of new devices on to the CAN bus easier. Software has been developed 

in a way that the end user can just plug any device which communicates over RS232 and 

get the data over CAN.  This chapter would discuss about the hardware and software 

implementation of RS232-CAN bridge module using Renesas RX62N.  

6.1 Hardware implementation of RS232-CAN Communication Bridge 

Each CAN node on the bus is given an ID which will be used by the CAN 

protocol as a standard ID for message transfer. An 8 bit DIP switch has been provided 

through which ID to the CAN node can be selected. Among the 8 bits, the first 3 MSB 

bits are used to select the baud rate of the RS232 protocol and the rest of the bits are used 

to select the ID. The node with DIP switch value of  0xFF would be considered as a base 

node and communicates with the PC at 115200 baud rate. The TABLE 6.1 lists the baud 

rate values for the corresponding values of the DIP switch.
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TABLE 6.1: Baud rate selection with DIP switch. 

DIP switch value Baud  rate  

001 2400 

010 4800 

011 9600 

100 19200 

101 38400 

110 57600 

111 115200 

 

Apart from the 3 bits of DIP switch for the RS232 baud rate selection, 5 bits are 

left out for the ID selection but only 4 bits are being used. Consider a case where a IMU 

is transferring data from the IMU node to the base station, if the base station wants to 

stop the transmission of data it needs to send a command on to the CAN bus. If the 

transmit ID of the IMU node has a higher priority (lesser value) than the receive ID of the 

IMU node, then the higher priority data is transmitted on to the bus and the command 

from the base station will not have access to the bus till the transmission of data stops due 

to which the continuous transmission of data never stops. To avoid this dead lock 

situation, the 5
th
 bit of the DIP switch is used to assign lower priority for the RS 232 data 

being transmitted and higher priority to the commands from the base station. As only 4 
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bits are being utilized for the ID, maximum of 16 devices can be connected on a single 

CAN bus. If more devices are to be interfaced, the baud rate of all the RS232 devices can 

be kept same, so that the 3 bits used for the selection of the baud rate can be utilized to 

select the ID by which the number of devices that can be connected to the bus increases 

to 128 (2^7).  

6.2 Software Implementation of RS232-CAN Communication Bridge 

The softwares used for the development of this application are High-performance 

Embedded Workshop (HEW) and Netbeans. HEW is a GUI based development 

environment used for debugging and development of embedded applications for Renesas 

microcontrollers. It is a powerful and an easy to use interface which has C/C++ compilers 

and debugger elements for all the available Renesas evaluation boards. In this 

application, HEW is used to compile, debug and program the firmware for Renesas 

RX62N.   

Netbeans is an Integrated Development Environment (IDE) used for developing 

Java, JavaScript, PHP, Python, Ruby, Groovy, C and C++ based applications. In this 

application it is used to develop a Java based Graphical User Interface (GUI) for serial 

communication with Renesas RX62N microcontroller.   

The firmware for RS232-CAN bridge module on Renesas RX62N microcontroller 

is developed in C language. It collects the data from serial RS232 bus and transmit it on 

to the CAN bus. Two FIFO queues have been created to store the data received from the 

RS232 and CAN protocols. Receive interrupts have been set up for both the protocols, 

where the ISR saves the data in the corresponding queue. The FIGURE 6.1: RS232-CAN 
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communication bridge execution flow.FIGURE 6.1show the execution flow of the 

program implemented.  

 

FIGURE 6.1: RS232-CAN communication bridge execution flow. 
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The Java based GUI created using Netbeans is used to trigger data from the sensor 

nodes. A serial port with a baud rate of 115200 has been configured to communicate with 

Renesas RX62N microcontroller. The data received on the serial port is saved in an array. 

The data in the array starts with a one byte header which represents data from a particular 

sensor node. For every byte of data on the CAN bus, two bytes of data is sent to the PC 

with a header as an extra byte which is used to differentiate data from different sensor 

nodes. Using the header, data is sorted and written in to corresponding text files. For 

every new header value, a new text file will be created and the data related to this header 

will be logged in to the corresponding text file. The working of the RS232-CAN module 

was tested with three nodes (LIDAR, IMU and GPS) connected to the CAN bus.  The 

data received in the text files was consistent without any errors even though all the three 

nodes were transmitting data at the same time.  

 

FIGURE 6.2: GUI for RS232-CAN module. 
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 The  GUI for RS232-CAN module shows the GUI designed for initializing the 

data communication with the PC and also for triggering continuous data transmission of 

the sensors. The COMPORT text field and the BAUDRATE text field are used to select 

comport of the PC with required baud rate. The START button starts the serial 

communication between the base station and the PC. The STOP button closes the serial 

port and deletes the text files created. The other buttons are used to trigger the continuous 

data transmission of the sensors available.  

6.3 Final Prototype 

The final prototype of the control system for the ATV is as shown in the figure below. 

 

FIGURE 6.3: Prototype of the control system for the ATV. 
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The FIGURE 6.3 shows the four CAN nodes with DIP switches. The yellow, red and 

black wires form the CAN bus connecting the four nodes.  

 

FIGURE 6.4: Graphic display on RX62N. 

The FIGURE 6.4 shows the messages printed on the graphic display while the firmware 

is running. The first line displays whether the node acts as a sensor node or a base station. 

The second line shows the value put into the baud rate generator register of RX62N for 

calculating the baud rate for RS232 serial protocol. The third line shows the transmit and 

receive ID‟s of the node. The fourth line shows the value of the CAN status register in 

RX62Nwhich depicts the status of CAN bus.  
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6.4 Data received over CAN bus 

The following are the screenshots of the text files that show the data of LIDAR, 

GPS and IMU received over CAN bus.  

 

FIGURE 6.5: LIDAR data received over CAN bus. 
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FIGURE 6.6: GPS data received over CAN bus. 

The FIGURE 6.6 shows the GPS data received over CAN bus. As the GPS was 

tested in a closed area, it could not receive any satellite signals so most of the GPS data is 

zeros or default values. 
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FIGURE 6.7: IMU data received over CAN bus. 

The FIGURE 6.7 shows the IMU data received over CAN bus. The first three values 

of the IMU data represents the orientation of the device with respect to three axes, next 

three represents the values of acceleration with respect to three axes and the last three 

represent the value for the strength of magnetic field with respect to three axes.  



 

 

CHAPTER 7: CONCLUSION AND FUTURE SCOPE 

 

 

7.1 Conclusion 

This thesis documented a design of RS232-CAN module which forms a 

communication bridge between the RS232 and CAN protocols.  The module provides a 

protocol conversion with a plug and play feature where modification of neither the 

hardware nor the software is needed. The module is mainly designed to implement CAN 

bus on the Honda Four Trax ATV.   

 An autonomous vehicle is built with the ATV and the CAN protocol is used as the 

vehicle network in the ATV.  CAN is a reliable, robust and real time serial 

communication protocol which reduces wiring harness, weight and complexity. The 

protocol creates a master to master communication bus and every message transmitted on 

the bus is received by all the nodes connected to the bus. The message filtering technique 

decides whether the received data is relevant to the node or not. The error detection and 

fault confinement techniques provided by the protocol are the added features which keep 

the bus working without any errors and virtually detach the faulty nodes which transmit 

corrupt messages on the bus.   

 A prototype of CAN control system on the ATV has been implemented with four 

nodes where three nodes are connected to a LIDAR, GPS and IMU each and a base 

station as the fourth node which is connected to the PC. A Java based GUI application is 
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designed to communicate with the base station through a serial port and also to trigger the 

continuous transmission of data from the sensors. The rate at which the base station 

communicates with the PC should be equal to or lesser than the sum of rates at which the 

sensors communicate over RS232 to avoid the overflow of the data. The data which is 

received on the PC serial port is sorted out and written in three different text files where 

each file contains the data from the LIDAR, GPS and IMU respectively.   

7.2 Future Scope 

A camera module is in implementation process, as the CAN bus is not capable of 

communicating such high speed data, other higher data rate vehicle networks like 

FlexRay can be implemented. A Local Interconnect Network (LIN) bus can also be 

implemented as a sub network for the CAN bus which is designed mainly for simple 

switching applications. It can be used for triggering the continuous data transmission of 

the devices which releases some bandwidth on the CAN bus and also increases the 

number of devices that can be interfaced to the CAN bus. 

The present RX62N evaluation board occupies a lot of space when mounted on the 

ATV, so a smaller size evaluation board would make the design compact. The design can 

be made more compact by incorporating a smaller size microcontroller, CAN controller 

and a RS232 module. The firmware designed for this thesis can be implemented in the 

compact design and a low cost RS232-CAN converter will be available for future 

researchers. 
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APPENDIX A: CODE 

/***********************************************************************/                                                                     

/*  FILE: YRDKRX62N_Glyph_Demo.c                            */ 

/*  DATE        :Wed, Jul 21, 2010                                     */ 

/*  DESCRIPTION :Main Program                                    */ 

/*  CPU TYPE    :RX610                                                     */ 

/***********************************************************************/ 

/* Code written by Sunil Kumar Gurram for the thesis “Implementation of Controller Area 

Network (CAN) bus in an autonomous all-terrain vehicle (ATV)  */ 

#include "iodefine_RX62N.h" 

#include "RX62N_LED_defs.h" 

#include "UART_Queues_def.h" 

#include "LMS.h" 

 

/***************************************************************************** 

Includes <system includes> "Glyph Includes"  

*****************************************************************************/ 

#include <stdlib.h> 

#include <stdio.h> 

#include "src\Glyph\Glyph.h" 

#include "CAN_defines.h" 

 

 



/***************************************************************************** 

Declaration of global and external variables 

*****************************************************************************/ 

int i,j,k = 0,p,temp = 0,data_transfer; 

unsigned int dist_data[500],raw_data[500]; 

extern Q_T RS232_rx,CAN_rx; 

extern int data_ready,rx_header,x,cont_datacmd,header,RXID,sid_acquired; 

char buffer1[30], buffer2[], buffer3[],buffer4[],c; 

unsigned char data=0,rxdata,f_data; 

unsigned int data1 = 0,RDATA = 0, SDATA = 0,sid,rx_sid,tx_sid,sid_cleared = 

0,data_size,baud_sel,baudrate; 

 

/***************************************************************************** 

Private global variables and functions 

*****************************************************************************/ 

T_glyphHandle G_lcd ; 

static int G_nContrastValue = 105 ; 

static int G_nContrastBoostValue = 5 ; 

static void TextWrite( char * msg_string); 

static void DrawFDI(T_glyphHandle aHandle); 

void Init_port(); 

 

void BSP_Display_String(int8_t aLine, char * aText); 



    #define LCD_LINE1       0 

    #define LCD_LINE2       1 

    #define LCD_LINE3       2 

    #define LCD_LINE4       3 

 

/***************************************************************************** 

* ID : 100.0 

* Function Name: DrawFDI 

* Description : draw the words FUTURE at (10, 10) DESIGNS at (20, 20) 

* and INC at (30, 30)  

* Argument : aHandle the Glyph Handle to this instance. 

* Return Value : none 

* Calling Functions : main 

*****************************************************************************/ 

static void DrawFDI(T_glyphHandle aHandle) 

{ 

    char buffer[30]; 

    BSP_Display_String(LCD_LINE1, "FUTURE"); 

    BSP_Display_String(LCD_LINE2, " DESIGNS"); 

    BSP_Display_String(LCD_LINE3, "  INC"); 

    sprintf((char *)buffer, "(C0STR : %d)",   CAN0.C0STR.WORD); 

    BSP_Display_String(LCD_LINE4, buffer); 

    TextWrite(buffer); 



    TextWrite("\r\n"); 

} 

 

/***************************************************************************** 

* Function Name: main 

* Description : This main function is designed as a firmware for a CAN-RS232 node. This 

function waits for the Switch 1 press and after the Switch 1 is pressed the node acts as Base 

station or a Node station based upon the DIP switch value. 

If the DIP switch value is 0xFF it acts as a Base station and for the other values 

 The first 4 LSBs are used to select the receive ID for the CAN protocol and the transmit 

ID for the CAN protocol is 16 (as the First MSB of the DIP switch will always be 1) + 

the value set up with the first 4 LSB of the 8-bit DIP switch 

 The bits from Bit4-Bit6 are used to select the baud rate for the RS232 protocol. 

DIP switch value Baud  rate  

001 2400 

010 4800 

011 9600 

100 19200 

101 38400 

110 57600 

111 115200 

  

* Argument : none 



* Return Value : none 

* Calling Functions : none 

*****************************************************************************/ 

void main(void) 

{     

    ENABLE_LEDS; 

    ALL_LEDS_OFF; 

     Init_CAN(); 

 Init_port(); 

 Q_Init(&RS232_rx); 

 Q_Init(&CAN_rx);    

   

    if (GlyphOpen(&G_lcd, 0) == GLYPH_ERROR_NONE) { 

        /* use Glyph full access direct functions */ 

        GlyphNormalScreen(G_lcd) ; 

        GlyphSetFont(G_lcd, GLYPH_FONT_6_BY_13) ; 

        GlyphClearScreen(G_lcd) ; 

        //DrawFDI(G_lcd) ; 

 

while(1){ 

sprintf((char *)buffer4, "(I/O val: %X)",PORTD.PORT.BYTE); // Displays the DIP switch value 

BSP_Display_String(LCD_LINE4, buffer4); 

if(!S1){ 



 switch(PORTD.PORT.BYTE){ 

  case 0xFF: // Base station 

   InitSCI(PRESCALER_115200,BRG_115200); 

   for(i=RX_MBOX_STRT; i<RX_MBOX_END;i++){ 

    CAN_Rx(i,0,0x0000); 

   } 

   while(1) 

         {    

   if(!Q_Empty(&RS232_rx)){  //Checking for  RS232 received data in 

RS232 queue 

     sid = Q_Dequeue(&RS232_rx); 

     data_size = Q_ReturnSize(&RS232_rx); 

 

    //Transfers all the data from the RS232 queue on to the CAN bus 

 for(i=0;i< data_size;i++){          

  CAN0.C0MCTL[TX_MBOX_ID].BIT.TX.SENTDATA = 0;       

  CAN0.C0MCTL[TX_MBOX_ID].BIT.TX.TRMREQ = 0;      

while(((CAN0.C0MCTL[TX_MBOX_ID].BIT.TX.SENTDATA)&&(CAN0.C0MCTL[TX_MB

OX_ID].BIT.TX.TRMREQ))); 

  CAN_Tx(TX_MBOX_ID, Q_Dequeue(&RS232_rx),sid); 

  DisplayDelay(10);      

 }     

    }      



 //Checks for the CAN received data in the CAN queue and transmits data on to RS232   

    if(!Q_Empty(&CAN_rx)){  

     transmit_data(Q_Dequeue(&CAN_rx));    

    }     

 

    //Just in case if CAN receive queue gets full, it initializes the queue 

    if(Q_Full(&CAN_rx)){ 

     Q_Start(&CAN_rx); 

    } 

      

    //Displays the status of the node 

    sprintf((char *)buffer1, "BASE NODE"); 

       BSP_Display_String(LCD_LINE1, buffer1); 

     

        sprintf((char *)buffer2, "Baud Rate : 115200"); 

       BSP_Display_String(LCD_LINE2, buffer2); 

     

      sprintf((char *)buffer4, "(CAN Status : %X)",CAN0.C0STR.WORD);  

    BSP_Display_String(LCD_LINE4, buffer4); 

         } 

   break; 

  default: //Node station 

   //Selecting the baud rate selector value from the Bit4-Bit6 



   baud_sel = 0xE0 & PORTD.PORT.BYTE;  

   baudrate = (baud_sel == 0x20) ? InitSCI(PRESCALER_2400,BRG_2400) 

: (baud_sel == 0x40) ? InitSCI(PRESCALER_4800,BRG_4800) : (baud_sel == 0x60) ? 

InitSCI(PRESCALER_9600,BRG_9600) : (baud_sel == 0x80) ? 

InitSCI(PRESCALER_19200,BRG_19200) : (baud_sel == 0xA0) ? 

InitSCI(PRESCALER_38400,BRG_38400) : (baud_sel == 0xC0) ? 

InitSCI(PRESCALER_57600,BRG_57600) : (baud_sel == 0xE0) ? 

InitSCI(PRESCALER_115200,BRG_115200) : 0; 

   //Sets the transmit and receive ID for the CAN protocol 

   tx_sid = (0x10 | (0x0F & PORTD.PORT.BYTE)); 

   rx_sid = 0x0F & PORTD.PORT.BYTE; 

   //Initializes the receive mailbox with SID filter enabled 

   for(i=RX_MBOX_STRT; i<RX_MBOX_END;i++){ 

    CAN_Rx(i,rx_sid,0x7FF); 

   } 

   while(1) 

         { 

   if(!Q_Empty(&RS232_rx)){ //Checking for  RS232 received data in 

RS232 queue 

    //Transfers all the data from the RS232 queue on to the CAN bus 

  for(i=0;i< Q_ReturnSize(&RS232_rx);i++){      

  CAN0.C0MCTL[TX_MBOX_ID].BIT.TX.SENTDATA = 0; 



              

 CAN0.C0MCTL[TX_MBOX_ID].BIT.TX.TRMREQ = 0;     

 while(((CAN0.C0MCTL[TX_MBOX_ID].BIT.TX.SENTDATA)&&(CAN0.C0MCTL[

TX_MBOX_ID].BIT.TX.TRMREQ)));     

 CAN_Tx(TX_MBOX_ID, Q_Dequeue(&RS232_rx),tx_sid); 

 DisplayDelay(10);      

}     

    }      

   //Checks for the CAN received data and transmits the data on to RS232  

    if(!Q_Empty(&CAN_rx)){  

     rxdata = Q_Dequeue(&CAN_rx); 

     transmit_data(Q_Dequeue(&CAN_rx));    

    } 

   //Just in case if RS232 receive queue gets full, it initializes the queue 

    if(Q_Full(&RS232_rx)){ 

     Q_Start(&RS232_rx); 

    }     

    //Displays the status of the node 

    sprintf((char *)buffer1, "SENSOR NODE"); 

       BSP_Display_String(LCD_LINE1, buffer1); 

    

    sprintf((char *)buffer2, "BaudRate = %d",baudrate);  

       BSP_Display_String(LCD_LINE2, buffer2); 



      

     sprintf((char *)buffer3, "RXID = %d",rx_sid); 

       BSP_Display_String(LCD_LINE3, buffer3); 

       

      sprintf((char *)buffer4, "(CANstatus: %X)",CAN0.C0STR.WORD); 

    BSP_Display_String(LCD_LINE4, buffer4); 

         } 

   break;    

     } 

} 

 } 

 } 

    else 

    { 

        /* Output message on SCI2 */ 

        TextWrite("hello world! LCD Failed\r\n"); 

    } 

    GlyphClose(&G_lcd) ;     

    TextWrite("Exiting Program, Good Bye!\r\n"); 

} 

 

 

 



/***************************************************************************** 

* ID : 102.0 

* Function Name: InitSCI 

* Description : Initialize SCI2 to operate asynchronously with the selected baudrate  

  from the prescaler and brg arguments. 

* Argument : prescaler --- Used to select the clock source for the UART 

    brg --- Used to select the baud rate for the UART using the baud rate 

generator value 

* Return Value : none 

* Calling Functions : none 

*****************************************************************************/ 

static int InitSCI(int prescaler, int brg) 

{ 

    /* Enable SCI2 */ 

    MSTP(SCI2) = 0; 

  /* RxD2-B and TxD2-B are used */ 

    IOPORT.PFFSCI.BIT.SCI2S = 1; 

    /* RxD2-B is input */ 

    PORT5.DDR.BIT.B2 = 0; 

    /* Enable Input Buffer on RxD2-B */ 

    PORT5.ICR.BIT.B2 = 1; 

    /* TxD2-B is output */ 

    PORT5.DDR.BIT.B0 = 1; 



    /* Disable Tx/Rx */ 

    SCI2.SCR.BYTE = 0; 

    /*  Set mode register 

        -Asynchronous Mode 

        -8 bits 

        -no parity 

        -1 stop bit 

        -PCLK clock (n = 0) */ 

    SCI2.SMR.BYTE = prescaler; 

     

    /* Enable RXI and TXI interrupts, even though we are not  

       using the interrupts, we will be checking the IR bits 

       as flags */ 

    SCI2.SCR.BIT.RIE = 1; 

    SCI2.SCR.BIT.TIE = 1; 

     

    /* Clear IR bits for TIE and RIE */ 

    IR(SCI2, RXI2) = 0; 

    IR(SCI2, TXI2) = 0; 

     

    /* Disable RXI and TXI interrupts in ICU because we are polling */ 

    IEN(SCI2, RXI2) = 0; 

 IPR(SCI2, RXI2) = 2; 



 IEN(SCI2, RXI2) = 1; 

    IEN(SCI2, TXI2) = 0; 

     

    /*  Set baud rate to 115200 

        N = (PCLK Frequency) / (64 * 2^(2*n - 1) * Bit Rate) - 1 

        N = (48,000,000) / (64 * 2^(2*0 - 1) * 115200) - 1 

        N = 12 */ 

    SCI2.BRR = brg; 

 

    /* Enable Tx/Rx */ 

    SCI2.SCR.BYTE |= 0x30; 

 return brg; 

} 

 

/***************************************************************************** 

* ID : 103.0 

* Function Name: TextWrite 

* Description : Sends a text string to the terminal program. 

* Argument : msg_string - the string of characters to send. 

* Return Value : none 

* Calling Functions : none 

*****************************************************************************/ 

static void TextWrite( char * msg_string) 



{     

    unsigned char i;         

    /* This loop reads in the text string and puts it in the SCI2 transmit buffer */ 

    for (i=0; msg_string[i]; i++) 

    {     

        /* Wait for transmit buffer to be empty */ 

        while(IR(SCI2, TXI2) == 0); 

         

        /* Clear TXI IR bit */ 

        IR(SCI2, TXI2) = 0; 

 

        /* Write the character out */  

        SCI2.TDR = msg_string[i]; 

    } 

} 

 

/***************************************************************************** 

* ID : 103.0 

* Function Name: BSP_Display_String 

* Description : Sends a text string to the terminal program. 

* Argument : aLine - index of line to draw string at 

*          : aText - Pointer to zero-terminated ASCII text to draw at line 

* Return Value : none 



* Calling Functions : main 

*****************************************************************************/ 

void BSP_Display_String(int8_t aLine, char * aText) 

{ 

    int8_t y = aLine * 16;     

    /* Draw text lines, 16 pixels high, 96 pixels wide */ 

    /* Clear the rectangle of this line */ 

    GlyphEraseBlock(G_lcd, 0, y, 95, y+15); 

    GlyphSetXY(G_lcd, 0, y); 

    GlyphString(G_lcd, (uint8_t *)aText, strlen(aText)); 

} 

/***************************************************************************** 

* Function Name: Init_CAN 

* Description : Initialize CAN to operate asynchronously at 500kbps. 

* Argument : none 

* Return Value : none 

* Calling Functions : none 

* Created by Sunil Kumar Gurram 

*****************************************************************************/ 

void Init_CAN() 

{  

 IOPORT.PFJCAN.BIT.CAN0E = 1; 

  



 /* Port settings P3.2 - Tx(output) P3.3 - Rx (input) */ 

 CTx_DDR = 1; 

 CRx_DDR = 0; 

 CRx_ICR = 1; 

  

 /*Clock settings Pclk(Fcan) set to 50MHz and Iclk set higher than Pclk*/ 

 SYSTEM.SCKCR.BIT.PCK = 1; 

 SYSTEM.SCKCR.BIT.ICK = 0; 

 SYSTEM.SCKCR.BIT.BCK = 2; 

 SYSTEM.SCKCR.BIT.PSTOP1 = 0; 

 SYSTEM.SCKCR.BIT.PSTOP0 = 0;  

   

 MSTP(CAN0) = 0; 

 CAN0.C0CTLR.BIT.SLPM = 0; // Other than sleep mode 

 while(CAN0.C0STR.BIT.SLPST); 

 CAN0.C0CTLR.BIT.CANM = 1; // CAN reset mode 

   

   while(!(CAN0.C0STR.BIT.RSTST &&(!CAN0.C0STR.BIT.SLPST))); 

 /*Normal mailbox mode, standard id mode, overwrite mode, ID priority transmit mode*/ 

 CAN0.C0CTLR.BIT.BOM = 0; 

 CAN0.C0CTLR.BIT.TSPS = 3; 

 CAN0.C0CTLR.BIT.TPM = 0; 

 CAN0.C0CTLR.BIT.MLM = 0; 



 CAN0.C0CTLR.BIT.IDFM = 0; 

 CAN0.C0CTLR.BIT.MBM = 0; 

 CAN0.C0CTLR.BIT.SLPM = 0; 

 CAN0.C0CTLR.BIT.TSRC = 0;  

 

 /*Fcan = 48 MHz, TSEG2 = 5, SJW = 4, TSEG1 = 16, Total = 25Tq, P + 1 = 4 

 Communication speed = 500kbps*/ 

 CAN0.C0BCR.BIT.TSEG2 = 7;  

 CAN0.C0BCR.BIT.SJW = 1;  

 CAN0.C0BCR.BIT.BRP = 3;  

 CAN0.C0BCR.BIT.TSEG1 = 0x0E;  

  

 CAN0.C0CTLR.BIT.CANM = 2; // CAN halt mode 

  

 /*CAN test mode enabled, Self test (internal loop back)(should change only in CAN halt 

mode)*/ 

 while(!CAN0.C0STR.BIT.HLTST); 

 CAN0.C0TCR.BIT.TSTE = 0; 

 CAN0.C0TCR.BIT.TSTM = 0;  

   

 /*TSRC should be set only in Operation mode*/  

 CAN0.C0CTLR.BIT.CANM = 0; 

 CAN0.C0CTLR.BIT.TSRC = 1; 



  

 //Enabling Interrupts for CAN 

 IEN(CAN0,RXM0) = 0; 

 IPR(CAN0,RXM0) = 4; 

 IEN(CAN0,RXM0) = 1; 

 for(i=0;i<32;i++){ 

  CAN0.C0MCTL[i].BYTE = 0; 

 } 

 CAN0.C0MIER = 0xFFFF; 

} 

 

/***************************************************************************** 

* Function Name: CAN_Tx 

* Description : Transmits data on to the CAN bus with the ID received from the arguments 

* Argument : mbox_id --- selects the mbox to be used as a transmit mailbox 

    data1 --- is the actual data to be transmitted 

    sid ----- is the message ID for the data  

* Return Value : none 

* Calling Functions : none 

* Created by Sunil Kumar Gurram 

*****************************************************************************/ 

void CAN_Tx(int mbox_id, int data1,int sid){ 

 CAN0.C0CTLR.BIT.CANM = 2; // CAN halt mode 



  

 /*Writing to C0MB[] should be done when C0MCTL is zero*/ 

 CAN0.C0MCTL[mbox_id].BYTE = 0; 

  

 CAN0.C0MB[mbox_id].ID.BIT.IDE = 0; 

 CAN0.C0MB[mbox_id].ID.BIT.RTR = 0; 

 CAN0.C0MB[mbox_id].ID.BIT.SID = sid; 

 CAN0.C0MB[mbox_id].DLC.BIT.DLC = 1; 

 CAN0.C0MB[mbox_id].DATA[0] = data1; 

  

 //Sets the mailbox for transmission 

 CAN0.C0MCTL[mbox_id].BIT.TX.TRMREQ = 0; 

 CAN0.C0MCTL[mbox_id].BIT.TX.ONESHOT = 0; 

 CAN0.C0MCTL[mbox_id].BIT.RX.TRMREQ = 1;  

} 

 

/***************************************************************************** 

* Function Name: CAN_Rx 

* Description : Receives data from the bus  

* Argument : mbox_id --- selects the mailbox for receiving 

             sid     --- allows the messages only with this ID 

            sid_filter_enable --- enables the mailbox filter if 0x7FF and if the filter is enabled, allows 

the     messages only with the selected SID 



* Return Value : none 

* Calling Functions : none 

* Created by Sunil Kumar Gurram 

*****************************************************************************/ 

void CAN_Rx(int mbox_id,int sid, int sid_filter_enable){ 

   

 /*Writing to C0MB[] should be done when C0MCTL is zero*/ 

 CAN0.C0MCTL[mbox_id].BYTE = 0; 

  

 CAN0.C0MB[mbox_id].ID.BIT.IDE = 0; 

 CAN0.C0MB[mbox_id].ID.BIT.RTR = 0; 

 CAN0.C0MB[mbox_id].ID.BIT.SID = sid; 

  

 CAN0.C0MCTL[mbox_id].BIT.RX.RECREQ = 0; 

 while(CAN0.C0MCTL[mbox_id].BIT.RX.RECREQ); 

 CAN0.C0MCTL[mbox_id].BIT.RX.ONESHOT = 0; 

 CAN0.C0MCTL[mbox_id].BIT.RX.RECREQ = 1; 

  

 /*data should be written to C0MKR in halt mode*/ 

 CAN0.C0CTLR.BIT.CANM = 2; // CAN halt mode 

 while(!CAN0.C0STR.BIT.HLTST); 

 CAN0.C0MKR[1].BIT.SID = sid_filter_enable; 

 CAN0.C0MKIVLR = 0;  



 CAN0.C0CTLR.BIT.CANM = 0; // CAN operation mode  

} 

/***************************************************************************** 

* Function Name: transmit_data 

* Description : Transmits data on to RS232  

* Argument : data1 --- The data to be transmitted on to RS232 

* Return Value : none 

* Calling Functions : none 

* Created by Sunil Kumar Gurram 

*****************************************************************************/ 

int transmit_data(unsigned char data1){ 

  while(IR(SCI2, TXI2) == 0); 

 IR(SCI2, TXI2) = 0; 

 SCI2.TDR = data1; 

 return 0;  

} 

/***************************************************************************** 

* Function Name: receive_data 

* Description : Receives data from RS232  

* Argument : none 

* Return Value : Returns the received value 

* Calling Functions : none 

* Created by Sunil Kumar Gurram 



*****************************************************************************/ 

unsigned char receive_data(){ 

 unsigned char rdata; 

 while(IR(SCI2,RXI2) == 0); 

  rdata = SCI2.RDR; 

  IR(SCI2, RXI2) = 0; 

  return rdata;  

} 

 

/***************************************************************************** 

* Function Name: d3_send_string 

* Description : Transmits string on to RS232  

* Argument : s --- Pointer to the first character of the string 

* Return Value : none 

* Calling Functions : none 

*****************************************************************************/ 

void d3_send_string(far int * s) { 

  while (*s != 'e') { 

    if (Q_Enqueue(&tx_q, *s)) 

      s++; 

    else { }     

 while(IR(SCI2, TXI2) == 0); 

 IR(SCI2, TXI2) = 0; 



 SCI2.TDR = Q_Dequeue(&tx_q); 

 }   

} 

 

void DisplayDelay(unsigned long int units){ 

 unsigned long int counter = units * 0x100; 

 while(counter--){} 

} 

 

/***************************************************************************** 

* Function Name: Init_port 

* Description : Initializes the port for the DIP switch  

* Argument : none 

* Return Value : none 

* Calling Functions : none 

* Created by Sunil Kumar Gurram 

*****************************************************************************/ 

void Init_port(){ 

 PORTD.DDR.BYTE = 0; 

 PORTD.ICR.BYTE = 1; 

 PORTD.PCR.BYTE = 1; 

}     


