

DEVELOPMENT OF MULTITHREADED REAL TIME DATA ACQUISITION
SOLUTIONS

by

Gajendra Singh

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in the

Department of Electrical and Computer Engineering

Charlotte

2006

Approved by:

Dr. James M. Conrad

Dr. Ivan L. Howitt

Dr. Linda J. Xie

ii

© 2006

Gajendra Singh
ALL RIGHTS RESERVED

iii

ABSTRACT

GAJENDRA SINGH. Development of Multithreaded Real Time Data Acquisition
Solutions. (Under the direction of DR. JAMES M. CONRAD).

The purpose of a data acquisition system is to provide reliable and timely

information. The received information can be then analyzed in real-time or remotely to

estimate the state of the measured environment. This thesis and work are an effort toward

the development of communication Application Programming Interfaces (APIs). The

developed APIs can be used to provide reliable communication between a host PC and an

embedded target.

This work is justified by the increasing need of host side software, which can be used

to communicate with an embedded target using a variety of communication interfaces. A

multithreaded application has been developed to address the implementation of APIs.

This application monitors and logs the sensors’ data on the host PC. A way to monitor

and display several sensors’ data received on a single communication line is proposed in

the application. While developing the APIs, an effort was made towards data abstraction.

An object oriented approach has been utilized for all the communication interfaces. The

protocols tested for communication are RS-232, USB and Ethernet. The interface

implementation is used to build communication classes for the classified protocols. The

classes constructed for interfacing can be easily integrated with any application software.

Using existing work, a developer will have to do a thorough investigation of all protocols

to achieve reliable data acquisition. This work provides a simplified API solution for

three major communication protocols in an easy-to-use toolkit which can be used by

developers with reasonable software design skills.

iv

ACKNOWLEDGEMENTS

I would like to thank my graduate adviser Dr. James M. Conrad for his extraordinary

support and understanding in guiding me through this thesis successfully. I would also

like to thank Dr. Ivan Howitt and Dr. Linda Xie for providing valuable support.

I would like to express my special thanks to Sandeep Sirpatil, Gurudatt Mysore and

Sonia Thakur for providing me valuable help to accomplish my thesis implementation. I

also want to express my appreciation to developers who post valuable information and

their experience on open source website www.codeproject.com.

v

TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES.. xii

CHAPTER 1: INTRODUCTION... 1

1.1 Motivation... 2

1.2 Previous Work .. 3

1.3 Description of the proposed thesis work... 5

1.4 Organization of Thesis.. 5

CHAPTER 2: COMMUNICATION INTERFACES... 7

2.1 Overview of RS-232 ... 7

2.1.1 D9-Connector Pins... 9

2.1.2 Medium Access.. 10

2.1.3 RS-232 Limitations.. 11

2.1.4 Programming a Serial Connection ... 11

2.1.4.1 Opening a Port .. 12

2.1.4.2 Configuring a Serial Port .. 12

2.1.4.3 Configuring Time-outs.. 12

2.1.4.4 Writing to a Serial Port ... 12

2.1.4.5 Reading from a Serial Port.. 13

2.1.4.6 Closing a Serial Port ... 13

2.2 Overview of USB.. 13

2.2.1 USB Signals and Packets ... 15

2.2.2 USB Transfers.. 17

vi

2.2.3 Enumeration ... 18

2.2.4 Writing PC Software.. 20

2.3 Overview of Ethernet.. 22

2.3.1 Ethernet Frame... 23

2.3.2 Medium Access Control .. 25

2.3.3 Programming for Network Communications... 25

2.3.3.1 Sockets, Ports and Addresses.. 26

2.3.3.2 Creating a Socket .. 26

2.3.3.3 Making a Connection.. 26

2.3.3.4 Sending and Receiving Messages... 27

2.3.3.5 Closing the Connection... 27

2.3.3.6 Detecting Errors .. 27

2.4 Comparison of Interfaces.. 27

CHAPTER 3: DEVELOPMENT AND TESTING .. 29

3.1 Development Phase... 29

3.1.1 RS-232 Interface Specifications .. 28

3.1.2 RS-232 Interface Development.. 29

3.1.2.1 Opening Serial Port... 30

3.1.2.2 Configuring Serial Port ... 30

3.1.2.3 Setting Timeouts ... 31

3.1.2.4 Reading and Writing to the Serial Port .. 32

3.1.2.5 Closing Serial Port .. 32

3.1.3 USB Interface Specifications ... 32

vii

3.1.4 USB Interface Development .. 32

3.1.5 Ethernet Interface Specifications ... 34

3.1.6 Ethernet Interface Development .. 34

3.1.6.1 Accept Function .. 35

3.1.6.2 Connect Function .. 35

3.1.6.3 Send and Receive Function... 35

3.1.6.4 Close Function .. 36

3.2 Testing Phase .. 36

3.2.1 RS-232 Interface Testing ... 36

3.2.1.1 System Description ... 37

3.2.1.2 Clam Sensor Bay... 38

3.2.1.3 YSI Sensor Bay... 38

3.2.1.4 Motor Controller ... 39

3.2.1.5 Single Board Computer... 40

3.2.1.6 Complete Hardware .. 41

3.2.1.7 Graphical User Interface ... 42

3.2.1.8 Window Design of GUI.. 42

3.2.1.9 System Requirements.. 44

3.2.1.9.1 Clam Sensor Board Requirements ... 44

3.2.1.9.2 YSI Sensor Board Requirements ... 46

3.2.1.9.3 Motor Controller Board Requirements .. 47

3.2.1.9.4 Persistor Requirements .. 48

3.2.1.9.5 Graphical User Interface Requirements... 48

viii

3.2.1.10 Software Design of GUI ... 49

3.2.3 USB Interface Testing.. 50

3.2.3 Ethernet Interface Testing.. 52

3.3 Multitasking .. 52

3.3.1 Idle Process Thread.. 53

3.3.2 Independent Threads .. 53

3.3.3 Inter-tasks Communication .. 53

3.3.4 Building a Multitasking Application ... 54

CHAPTER 4: DEVELOPMENT TOOLS.. 55

4.1 Introduction to Windows Programming ... 55

4.2 Integrated Development Environment.. 56

4.2.1 The Editor .. 56

4.2.2 The Compiler ... 56

4.2.3 The Linker.. 57

4.2.4 The Libraries .. 57

4.3 Using Visual Studio IDE .. 58

4.3.1 Creating Project Workspace... 59

4.3.2 Building Project ... 63

4.3.3 Debugging.. 65

CHAPTER 5: FUTURE DEVELOPMENT ... 67

5.1 Conclusion .. 67

5.2 Future Work.. 68

5.2.1 API and SDK supported by WinCE... 68

ix

5.2.2 Why WinCE? ... 69

REFERENCES ... 70

APPENDIX .. 73

x

LIST OF FIGURES

FIGURE 2.1 RS-232 voltage levels.. 8

FIGURE 2.2 D9 pinouts [26].. 10

FIGURE 2.3 Serial logic waveform [26].. 10

FIGURE 2.4 Comparison of USB, RS-232 serial & parallel connecters [16].................. 15

FIGURE 2.5 Enumeration process [9].. 19

FIGURE 2.6 Re-enumeration [9].. 19

FIGURE 2.7 Layers of PC-host software [16].. 21

FIGURE 2.8 Network protocol stack [3].. 23

FIGURE 2.9 Basic socket connection [6]... 26

FIGURE 3.1 Data logging system .. 37

FIGURE 3.2 Data acquisition system... 37

FIGURE 3.3 Clam sensor board ... 38

FIGURE 3.4 YSI sensor board ... 39

FIGURE 3.5 Motor controller board .. 40

FIGURE 3.6 Single board computer... 41

FIGURE 3.7 Complete hardware system.. 41

FIGURE 3.8.a Tab one dispalying biological data ... 43

FIGURE 3.8.b Tab two dispalying environmental data ... 44

FIGURE 3.9 Software design flowchart ... 50

FIGURE 3.10 USB data acquisition hardware setup.. 51

FIGURE 3.11 USB data acquisition on host-PC .. 52

FIGURE 4.1 Windows program structure [14]... 56

xi

FIGURE 4.2 VC++ inactive IDE.. 58

FIGURE 4.3 Opening a new project using MFC AppWizard .. 59

FIGURE 4.3.a Step-1 of creating a project framework .. 60

FIGURE 4.3.b Step-2 of creating a project framework .. 60

FIGURE 4.3.c Step-3 of creating a project framework .. 61

FIGURE 4.3.d Step-4 of creating a project framework .. 61

FIGURE 4.3.e Project information window ... 62

FIGURE 4.4 Set active configurations ... 62

FIGURE 4.5 Active project workspace .. 63

FIGURE 4.6 Files created after building the project .. 64

FIGURE 4.7 Starting debugger in VC++ ... 66

FIGURE 4.8 Using debugger in VC++ .. 66

xii

LIST OF TABLES

TABLE 2.1 D9 pins description [4].. 9

TABLE 2.2 RS-232 cable length [26] .. 11

TABLE 2.3 Relative performances of USB versions [16] ... 14

TABLE 2.4 USB packet types [16] .. 16

TABLE 2.5 USB transfers [16] .. 18

TABLE 2.6 Descriptors [9] .. 20

TABLE 2.7 Ethernet frame [3] ... 24

TABLE 2.8 Comaprison Chart [3] ... 28

TABLE 3.1 Clam sensor data format ... 45

TABLE 3.2 YSI data analysis... 47

TABLE 4.1 Description of files created after building the project [14]........................... 64

xiii

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

API Application Program Interface

ATL Active Template Libraries

CR2032 3V Lithium Coin Cell

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

DCB Data Control Block

DTE Data Terminal Equipment

GUI Graphical User Interface

IDE Integrated Development Environment

IFG Inter Frame Gap

ISDN Integrated Services Digital Network

MAC Medium Access Control

MFC Microsoft Foundation Classes

MSDN Microsoft Developer Network

PID Packet Identifier

SDK Software Development Kit

TCP/IP Transmission Control Protocol /Internet protocol

USB Universal Serial Bus

WinCE Windows Compact Edition

1

CHAPTER 1: INTRODUCTION

Most of the proposed research projects analyze data to answer an anticipated research

problem. It is very important to collect correct data in order to successfully address the

objective of the research. Recent advent of single board computers has redefined the data

acquisition methodologies. Almost every single board computer supports more than one

communication interface. This gives flexibility to choose a specific communication

interface suitable for data acquisition systems. The large amount of data collected by a

single board computer can not be analyzed on a real-time basis because of the memory

constraints and the absence of a user interface. When data is sent to a host PC or a

handheld device, then it can be analyzed in real-time or be stored on hard disk for remote

analysis. The proposed work is an effort to develop a communication interface between

an embedded target controllers and a host PC. This thesis work not only explores the

conventional serial data acquisition protocol based on RS-232, but also gives a simplified

solution to advanced data communication interfaces such as USB and Ethernet.

The main reasons why USB and Ethernet were chosen along with traditional RS-232

protocol are:

• They are versatile. An Ethernet has ability to transfer short messages to huge files by

use of the higher level TCP/IP protocol. USB has the ability to serve many devices on

a single line of interface.

• They have operating system support.

2

• They provide a much higher data rate in comparison to RS-232.

• There is an increasing support of USB and Ethernet on embedded targets.

1.1 Motivation

This work initially started with development of a RS-232 based data acquisition

interface for the Durham-based Nekton Research Inc. The task of developing a RS-232

based data acquisition interface was challenging without the support of a well defined

host side communication interface. As a result, the development a well defined

communication toolkit was identified and efforts were made to produce and demonstrate

the usefulness of the interface for application software. The success of a research

objective depends on the analysis of uncorrupted data. Therefore, data acquisition

becomes the utmost important issue of a research project. This work provides an easy-to-

use communication interface toolkit for developers to carry out effective data acquisition.

The aim of the work is to provide a reliable communication between the host PC and the

embedded target to ensure a successful logging of the data at host side. In order to

provide abstraction, an object oriented approach has been chosen for the implementation

of the communication interfaces.

A substantial amount of resources were identified to work in the direction of

developing communication interfaces. RS-232 is a well supported interface and the

Microsoft Developer Network (MSDN) provides the necessary information to access RS-

232 on the PC host side. The work by John Hyde [16] provides an adequate foundation to

understand USB interface. Microsoft Developer Network offers support for programming

Ethernet interface and served as a useful resource. Three different descend classes in C++

are developed from Microsoft Foundation Classes (MFC) and member functions to

3

access USB, Ethernet and RS-232 ports are added to them.. These classes can be

integrated with any user interface application and can serve as an added capability to an

application software used to access embedded targets. With the use of provided interface

a developer obtains an easy-to-use communication interface solution.

1.2 Previous Work

The proposed work is influenced by the continuous enduring work on improving

data acquisition methodologies. The proposed work ensures to provide a toolkit that can

be a valuable addition to the never ending research on improvisation of data acquisition.

Work by S. Martin proposes an alternative to single user; single tasking, simple, low

cost IBM ‘PC/XT/AT’ family of computers. These PC/XT/AT computers were designed

with office automation in mind to excel in word processing and spreadsheet applications.

They were not up to the mark for real time requirements of high performance data

acquisition. He has proposed to put a high performance processor right on the data

acquisition board [17]. Interface developed for the anticipated work, can be an excellent

addition to high performance processor in order to achieve reliable, and fast data

acquisition.

Work by Payne and Menz have listed all the important goals of a guaranteed high

speed data acquisition and illustrated a case study consistent to their work. Their work

does not consider communication interfaces into account [21]. A lack of sophisticated

communication interface can be a major limiting factor in achieving real time

requirements. The anticipated work for thesis can add to the case study discussed in the

work done by Payne and Menz and can deal with communication issues.

4

Postolache, Pereira and Girao have proposed a sensing unit as a part of PC based

water quality monitoring system [22]. It is almost similar to projected work in this thesis.

The main difference between two works is that the latter one provides a flexible set of

communication interfaces which can be utilized to deal with soft as well as hard real time

requirements. The former work just discusses the RS-232 based system and does not

consider higher data rate acquisition interfaces.

Nigus and Dyer have proposed the design of a system which is host independent

[20]. Their work can be utilized by any computer, provided it has a RS-232 port. The

thesis work adds to the flexibility of their design by introducing two more interfaces to

system: USB and Ethernet.

The article by Bruce discusses USB protocol for accessing data from embedded

targets and served as an essential resource in developing a USB based data acquisition

system [23].

The article by B. Zdanivsky discusses to create an Internet browser based acquisition

system. In addition to generating an Internet feed, the system collects heart rate, blood

pressure, and temperature data [30]. The proposed system three interfaces: RS-232,

Ethernet, and USB to communicate between different modules of the system. A

communication toolkit, similar to one developed for projected thesis work can save a lot

of time in developing such system.

A careful study of all the previous work done, gives adequate motivation to work on

managing a real time data acquisition in a better way.

5

1.3 Description of Proposed Thesis Work

The main goal of the proposed thesis work is to provide an easy-to use toolkit. This

toolkit can be used to provide an efficient communication interface. An effort to improve

data acquisition has been made by providing a reliable communication interface. An

Application Programming Interface has been developed and tested for three major

communication interfaces: RS-232, USB, and Ethernet.

In order to address the objective of the proposed thesis work, a RS-232

communication interface class was written. An application software was developed to test

the RS-232 interface class. A hardware system was configured to collect data from 23

different sensors. The data collected was sent to PC-host on a single RS-232 line. A user

interface application running on PC-host monitored the data received on the serial port.

The data received is not only displayed in real-time but also logged on a file for remote

analysis. The successful data acquisition by the application tested the efficiency of

developed RS-232 interface and further motivated to extend the work. In order to

complete the development of toolkit, classes for USB and Ethernet interface was

implemented and tested.

1.4 Organization of Thesis

This thesis is divided into five major chapters. Chapter Two of the thesis report

discusses communication interfaces developed and tested for the toolkit. It also explains

the Medium Access Control mechanism of RS-232, USB and Ethernet protocols and also

illustrates a comparison between them. Chapter Three describes the development and

testing of Interfaces. It also discusses the demonstrated hardware used for interfacing

sensors and sending data to host machine via different interfaces.

6

Chapter Four describes the development tools used to create, compile and debug

interface and application software. Chapter Five summarizes the results and suggests

future enhancements.

7

CHAPTER 2: COMMUNICATION INTERFACES

As a part of data acquisition, there are many choices of interfaces available. Deciding

on an interface suitable for an application depends on a lot of factors. Choosing a

particular host-target interface would depend on:

• Support of interfaces on both PC-host and target, so that writing low level drivers can

be avoided.

• Fast, so that the interface can deal real-time data acquisition.

• Reliable, so that validity of data can be provided.

• Inexpensive solution

 Some times more than one interface is essential for an application to meet the

requirements. Designing a GUI supporting a specific communication interface calls for a

lot of learning of that particular interface. To use a particular communication interface

efficiently, it has to be configured properly. In this section of proposed work, three

communication interfaces are selected and medium access control mechanism of these

interfaces is explained.

2.1 Overview of RS-232

RS-232 is very well known single-ended serial communication protocol. It is intended

to support efficient data communication at low baud rates (<20kbps). The RS-232 signals

are represented by voltage levels with respect to common ground. Signal definitions in

RS232 standard are:

8

• Ground

• Primary communication channel for data exchange and flow control.

• Secondary communication channel for controlling remote modem and for

handshaking.

A signal between -3v to -25v signifies logic ‘1’ while a signal between +3v to +25v

signifies logic ‘0’. Thus a serial communication in RS232 has a 50v voltage swing. The

region between -3v to +3v is not defined for RS232 standard.

FIGURE 2.1 RS-232 voltage levels

 Ports used for RS232 interface are of two types. There are D-type 25-pin connectors

and D-type 9-pin connectors. D-type 25 pin connectors are obsolete but d9 are commonly

used. Connecting just primary channel of these connectors make them a Null Modem. A

Null Modem is used to connect two DTE’s (Data Terminal Equipment) together. This is

commonly used method in communicating an embedded device with a PC. This involves

just a three wire (Transmit, Receive, and Ground) connection. The grounds of both

terminals are supposed to be common. Programming a serial port is fairly easy.

Exchanging data by way of RS-232 port is similar to reading from or writing to a file

9

[19]. Windows support RS-232 serial communications drivers. The only task which a

developer has to do is to develop an interface to access the port to exchange data.

2.1.1 D9-Connector Pins

Table 2.1 and Figure 2.1 shows pin connections for a 9 Pin D-type connector [4].

TABLE 2.1 D9 pin description [4]

D9 Connector Abbreviation Full name

Pin 3 TD Transmit Data

Pin 2 RD Receive Data

Pin 7 RTS Request To Send

Pin 8 CTS Clear To Send

Pin 6 DSR Data Set Ready

Pin 5 SG Signal Ground

Pin 1 CD Carrier Detect

Pin 4 DTR Data Terminal Ready

Pin 9 RI Ring Indicator

10

FIGURE 2.2 D9 pinouts [26]

2.1.2 Medium Access

RS-232 communication is asynchronous which means no clock signal is sent with

data. Data is synchronized by use of a transmitted start bit and a receiver side clock

which keeps tab on timing [4]. A transition from high (logic ‘1’) to low (logic ‘0’)

signifies a start bit. After the start bit the data bits are sent one at a time until a stop bit is

received. A transition from high to low signifies a stop bit. For validating data, parity is

often used. A common waveform from the port is shown in Figure 2.3.

FIGURE 2.3 Serial logic waveform [26]

11

2.1.3 RS-232 Limitations

The cable length is the major issue regarding RS-232 communications. The maximum

length which can be used for efficient data communications depends on some factors.

Using a cable with low capacitance allows you to span longer distances without going

beyond the limitations of the standard. The Baud rate required also plays a role in

determining cable length. If the transmission speed is reduced by a factor two or four, the

maximum length increases dramatically as shown in Table 2.2 [26]. Other minor

difficulties with RS-232 interface can be:

• Misconnection of handshaking signals, resulting in buffer overflow.

• Incorrect pin configuration preventing connectors to mate properly.

TABLE 2.2 RS-232 cable lengths [26]

Baud Rate Cable Length in feet

19200 50

9600 500

4800 1000

2400 3000

2.1.4 Programming a Serial Connection

Programming a serial connection involve following functions:

• Opening a port

• Configuring a Serial port

• Configuring time-outs

12

• Writing to a serial port

• Reading from a serial port

• Closing serial port

2.1.4.1 Opening a port

The CreateFile function is called to open a serial port. CreateFile opens the COM port

and returns a handle that can be used to access an object. Port name is given while using

CreateFile function. If port does not exist then CreateFile returns

‘ERROR_FILE_NOT_FOUND’ to notify user [19].

2.1.4.2 Configuring a Serial Port

This is the most critical phase and it involves configuring the port setting with the

DCB structure. It is very common to erroneously initialize the DCB structure. A call to

CreateFile opens a port with default settings. To configure port according to application

requirement, SetCommState function is called [19].

2.1.4.3 Configuring Time-Outs

A timeout function is very important, in case there is no activity on a port. The

COMMTIMEOUTS structure can be used to configure timeouts. If this structure is not

configured, the port uses default time-outs supplied by the driver, or time-outs from a

previous communication application [19].

2.1.4.4 Writing to a Serial Port

Once a serial port is opened and configured, the WriteFile Function is called, which

helps transfer data through serial the connection to another device. WriteFile basically

writes data to a file at a position indicated by the file pointer. Once data is been written to

the file, the file pointer value is adjusted to point a new location on file [19].

13

2.1.4.5 Reading from a Serial Port

The Readfile function is used to receive data from a device at other end of the

transmission. It is similar to WriteFile as it takes the same parameter and it reads data

from a file from a location indicated by a file pointer. Once reading is been done, the

pointer is adjusted by number of bytes read [19].

2.1.4.6 Closing a Serial Port

The CloseHandle function is used to close a serial port. This function basically closes

an open object handle. There is a two seconds delay after CloseHandle is called before

the port is closed and the resource is freed. This delay helps is completing pending

operations [19].

2.2 Overview of USB

The major limitation with the legacy PC environment is a limited number of

peripheral devices that can be attached to standard connectors. The serial connector

described in the last section also supports just a single device. The speed of the interface

is another issue taken into consideration with the legacy PC environment. The emergence

of USB created a method of attaching and accessing a number of devices at a reduced

overall cost. It also simplifies attachment and configuration from the end user

perspective. The design goals of USB include [16]:

• A single connector type to connect any PC peripheral.

• Ability to attach more than one peripheral to same connector.

• A method of easing the system resource conflicts.

• Hot plug support

• Automatic detection of devices.

14

• Low cost solution.

• Enhanced performance capability.

• Support for legacy hardware and software.

• Low power implementation.

USB fits very well in category of an interface that enhances performance capability.

USB is available in three different versions and it supports three transmission rates as

shown in Table 2.3 [16].

 TABLE 2.3 Relative performances of USB versions [16]

Performance Applications Attributes

USB1.0:Low Speed

1.5Mbps

Keyboard, Mouse

Stylus, Game Peripherals

Low cost

Easy to use

Multiple devices

USB1.1:Full Speed

12Mbps

ISDN, PBX, POTS,

Scanner

Low cost

Easy to use

Multiple devices

USB2.0:High Speed

480Mbps

Video Conferencing, Imaging,

Mass storage

Low cost

Easy to use

Multiple devices

High Bandwidth

Guaranteed Latency

15

USB uniquely provides benefits to not only the developer, but also to users using a

USB interface. USB’s defined cable standards and automatic error checking eases a lot of

work a developer would have to do. USB has the flexibility of accessing medium for

communication. It supports four different kinds of data transfers. There are transfers

suited for exchanging large and small blocks of data, with and without time constraints

[16]. USB is very useful in the case of meeting real-time requirements.

USB is not a simple protocol. In order to program a USB peripheral, one needs a fair

knowledge of rules to exchange data on the serial line.

FIGURE 2.4 Comparison of USB, RS232 serial and parallel connectors [3].

2.2.1 USB Signals and Packets

USB uses differential signaling. There are 4 wires: two data wires D+ and D- , power

and ground. The D+ and D- wires are driven at the same time and typically in anti-phase.

The USB data wires do not include a clock signal, thus it is asynchronous. The base

speed of the data wires are negotiated during enumeration and a SYNC signal is sent, so

16

that receiver can tune its bus clock to exact transitions. The fundamental element of

communication on USB bus is a packet. A packet has a start, some information and an

end. All packets fall in one of four categories: token packets, data packets, handshake

packets, and special packets. Packet information can be as small as 1 Byte and as large as

3074 Bytes. Table 2.4 gives a brief description of packets used in USB:

TABLE 2.4 USB packet types[16]

PID Value Packet Type Packet Category

0101 SOF Token

1101 SETUP Token

1001 IN Token

0001 OUT Token

0011 DATA0 Data

1011 DATA1 Data

0111 DATA2 Data

1111 MDATA Data

0010 ACK Handshake

1010 NAK Handshake

1110 STALL Handshake

0110 NYET Handshake

1100 PRE Special

1100 ERR Special

1000 SPLIT Special

0100 PING Special

0000 (Reserved) (Reserved)

17

The first byte of every packet is a Packet Identifier (PID) that defines how other

information bytes should be interpreted. A PID is formed with 4 bits and the complement

of the 4 bits to provide an error check.

2.2.2 USB Transfers

USB device deals with mainly two kind of communication. The first one is to detect

and configure a device and the second one is to carry out actual data transfers. The first

one occurs when a host enumerates the device on power up or attachment.

While configuring, a device’s firmware responds to a number of requests made by the

host. Host’s operating system is responsible for this enumeration process. Therefore, for

enumeration, a user does not have to write any code for host side; enumeration is done at

kernel level.

All communication falls in one of the four transfers supported by USB. Control

transfer is needed to configure a device on attachment or power up. The PC host software

has two parameters to deal with- delivery time accuracy and delivery quality accuracy.

The time and quality attributes have different importance for different data types. The

host guarantees quality accuracy by using handshake mechanism. In general [16]:

• If data is received correctly, then an ACK handshake is generated.

• If there is a problem with the data transfer, a NAK handshake is generated.

• If the data receiver is confused, a STALL handshake is generated.

Table 2.5 gives a brief outline of transfers involved in USB interface:

18

TABLE 2.5 USB transfers [16].

 Maximum size of Frame

Type Important
Attributes

Low
speed

Full
Speed

High
Speed

Examples

Interrupt Quality + Time 8 64 3072 Mouse,
keyboard

Bulk Quality - 64 512 Printer,
Scanner

Isochronous Time - 1023 3072 Audio, Video

Control Quality + Time 8 64 64 System
Control

2.2.3 Enumeration

It is important to know, how a USB device describes itself to host-PC. The first step

is to detect the device. This is done by detecting a rise of D+ or D- above ground. Once a

device is detected, a series of steps takes place which actually enumerates the device. The

PC host sends requests to the device. These transfers are called control transfers. Control

transfers consist of two stages, SETUP and STATUS. The device decodes the request

from the host. The firmware provides all the necessary information needed by the host to

load the proper driver for the device. This identification information consists of Device

Descriptors, Configuration Descriptors and Interface Descriptors. Figure 2.5 shows the

enumeration process.

19

FIGURE 2.5 Enumeration process[9].

Once RAM is loaded with descriptors and code that define final device, the device

needs to enumerate once again. This process is shown in Figure 2.6:

FIGURE 2.6 Re-enumeration [9]

20

Table 2.6 gives a brief description of the various descriptors a PC needs to identify a

device:

TABLE 2.6 Descriptors [9]

Descriptor Type Description

Device Describes an entire device.

Configuration Describes one of the configurations of a device.

Interface Describes one of the interfaces that is part of

configuration.

Endpoint Describes one of the endpoints belonging to an interface.

String Contains a human readable Unicode string describing the

device, a configuration, an interface, or an endpoint.

2.2.4 Writing PC Software

A PC host running USB-aware operating system software supports two distinct USB

functions- initialization and runtime. The USB initialization software is active at all times

and can add devices at anytime. Once a device is enumerated, it is given an identifier by

the PC host. This identifier is used during run-time. Figure 2.7 shows the structure of

software written for full functioning of a USB device.

21

FIGURE 2.7 Layers of PC-host software [16].

Similar to serial connection programming, USB programming also involves a number

of steps. Generally the kind of transfer involved in the application also distinguishes the

design of the host software. A basic design template will have following parts:

• Initializing program: initializing a handle to the host controller.

• Enumerating the host controller, identifying the host controller.

• Identifying the root hub node by using DeviceIoControl system call.

• Probing root hub connections for collecting node connection data structures.

• Collecting Descriptor data.

• Interpreting the Configuration Descriptor.

22

2.3 Overview of Ethernet

Host machines can easily communicate with near by devices using interfaces like

USB and RS-232, but with Ethernet a computer can communicate over greater distances.

Ethernet networks are capable and flexible. A computer on a network has to agree on the

following aspects of sharing the network [3]:

• Standard rules, which specify when a computer may transmit.

• Identifying a transmission’s intended destination.

• Format of information send over the network.

Every computer has networking support that has a layered model, where each layer

manages a portion of the job. Today growth of embedded devices supporting Ethernet

interface has greatly increased [3]. They are also supposed to support a protocol stack for

supporting networking. A stripped off version of TCP/IP stack is written is C and can

easily be ported to resource limited embedded devices. But since not all the features can

be supported by a software based TCP/IP stack, nowadays a hardware TCP/IP stack is

implemented on embedded devices. Figure 2.8 shows a computer’s network protocol

stack:

23

FIGURE 2.8 Network protocol stack [3].

2.3.1 Ethernet Frame

The Ethernet standard has been published as IEEE 802.3. All data in an Ethernet

travels in structures called frames. Each frame has defined fields for data and other

information to help the efficient transmission of data to its destination. A single frame has

seven fields. Ethernet communication is asynchronous, which means that interfaces do

not share a clock. For asynchronous RS-232 communication, a start bit and stop bit is

enough to distinguish between two frames. But an Ethernet frame consists of 1000 bits.

Detecting a single voltage change at the beginning of the frame isn’t enough to enable the

interface reliably predicting when to read all the bits that follow. So the solution to this is

to start each frame with a known bit pattern that contains many transitions. This pattern is

24

provided by Preamble and Start of Frame Delimiter. Table 2.7 shows all seven fields of

an Ethernet frame:

TABLE 2.7 Ethernet frame [3]

Field Length in
bytes

Purpose

Preamble 7 Synchronization pattern.

Start Frame
Delimiter

1 End of synchronization pattern.

Destination
Address

6 Ethernet hardware address the frame is
directed to.

Source Address 6 Ethernet hardware address of the sender.

Length or Type 2 If 1500 (05DCh) or less, the length of the
data field in bytes. If 1536 (0600h) or

greater, the protocol used by the contents
of the data field.

Data 46 to 1500 The information the source wants to send
to the destination.

Frame Check
Sequence

4 Error- checking value.

25

2.3.2 Medium Access Control

A standard which allows devices on a LAN to share their interconnecting media is

called medium access control. One of the ways of achieving medium access control is

using a master slave concept. USB interface use master slave concept for medium access

control. One another way is token passing in which, computers in the network take turns.

A token can be setting a sequence of bits that indicates the possession. However Ethernet

uses carrier sense multiple access with collision detection or CSMA/CD. The node,

which wants to transmit must monitor the network and should transmit only if the carrier

is absent. Multiple access means that no single interface controls the network traffic. Any

interface that has been idle for at least the amount of time as interframe gap (IFG) can

attempt to transmit. It’s a job of Ethernet controller to handle sending and receiving of

frames, including detecting collisions and deciding when to try again after a collision [3].

To send an Ethernet frame on network, a computer places its physical addressing the

source address field and places destination’s physical address in the destination address

field. A physical address has two parts, a 24 bit Organizationally Unique Identifier (OUI)

that identifies the interface’s manufacturer and an additional 24 bits that are unique to the

piece of hardware. This address is also called MAC address. It is often expressed as a

series of six hexadecimal bytes.

2.3.3 Programming for Network Communications

Applications requiring network capabilities are built around Winsock interface. A

descended class can be created from available MFC Winsock classes. Application

communicating over a network waits for another application to open a communication

connection. They ‘listen’ for this connection request. The application, which tries to

26

connect to another one over the network, looks for its address and once communication is

made between them, messages can be passed back and forth between them. Application

use TCP/IP network protocol for communication.

FIGURE 2.9 Basic socket connections [6]

2.3.3.1 Sockets, Ports and Addresses

Sockets were first developed on UNIX at UC Berkley. In order to read or write a file,

a file object must be used to point to file. A socket is also an object used to read and write

messages that travel between applications. To open a socket, a computer name is required

on which other application is running and also the port to which that application is

listening. Computer name is nothing but the address of the computer.

2.3.3.2 Creating a Socket

A base class CAsyncSocket is used to obtain a complete event driven socket

communication. An object of this class can be used to call create function, which is called

without any parameters, so that it can connect to another application (client) [19].

2.3.3.3 Making a Connection

Once a socket is been created, object of the class CAsyncSocket can again be called

to open the connection. There are three steps associated with opening a connection. Two

of them take place on the server, and third one on the client side. Once a connection is

27

made, an event is triggered to let application know that it is been connected or there were

problems while making a connection. The server is made to listen for incoming

connection. Once connection is made, server accepts the connection [19].

2.3.3.4 Sending and Receiving Messages

A pointer to a generic buffer is passed to send and receive functions. While sending,

buffer should contain the data and while receiving the data incoming data is copied in the

buffer. Sending data is simpler than receiving. While receiving, as soon as incoming data

comes, an event is triggered [19].

2.3.3.5 Closing the Connection

Once the complete switching of data is done between a client and a server, the

socket is supposed to be closed. This can be done by simply calling a close function of

class CAsyncSocket [19].

2.3.3.6 Detecting Errors

Another important member function of class CAsyncSocket can be used to get the

error code. This function is GetLastError () and it only returns error codes [19].

2.4 Comparison of Interfaces

After having a brief discussion of three serial interfaces, it is important to write down

their comparative capabilities. Even though making a data acquisition system may require

using all available interfaces, a comparison always helps in taking a wise decision of

using an interface in specific application. The embedded targets manufactured today have

multiple interfaces and making a decision to use an interface for a specific part of

application can be difficult without a comparison. Table 2.8 covers important parameters

considered while choosing an interface.

28

TABLE 2.8 Comparison chart [3]

Interface Format Number of Devices
(maximum)

Length
(maximum

feet)

Speed
(Maximum bps)

RS-232 Async 1 50-100 20k

USB Async 127 16 1.5M,12M,480M

Ethernet Async 1024 1600 10M,100M,1G

29

CHAPTER 3: DEVELOPMENT AND TESTING

The objective of the thesis was to develop a host-PC communication toolkit. The

communication interfaces considered for the proposed work were RS-232, USB1.1, and

Ethernet. A considerable amount of time was spent on gathering requirements for RS-

232, USB 1.1, and Ethernet interfaces. An object oriented interfaces were finally written

in C++ to complete development phase of RS-232, USB1.1 and Ethernet based toolkit.

3.1 Development Phase

Descendent classes were developed for RS-232, USB, and Ethernet interface during

development phase using MFC classes. These classes can serve as extremely useful tool

for developing user friendly software applications.

3.1.1 RS-232 Interface Specifications

• Using standard Readfile/Writefile functions to receive and transmit data.

• No handshaking is used in the interface.

• Communication is event driven.

3.1.2 RS-232 Interface development

Developing a serial class is divided into main six sections: opening serial port,

configuring serial port, configuring timeouts, reading from port, writing to port, and

closing the port.

30

3.1.2.1 Opening Serial Port

It is simple to open a serial port using windows file I/O. One important step is to

include windows.h header file in the code developed. For opening a serial port, a handle

to the serial port is created:

hComm = CreateFile (portname,
 GENERIC_READ | GENERIC_WRITE,
 0,
 0,
 OPEN_EXISTING,
 0,
 0);

The variable hComm calls CreateFile. The first argument is the name of the file to be

opened. In this case, it is the name of the port say ‘COM1’, or ‘COM2’. The next

argument informs windows whether the port is going to be read or written. Argument 5 is

open an existing file. If existing file is not present, error message is displayed. This

handle can be utilized to get hold of the port.

3.1.2.2 Configuring Serial Port

Once we obtain the handle to the port, a Data Control Block (DCB) structure is used

to configure the port for a certain set of parameters (baud rate, data bits, stop bit, parity).

DCB m_dcb;
if (!GetCommState(hComm, &m_dcb)) {
//error getting state
}

m_dcb.BaudRate = CBR_19200;
m_dcb.ByteSize = 8;
m_dcb.StopBits = ONESTOPBIT;
m_dcb.Parity = NOPARITY;

31

In this function first of all a variable of type is DCB is created. Then GetCommState

function is called. This function takes handle to the port and DCB structure variable as

argument to fill in the parameters currently in use by serial port.

3.1.2.3 Setting Timeouts

If an application is continuously polling serial port, and in case there is not any data

coming into serial port, then the application hangs while waiting for data to show up. So

timeouts can be configured to fix this problem.

COMMTIMEOUTS m_CommTimeouts;

m_CommTimeouts.ReadIntervalTimeout = 50;
m_CommTimeouts.ReadTotalTimeoutConstant = 50;
m_CommTimeouts.ReadTotalTimeoutMultiplier = 10;
m_CommTimeouts.WriteTotalTimeoutConstant = 50;
m_CommTimeouts.WriteTotalTimeoutMultiplier = 10;

if (!SetCommTimeouts(hComm, &m_CommTimeouts)){
//set error message
}

In this function we declare a variable of type COMMTIMEOUTS structure provided

by windows. In this function some terms are used which are explained as:

• ReadIntervalTimeout specifies how long to wait between characters before timing

out.

• ReadTotalTimeoutConstant specifies how long to wait before returning.

• ReadTotalTimeoutMultiplier specifies how much additional time to wait before

returning for each byte that was requested in read operation.

• WriteTotalTimeoutConstant and WriteTotalTimeoutMultiplier does same thing, just

for write instead of read.

32

3.1.2.4 Reading and Writing to the Serial Port

For reading and writing, ReadFile/ WriteFile function are used. WriteFile takes

handle to the port, byte to be written and NULL.

if (WriteFile (hComm, &bybyte , 1, &iBytesWritten, NULL)==0)
return false;

ReadFile takes handle to the port, a buffer to store data, number of bytes to read, a

pointer to an integer that will be set to the number of bytes actually read and NULL.

if (!ReadFile (hComm, &rxbuff , 1, &dwBytesTransferred, 0)){
//error
}

3.1.2.5 Closing Serial Port

Once serial communication is complete, it is extremely important to close the handle,

which is pretty simple.

CloseHandle(hComm);
return;

3.1.3 USB Interface Specifications

• A choice of transfer type is made.

• A series of request to the target is made during enumeration process.

• A device address is assigned to the device.

• A specific ENDPOINT is chosen for the transfer of information.

• Writing lower level drivers are avoided.

3.1.4 USB Interface Development

USB is much complex interface to implement. Initially, when a device is connected to

PC, it is enumerated using control transfers. A firmware code has to be written on

33

hardware in order to answer the request made by host-PC during enumeration. Once

enumeration is over, a host side interface can be used to address the hardware. A

multithreaded application based class was written to fulfill the requirements of the USB

Interface on host-PC. Isochronous transfer type was chosen for the interface. The USB

interface code mainly depends on a procedure used to call driver to access the device.

The procedure opens the host controller device driver using the symbolic name. In this

function, a pointer to device driver handle where the file handle is placed is given as

shown:

*hostcontrollerHandle=CreateFile(
 completecontrollername,
 GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 0,
 NULL);

Using standard system call, the name of the node at the next level can be identified

[16]. A handle to device can be obtained by making CreateFile system call. Using this

handle, device can be probed for gathering information about the device. A

DeviceIoControl system call is used for this. These system calls are a part of

enumeration [16].

hDeviceHandle = CreateFile (
 completeDeviceName,

 GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 0,

 NULL);

34

Flag = DeviceIoControl(
hDeviceHandle,

 IOCTL_USB_GET_DESCRIPTORS_FROM_NO
 DE_CONNECTION,

 &packet,
 Sizeof(packet),
 NULL,
 0,
 &BytesReturned ,
 NULL);

A further DevceIoControl system call is made to start the transfer between the node

and host [9]. In the proposed work isochronous USB transfer was used for data

acquisition. This is implemented in code as follows:

ISO_TRANSFER_CONTROL IsoControl;

IsoControl.PacketCount = GetDlgItemInt(IDC_PacketCount,&Success,FALSE);
IsoControl.PipeNum = GetDlgItemInt(IDC_PipeNum ,&Success,FALSE);
IsoControl.BufferCount = GetDlgItemInt(IDC_BufferCount, &Success,FALSE);
IsoControl.FramesPerBuffer =

GetDlgItemInt(IDC_FramesPerBuffer,&Success,FALSE);

bResult = DeviceIoControl (hDevice,
 IOCTL_EZUSB_START_ISO_STREAM,

 &IsoControl,
sizeof(ISO_TRANSFER_CONTROL),

 NULL,
 0,
 (LPDWORD)(&nBytes),
 NULL);

 if (bResult != TRUE)
 {

 hOutputBox->SendMessage (LB_ADDSTRING, 0, (LPARAM)"ISO
Transfer Failed");

 CloseHandle (hDevice);
 return;
 }

A false value of flag ‘bResult’ in the code shown above can stop the transfer.

35

3.1.5 Ethernet Interface Specification

• The interface can be utilized to access devices supporting embedded Ethernet

protocol.

• The interface can serve a client-server model based application.

• The Interface is a descendent of the CAsyncSocket Class.

3.1.6 Ethernet Interface Development

For Ethernet, a dialog based application is created. A descendent class was inherited

from CAsyncSocket class. Development of Ethernet interface class is divided as: making

a connection, sending and receiving messages and closing the connection. A client –

server is model is developed for the interface. The descendent class MySocket.cpp is

created. The primary reason for creating a descendent class is to capture the events when

messages are received, or connections are completed. The CAsyncSocket class has a

series of functions for each of the events. A brief description of all the event functions

written for the interface is in following section.

3.1.6.1 Accept Function

This function is called on a listening socket to signal that a connection request from

another application is waiting to be accepted [6].

class CMySocket : public CAsyncSocket
CMySocket m_sListenSocket;
CMySocket m_sConnectSocket;

// Accept the connection request
 m_sListenSocket.Accept(m_sConnectSocket);

36

3.1.6.2 Connect Function

This function is called on a socket to signal that the connection with another

application has been completed and that the application can now send and receive

messages through socket [6].

// create a default socket
m_sConnectSocket.create ();
m_sConnectSocket.Connect (Server Name, Port number)

3.1.6.3 Send and Receive Function

Send function is called to signal that socket is ready to send data. This function is

called right after connection is completed. Receive on the other hand signal that data has

been received through socket and is ready to be retrieved in receive buffer [6].

m_sConnectSocket.Send (LPCTSTR(“string”), length of message);
irec = m_sConnectSocket.Receive (Buf, BufSize);

‘irec’ flag is used to validate proper reception.

3.1.6.4 Close Function

This function signals that application on other end of the connection has closed its

socket. This should be followed by closing the socket that received this notification.

m_sConnectSocket.Close();

3.2 Testing Phase

For partial fulfillment of the work, a dialog based application was written for testing

RS-232 interface. This application was written for Nekton Research Inc. a Durham based

company. This application was a part of project Biobay, which was a system to

efficiently perform water quality measurement with extensive data collection and

logging. In order to test USB 1.1, a USB I2C/IO development board from Devasys was

used. An application hardware interface was set, in which ADC0848 was interfaced with

37

Devasys board. The data collected from ADC was sent to host-PC via Devasys board and

USB interface class was used to collect data at host-PC end. For testing Ethernet

interface, a dialog based application was developed that can function as either client or

server in a Winsock connection. A server application was developed that can listen and

accept connections from other network application.

3.2.1 RS-232 Interface Testing

A complete multithreaded real time data acquisition system is developed. The data

coming from the sensors is monitored and data coming from them is displayed on

individual screen. At the same time the data is logged on computer disk for analyzing

data later. The complete interface exchanges data using RS-232 communication interface.

The choice of RS-232 is based on the requirements of the complete system, which is

efficiently fulfilled by RS-232 interface.

FIGURE 3.1 Data logging system.

38

3.2.1.1 System Description

A design of the system is described here. This system has four modules constituting

the hardware to collect sensor data and a graphical user interface running on PC to finally

display and log data. Figure 3.2 shows a block diagram of the data acquisition system.

FIGURE 3.2 Data acquisition system.

3.2.1.2 Clam Sensor Bay

This board consists of 16 clam sensors. The magnitude of contraction or expansion of

the clam is measured by the Hall Effect sensors, which is connected to the clam via a

plunger. The analog data from the Hall Effect sensor is then send to MX1270 (12 bit, 8

channels ADC). The PIC16F876A microcontroller then transmits the ADC data to SBC

via RS-232 interface. A snapshot of the clam sensor board is taken shown in Figure 3.3.

39

FIGURE 3.3 Clam sensor board.

3.2.1.3 YSI Sensor Bay

This board is a 6-Series Environmental monitoring system. It is used in our project to

interface the following sensors.

• Temperature

• Conductivity

• Dissolved oxygen

• Depth

• pH

• Turbidity

• Chlorophyll

40

This board is configured to collect data and send it to the single board computer

(persistor board). A snapshot of the YSI sensor board is taken shown in Figure 3.4.

FIGURE 3.4 YSI sensor board

3.2.1.4 Motor controller

A motor controller board is used to control the motor that drives the water sampler. A

snapshot of the YSI sensor board is taken and shown in Figure 3.5.

3.2.1.5 Single Board Computer

This module consists of Persistor, which is the main module and is responsible for

communication between all different modules. It is responsible for sending all data

collected from other hardware modules to GUI running on PC for displaying and logging

the data. The Sensor fusion algorithm runs on this board, which decide whether a water

sample has to be taken or not. A snapshot of the single board computer is taken and

shown in Figure 3.6.

41

FIGURE 3.5 Motor controller board

FIGURE 3.6 Single board computer

42

3.2.1.6 Complete Hardware

A snapshot of complete hardware module is taken and shown in Figure 3.7. The

interface used to communicate between single computer board and other sub modules is

RS-232.

FIGURE 3.7 Complete hardware system.

3.2.1.7 Graphical User Interface

A simple, well organized graphical user interface was designed for windows

environment. Clarity and consistency were the basis of the design. The design had four

phases: Analysis, Design, Construction and Testing.

• Phase 1: Analysis: In this phase, GUI requirements written by the sponsor was

discussed; collected and documented. High level user activities were identified. All

possible design constraints were also taken into account. A user case scenario was

created which consisted of all the tasks, describing how a user would use GUI.

43

• Phase 2: Design: All the information collected from the analysis phase was utilized

to create a high level construction. Major modules of the GUI were discussed and

designed. The modular design of the GUI gave flexibility to the programming of the

integrated software.

• Phase 3: Construction: A detailed and realistic prototype of the GUI was created.

• Phase 4: Testing: In this phase tests were performed on the designed GUI to check if

the final version was able to communicate efficiently with the selected

communication interface. Fulfillment of all the requirements was also determined. All

the shortcomings of the designed window software were eliminated.

3.2.1.8 Window Design of GUI

A snapshot of the GUI displaying the collected data is shown here in Figure 3.8. The

user interface is supposed to monitor the data from 16 different biological sensors and 7

different environmental sensors. Displaying all the incoming data on a single screen had a

trade off with efficient display screen for one single sensor, therefore a tabbed frame

view is been utilized. Tab-1 was programmed to display data coming from biological

sensors, while Tab-2 was programmed to display data coming from environmental

sensors.

44

FIGURE 3.8.a Tab-1 displaying biological data.

FIGURE 3.8.b Tab-2 displaying environmental data.

45

3.2.1.9 System Requirements

Before developing the system, a set of requirements were set and then the whole

system was designed by keeping those requirements in mind. A list of the system

requirements is presented here.

3.2.1.9.1 Clam Sensor Board Requirements

• Power supply range is 7.5-12V, current 1A.

• One RS232 interface runs at 9600 Baud rate to send and receive data to the Persistor

board. The maximum Baud rate can be 460 kbps. The Baud rate is currently set to

57600.

• The frame format is one start bit 8 data bits and 1 stop bit (8N1). The data is in 8-bit

ASCII format.

• The cable connecting the Persistor and Clam Sensor bay should be shielded to

prevent interference.

Table 3.1 shows a list of sensors used with YSI board and an analysis of the number

of bytes sent from the sensors to YSI board.

TABLE 3.1 Clam sensor data format

Sensors Data
No of
Bytes

Data
Format

 BBDS 4
 Comma 1
1 Sensor Data 4 xxxx
 Comma 1
2 Sensor Data 4 xxxx
 Comma 1
3 Sensor Data 4 xxxx
 Comma 1
4 Sensor Data 4 xxxx
 Comma 1
5 Sensor Data 4 xxxx

46

 Comma 1
6 Sensor Data 4 xxxx
 Comma 1
7 Sensor Data 4 xxxx
 Comma 1
8 Sensor Data 4 xxxx
 Comma 1
9 Sensor Data 4 xxxx
 Comma 1

10 Sensor Data 4 xxxx
 Comma 1

11 Sensor Data 4 xxxx
 Comma 1

12 Sensor Data 4 xxxx
 Comma 1

13 Sensor Data 4 xxxx
 Comma 1

14 Sensor Data 4 xxxx
 Comma 1

15 Sensor Data 4 xxxx
 Comma 1

16 Sensor Data 4 xxxx
 Comma 1
 Check sum 3 xxx
 Carriage return 1
 Line Feed 1
 Total 90

3.2.1.9.2 YSI Sensor Board Requirements

• The YSI board uses the RS-232 standard for communication, with following

specifications.

o Baud rate 9600

o Frame type 8N1

o Power supply 12 V

47

• It uses command set comprising of ASCII characters, for configuration and

calibration.

• The YSI board is connected to a PC through the RS-232 serial port during the initial

configuration and calibration.

o Hyper terminal is used for this set up.

o The board should be connected to a PC for all recalibrations.

o The final calibration is done onsite.

• The YSI board is configured to ‘power up to run’ mode with discrete sampling.

In this mode, the YSI board starts to run as configured on power up.

• The YSI board is configured to sample data at the system sample rate.

Table 3.2 shows analysis of the number of bytes sent from the YSI board.

TABLE 3.2 YSI data analysis.

SENSORS Data no of
bytes

Units Range Digits/Resolution

1 Temp 5 °C or °F -5° -

+45° C
0.01°C

 space 1
2 Conductivity 5 mS/cm

(milliSiemens/cm)
0-100
mS/cm

0.001-0.1 mS/cm

 space 1
3 DO 6 mg/L

(milligrams/L)
0 – 50
mg/L

0.2 mg/L

 space 1
4 Depth 7 ft or m 0 – 30 ft

(0 - 9 m)
0.001ft or 0.0003m

 space 1
5 pH 5 0 – 14 0-14 0.2
 space 1

6 Turbidity 5 NTU
(nephelometric
turbidity units)

0 – 1000
NTU

0.1 NTU

 space 1
7 Chlorophyll 6 µg/L

(micrograms/L)
0 – 400

µg/L
0.1µ/L

 CR 1
 LF 1

 TOTAL 47

48

3.2.1.9.3 Motor Controller Requirements

• The motor is controlled by the persistor using RS-232 protocol.

• The fixture is manually aligned to an initial zero position before deploying the

system.

• To collect the first water sample the motor is turned by 45º, by issuing the command

P (move motor relative in positive direction).

• For subsequent samples the motor is moved by 90º using the same command.

3.2.1.9.4 Persistor Requirements

• A supply of 4-9V DC is required to power the board.

• The persistor’s time source is used as the time reference for the entire system.

• The persistor needs a CR2032 Lithium Cell for the Real Time clock.

• The persistor needs 4 RS-232 ports to communicate with other boards. The extra

ports are provided by the add-on card U4S.

• It communicates with YSI (U4S-port 1) and clam sensor board (U4S-port 2) and

motor control board (U4S-port 3) over 3 RS-232 ports at 9600 Baud and 8N1 format.

• It communicates with the PC (U4S-port 4) over RS-232 at 19200 Baud and 8N1

format.

• It gets data from the YSI and the clam sensor board in ASCII format. The data is

saved onto the compact flash card and is also sent over to the PC with time stamp.

• The sensor fusion algorithm is executed on this board. Based on the result the

persistor will command the motor controller to index and take a water sample.

• It will implement and execute the various commands from the PC.

o Start sampling.

49

o Stop sampling.

o Set algorithm parameters.

3.2.1.9.5 Graphical User Interface Requirements

• The GUI runs on a Pentium-class PC with a minimum of 256MB of RAM, 1GHz

processors speed or above, and 50MB free hard drive space.

• The GUI runs on a PC with a screen of minimum 800 by 600 pixels.

• One RS-232 interface port running 19200 baud is used to communicate with the

hardware collecting data.

• The GUI will set up the Persistor board for the starting and stopping of data

collection.

• The GUI displays the sensor’s data on their respective display window. A log file of

the data collected is also stored for further analysis of data.

3.2.1.10 Software Design for GUI

For testing the developed communication interface an efficient multithreaded GUI

was designed. The interface is integrated with other modules and a fully functional dialog

based user application is tested for fulfilling set requirements. A flowchart (Figure 3.9)

defines the tasks running for GUI.

The application does multiple tasks by sharing processor time. The application not

only monitors RS-232 port, it also displays collected data and writes data to a file on the

hard disk. This capability of the application is because of its multithreaded nature.

50

LOAD EXECUTABLE

Button ‘Test’
Pressed

NO

YES

Open the Serial port using
CSerialComm Class and send Char ‘A’
to Command Hardware. Start writing

data to a file.

No DATA is coming to
port or button ‘Quit’

Pressed
YES

Close the port and close the file and
End the thread.

Timer Expired NO

NO

YES

FIGURE 3.9 Software design flowchart

3.2.2 USB Interface Testing

For testing USB PC-host side interface, another data acquisition system was set. The

hardware setup for this data acquisition system is shown in the Figure 3.10.

51

FIGURE 3.10 USB data acquisition hardware setup

A USB development board from Devasys is used for the USB data acquisition

system. This board is interfaced with the ADC0848 and data collected from ADC chip is

sent to host-PC via Devasys board. An application integrated with the USB interface

class is used to monitor the incoming data. The data retrieved is displayed in a dialog

based application as shown in Figure 3.11.

52

FIGURE 3.11 USB data acquisition on host-PC

3.2.3 Ethernet Interface Testing

For the proposed work, no embedded target has been tested for testing the Ethernet

interface. A desktop based client-server model however is created to test the working of

event functions developed for Ethernet interface.

 3.3 Multitasking

Applications used during time of Windows 3.x were single threaded, with only one

path of execution at any point in time. Then cooperative multitasking was offered, in

which each individual application decides about when to give up the processor for

another application to perform any waiting processing. But in worst case of such a

concept, an application would be held in waiting state, if another application got stuck in

some never ending loop. Then preemptive multitasking was introduced, in which a higher

priority waiting task pre-empts current task. Applications running on a PC are divided

into processes and threads. Processes are various applications running in the kernel mode

of the PC sharing CPU time and every process has the capability to execute multiple

53

threads at anytime. Threads basically run in the user mode to avoid overhead of operating

system interference with their execution.

3.3.1 Idle Process Thread

Adding Idle threads are called when there are no messages in application message

queue. While an application is idle, it can perform work such as cleaning memory or

writing to a print spool. The function used in developing window application is OnIdle()

and it’s a holdover from the Windows 3.x days. For the proposed work, no task is defined

for this function.

3.3.2 Independent Threads

In order to do a long background task without interfering with other running tasks, an

independent thread has to be created. To create and start an independent thread there are

many methods. One of them is calling AfxBeginThread function from windows API. A

function to call can be passed to this function for performing thread’s task. A pointer is

returned to a CWinThread class object, which actually runs as an independent thread. The

threads are even prioritized. This priority of the threads control how much of CPU time

thread gets in comparison to other threads. Every thread has its own stack and always has

some default value, which makes it optional.

3.3.3 Inter-tasks Communication

Sometimes it becomes necessary for one task to communicate with other tasks. This

is one of the most complex issues because, while communicating, one task should not get

into other’s way when engaging in critical activities. The issue is mainly shared data

corruption. Managing access to shared resources is most challenging task, while

developing multithreaded application. Sharing does not work too well in a multithreaded

54

application. There are ways to limit access to a common resource to only one thread at a

time. Some of them are:

• Defining critical sections

• Using Mutexes

• Use of Semaphores

3.3.4 Building a Multitasking Application

There are many ways to add multithreading capability to an application. Microsoft

provides an efficient API to add multithreading capability to an application. With MFC a

descend class can be developed. A simpler way is to give a standard call to the

independent function, which will be doing its task in the background without interfering

with other ongoing tasks of application.

55

CHAPTER 4: DEVELOPMENT TOOLS

The communication interfaces for the proposed work are developed in Microsoft

Visual C++ 6.0 Integrated Development Environment. Windows programming approach

has been used in order to make it easy to write user interface application on top of

communication interface classes. This chapter is a rapid tour of working in this IDE. The

best approach to getting familiar with it is to work through creating, compiling and

executing simple program.

4.1 Introduction to Windows Programming

A windows program has a different structure to that of typical DOS program, and it’s

rather more complicated. In a DOS program, keyboard can give input and can be written

to the display directly, whereas a windows program can only access the input and output

facilities of the computer by way of windows functions; no direct access to these

hardware resources is permitted. Since several programs can be active at one time under

windows, windows has to determine which application a given input is destined for and

signal the program concerned accordingly. Windows has primary control of all the

communication with the user. The user actions are all regarded by windows as events,

and result in a particular piece of program code being executed [14]. A windows program

is basically written to customize windows to provide a particular set of capabilities. Even

an elementary windows program involves quite a few lines of code. MS VC++

AppWizard makes things easy and provides a readymade framework to begin coding. A

structure of windows program is shown in Figure 4.1.

56

FIGURE 4.1 Windows program structure[30]

4.2 Integrated Development Environment

The IDE of Microsoft VC++ 6.0 is a self contained environment for creating,

compiling, linking and testing windows programs. The fundamental components of the

IDE are the editor, the compiler, the linker and the libraries.

4.2.1 The Editor

The editor provides an interactive environment for creating and editing the source

code. The editor automatically recognizes fundamental words in C++ language and

assigns different color to them based on what category they fit in.

4.2.2 The Compiler

The compiler converts source code into machine language, and detects and reports

errors in the compilation process. The compiler has the ability to detect a wide range of

57

errors occurring due to unrecognized code. The output from a compiler is called object

code. This object code is stored in files with extension .obj.

4.2.3 The Linker

The linker is used to combine various modules generated by the compiler from source

code files, adds required code modules from program libraries supplied as a part of C++,

and welds everything to generate an executable. The linker can also report errors. If a part

of the program is missing, a non-existent library component is referenced.

4.2.4 The Libraries

A library support extends C++ language capability to include ready made routine sets

to the application development. There is a basic set of routines common to all C++

compilers which make up Standard Template Library (STL). The window provides an

application programming interface (API). It consists of a large set of functions that

provide all lower level interfaces. The problem with windows API is, it has thousands of

functions and it was not written keeping Visual C++ in mind. API has to usable in

programs written in a variety of languages, most of which are not object oriented. So

MFC was developed which is nothing but a set of classes upon which windows

programming with visual C++ is built. These classes represent an object oriented

approach to windows programming that encapsulates the windows API. There is another

library provided by Visual C++ which is Active template library (ATL). ATL provides

structure for writing specialized windows programs.

58

4.3 Using Visual Studio IDE

The most important tools VC++ 6.0 which work in an integrated way to help write

windows programs are AppWizard and ClassWizard. The AppWizard generates a basic

framework for writing windows programs. The class provides an easy way to extend the

classes provided by AppWizard. Most of the program development and execution is

performed within IDE. When VC++ is started first time with no project active, a window

shown in Figure 4.2 pops up. The workspace window helps to navigate through all the

program files of the project. The editor window is the place where the source files can be

written and modified, and the output window displays messages that result from

compiling and linking the program.

FIGURE 4.2 VC++ inactive IDE

59

4.3.1 Creating Project Workspace

After opening VC++, one is all set to start making a workspace for their project. A

project workspace is a folder in which all the information relating to a project is stored.

Once a project is created, a project workspace is created automatically, and VC++

maintains all the source code and other files in the workspace folder. The proposed work

consists of the code developed by using MFC application wizard. The code written for

proposed work is a win32 application, using MFC for support. The workspace folder

holds the project definition files. The project definition includes a project name, a list of

source files, the options set for editor, compiler, linker and other components of VC++.

The basic definition of a project is actually stored in a file with the extension .dsp. A

walkthrough of making a project is shown in following Figures:

FIGURE 4.3 Opening a new project using MFC AppWizard

60

The code written for the proposed work is a dialog based application so ‘Dialog

based’ is selected in MFC AppWizard step1. The process of creating a framework is

continued there after.

 FIGURE 4.3.a Step-1 of creating a project framework

 FIGURE 4.3.b Step-2 of creating a project framework

61

 FIGURE 4.3.c Step-3 of creating a project framework

 FIGURE 4.3.d Step-4 of creating a project framework

62

Once the AppWizard completes all steps to create a framework, all the information

about the project is displayed. It is always important to make sure that all the features of

application, which were supposed to be set, are displayed accordingly. An example is

shown in Figure 4.3.e.

 FIGURE 4.3.e Project information window

VC++ also provides option through project | settings menu to determine how a source

code is to be processed during compile and link stages. The set of options that produces a

particular executable version of program is called configuration as shown in Figure 4.4:

 FIGURE 4.4. Set active configurations

63

Once framework is set by AppWizard, the project workspace with desired features is

created and it looks as shown in Figure 4.5.

FIGURE 4.5.Active project workspace

4.3.2 Building Project

After creating the active project, it is build using a build icon on the tool bar.

Once the example is built without any error, a new sub- older either release or debug

depending on the configuration of the project is created in the project folder. This folder

contains output of build that is performed on the project. This folder contains seven new

files. The Figure 4.6 shows the debug folder created after building the active project.

64

FIGURE 4.6 Files created after building the project

Table 4.1 gives a quick run through of the use of kind of files created after building

the project.

TABLE 4.1 Description of files created after building the project [14].

File
Extension

Description

*.exe This is executable file which is obtained by successful compiling and
linkage.

*.obj This is object file which is obtained after compiling and is used to create
executable file by linker.

*.ilk This is used by the linker to link libraries with the modified code object
files.

*.pch This is a pre compiled header file. Because of this file, lot of time is saved
to rebuild the whole program.

*.pdb This file contains debugging information that is used when program is
executed in debugging mode.

*.idb This file contains additional debug information.

65

Once a project is build without any errors, application can be executed by clicking the

execution icon .

4.3.3 Debugging

Bugs are the errors in the program. Debugging errors are an integral part of

programming. Debugging is the major activity performed during the testing phase of the

application development. There are following major strategies followed to make

debugging as painless as possible:

• Using available library facilities as much as possible. This helps in using as much

pre-tested code as possible.

• Developing and testing code incrementally. This helps in reducing development

process.

• Adding debugging code.

• Using debugger programs available in IDE.

Debugger programs were available long before IDEs, and they can still be used from

the command line. However, using a built in debugger of an IDE is pretty simple. A

debugger execute program incrementally rather than all at once. After each increment of

the program executes, the debugger pauses, and contents of variables can be viewed.

Once the variables are examined carefully, debugger can be directed to execute next

statement. A small module of the program can also be debugged by setting breakpoints

between the start and end of that module of the code. Figure 4.7 and Figure 4.8 show how

to set a current project in debug mode.

66

 FIGURE 4.7. Starting debugger in VC++

 FIGURE 4.8.Using debugger in VC++

67

CHAPTER 5: FUTURE DEVELOPMENT

5.1 Conclusion

The proposed work is a step to provide an easy-to-use interface solution for real-time

data acquisition. This work has the potential use in providing flexibility and in decreasing

development time significantly for any application built on top of the interface. This work

can be used in the following areas:

• Communicating embedded targets supporting RS-232, USB or Ethernet interface.

• Developing other user friendly applications without much effort using the presented

interfaces.

• Logging large amount of data on hard disk for remote analysis.

• Displaying data received from a large number of sensors on a single serial line on

their respective display windows.

• Porting the Win32 based code written for RS-232, USB, and Ethernet interface in

WinCE environment for their use in handheld devices.

• Providing a better way for Nekton Research Inc., a Durham based company to

monitor data received from their environmental and biological sensors.

• Adding a valuable resource to the ongoing research at UNC Charlotte’s Department

of Electrical and Computer Engineering.

68

5.2 Future Work

The presented work was done for Win32 environments. The application developed

can easily be made to run on desktop computers. But there will be times when tasks have

to finish by specific times. In those times, the need of real-time environment will be seen.

There are many real time operating systems available and they can be configured for

handheld devices. One of such real-time operating systems is WinCE and it can be

designed from the ground up to be as small as possible. Although both desktop operating

system and Windows CE are feature driven, WinCE takes measures to ensure that

features can be selectively included or excluded, depending on the specific needs of the

hardware on which it is ported.

5.2.1 API and SDK supported by WinCE

Over the years, Win32 has accumulated a huge number of peripheral SDKs and API

toolkits for development. WinCE does not support all of them but Microsoft Inc. chooses

those that are crucially important, they also incrementally add new ones too. Some of the

most used APIs supported by WinCE are:

• Multimedia

• WinSock

• Remote Access Services

• Windows Networking

Apart from the listed APIs, one most important API supported by WinCE is Setup.

Installing programs on a WinCE device is different than on the desktop because it must

be done remotely over some communication medium. For this reason, WinCE does not

implement desktop setup APIs, but provides new functionality of its own [19].

69

5.2.2 Why WinCE?

Choosing specifically WinCE for future development is based on the comparison of

the Real Time OS done by Dr. Timmerman and Dr. Perneel [28]. Their work is limited to

three major real time operating systems used in the industry:

• VxWorks RTOS from Wind River Systems

• WinCE 5.0 from Microsoft

• Montavista Linux Professional 2.1 from Montavista

All the important issues in choosing a real time operating system are considered in

their work. A careful examination of the work done by Dr. Timmerman and Dr. Perneel

gives more credits to WinCE 5.0. Above all, the code written for presented work is in the

Win32 environment and it makes more sense to use a compact version of Windows to

add real time capability to the applications.

70

REFERENCES

[1] A. Abdusalam, A.R. Bin Ramli, N.K. Noordin, Md.L Ali, “Real Time Data

Acquisition and Remote Controlling Using World Wide Web”, Student
Conference on Research and Development, July 2002, pp. 456-459.

[2] P.C Abegglen, W.R. Faris, W.J. Hankley, “Design of a Real-Time Central Data

Acquisition and Analysis System”, Proceedings of IEEE Conference, Vol. 58,
Jan. 1970, pp. 38-48.

[3] J. Axelson, “Embedded Ethernet and Internet complete”, Designing and

Programming Devices for Networking, 2003, First Edition, Penram International
Publishing (INDIA) Pvt. Ltd, Mumbai.

[4] Beyond Logic Tutorials on RS-232, USB protocols.
 Website: http://www.beyondlogic.org/serial/serial.htm#1

[5] T.J. Cacicchi, “Experimentation and Analysis: SigLab/MATLAB Data

Acquisition Experiments for Signal and Systems”, IEEE Transactions on
Education, Vol. 48, Aug. 2005, pp. 540-550.

[6] D. Chapman, J. Bates, “Teach yourself VC++ 6.0”, Sams Techmedia, INDIA.

[7] J.S. Chen, C.J. Wang, S.J. Chen, G.J. Jan, “A Graphical User-interface Control
System at SRRC”, Proceedings of 1993 Particle Accelerator Conference, Vol. 3,
May 1993, pp. 1878-1880.

[8] D.B. Crosetto, “Real-time System Design Environment for Multi-channel High-

Speed Data Acquisition System and Pattern Recognition”, 11nth IEEE NPSS Real
Time Conference, June. 1999, pp. 329-336.

[9] Cypress USB training material
 Website: http://www.cypress.com/portal/server.pt

[10] B.S. Drakulic, S.J. Berry, M.N. Gold, Z. Konstantinovic, “A Real Time Data

Acquisition and Signal Processing Unit for Biomedical Applications”,
Proceedings of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Vol. 3, Nov. 1988, pp. 1260-1261.

[11] D. Engberg, T. Glanzman, “A Small Unix Based Data Acquisition System”, IEEE

Transactions on Nuclear Science, Vol. 41, Issue. 1, Feb. 1994, pp. 77-79.

71

[12] A. Gani, A.J.E. Salami, “A Lab VIEW Based Data Acquisition System for
Vibration Monitoring and Analysis”, Student Conference on Research and
Development, July 2002, pp. 62-65.

[13] Z. Guzik, S. Borsuk, K. Traczyk, M. Plominski, “Enhanced 8K Pulse Height

Analyzer and Multi-Channel Scaler (TUKAN) with PCI or USB Interfaces”,
IEEE Nuclear Science Symposium Conference Record, Vol. 3, Oct. 2004,
pp.1444-1447.

[14] I. Horton, “Beginning Visual C++ 6”, 1998, Sixth Edition, Wrox Press, Inc, USA.

[15] B. Hubbs, “A Survey of Highly Integrated Ethernet DataComm Devices”, IEEE

Aerospace Conference, Vol. 4, Mar. 1998, pp. 489-498.

[16] J. Hyde, “USB design by example”, A Practical Guide to Building I/O Devices,

2001, Second Edition, Intel Press, USA.

[17] S. Martin, “PC-based Data Acquisition in an Industrial Environment”, IEE

Colloquium on PC-Based Instrumentation, 1990, pp. 2/1-2/3.

[18] R. Moody, P.Turner, “Clam Gape Sensing Equipment for Water Monitoring”,

Sea-Technology Magazine, March 2006, pp. 28-32

[19] MSDN online
 Website: http://msdn2.microsoft.com/en-us/default.aspx.

[20] D.D. Nigus, S.A. Dyer, “An Easy-to-use, Host-independent Data Acquisition

System”, 6th IEEE Instrumentation and Measurement Technology Conference,
April. 1989, pp. 86-91.

[21] J.R. Payne, B.A. Menz, “High Speed PC-Based Data Acquisition Systems”, IEEE

Industry Applications Conference, Vol. 3, Oct. 1995, pp. 2140-2145.

[22] O. Postolache, J.M.D Pereira, P.S. Girao, “An Intelligent Turbidity and

Temperature Sensing Unit for Water Quality Assessment”, Canadian Conference
on Electrical and Computer Engineering, Vol. 1, May 2002, pp. 494-499.

[23] B. M. Pride, “Simple USB Data Acquisition”, Circuit Cellar, April 2005, pp. 20-

26.

[24] V. De Rossi, P. Batsomboon, S. Tosunoglu, D.W. Repperger, “Interactive

Modular Graphical User Interface Development for Telesensation Systems”,
IEEE International Conference on Systems, Man and Cybernetics, Vol. 2, 1997,
pp. 1604-1608 .

72

[26] RS-232 Specification and Standard.
 Website: http://www.lammertbies.nl/comm/info/RS-232_specs.html

[27] D.J. Sides, “A Dynamically Adaptable Real Time Data Acquisition and Display

System”, Proceedings of Real-Time Technology and Applications Symposium,
May. 1995, pp. 50-51.

[28] M. Timmerman, L. Perneel “Understanding RTOS Technology and markets”
 Website: http://www. download.microsoft.com

[29] A. Yiming, T. Eisaka, “An Ethernet Protocol for Real-Time Communications”,

SICE Annual Conference, Vol. 2, Aug. 2004, pp. 1905-1908.

[30] B. Zdanivsky, “Browser-Based Telemetry System”, Circuit Cellar, December

2005, pp. 12-18.

[31] S. Zimmermann, V.H. Areti, G.W. Foster, U. Joshi, K. Treptow, “FASTBUS

Readout Controller Card for High Speed Data Acquisition”, Conference Record
of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference,
Vol. 2, 1991, pp. 794-798.

[32] A.C. Zoric, S.S. Ilic, “PC-Based System for Electrocardiography and Data

Acquisition”, 7th International Conference on Telecommunications in Modern
Satellite, Cable and Broadcasting Services, Vol. 2, Sep. 2005, pp. 619-622.

73

APPENDIX

Due to the extensive size of the project, program code is not attached. If project code

is needed, please contact the following individuals:

Dr. James Conrad
Email: jmconrad@uncc.edu
Gajendra Singh
Email: to.gsingh@gmail.com

