
 

SYSTEM-ON-PROGRAMMABLE-CHIP DESIGN USING A UNIFIED 
DEVELOPMENT ENVIRONMENT 

 
 
 

by 
 

Nicholas Wieder 
 
 
 
 

A thesis submitted to the faculty of 
The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 
for the degree of Master of Science in the 

Department of Electrical and Computer Engineering 
 

Charlotte 
 

2007 
 

 
 
 
 
 

 
 
 
 
 
 
 

Approved by: 
 
_____________________________ 
Dr. James M. Conrad 
 
 
_____________________________ 
Dr. Ivan L. Howitt 
 
 
_____________________________ 
Dr. Bharat S Joshi 



 

 

ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

© 2007 
Nicholas Wieder 

ALL RIGHTS RESERVED 



 

 

iii 

ABSTRACT 

Nicholas Wieder.  System-On-Programmable-Chip Design Using a Unified Development 
Environment.  (Under the direction of DR. JAMES M. CONRAD). 
 
 

As embedded systems become increasingly complicated, the need for specialized 

processing becomes greater as well.  The System on a Programmable Chip (SoPC) 

approach to creating these embedded systems involves using configurable architecture 

available through Field Programmable Gate Arrays (FPGAs).  The SoPC approach allows 

designers to combine preexisting components to create a custom architecture for their 

project.   

 This thesis illustrates one example of an SoPC design that combines existing and 

custom components.  This thesis also shows how using the Unified Development 

Environment of Altium Designer aids in this process.  



 

 

iv 

ACKNOWLEDGEMENTS 

Almost every major accomplishment of a single person is facilitated by the support of 

many others, the successes of this thesis is no different.  First, I would like to thank my 

adviser Dr. James Conrad, for his support during this thesis, and opening my eyes to the 

embedded world.  Also, I would like to thank my boss and adviser Dr. Pat Gardner for his 

support and encouragement, and all my coworkers for their understanding and flexibility, 

during the last few years.  Finally, I would like to thank my wife Kristy Wieder for 

keeping me fat and happy, although we do not see each other as much as we would like, 

her love keeps me going through the long hours. 

 

 



 

 

v 

TABLE OF CONTENTS 

CHAPTER 1: INTRODUCTION 1 

1.1 Previous Work 2 

1.2 Importance 4 

1.3 Thesis Organization 5 

CHAPTER 2: SYSTEM ON A PROGRAMMABLE CHIP DESIGN 7 

2.1 FPGAs 7 

2.2 IP Cores 10 

2.2.1 Types of IP Cores 11 

2.2.2 Availability and Reuse 12 

2.3 I/O selection 13 

2.4 Bus selection 13 

2.4.1 AMBA 13 

2.4.2 CoreConnect 14 

2.4.3 Wishbone 16 

2.4.3.1 Wishbone Interconnections 17 

2.4.3.2 Wishbone Interface 18 

2.5 Verification and Test 22 

CHAPTER 3: DEVELOPMENT 24 

3.1 Hardware Design 24 

3.1.1 Available Processors and Selection 27 

3.1.1.1 Pipeline Architecture 28 

3.1.1.2 Interrupts 29 



 

 

vi 

3.1.1.3 Processor Memory Organization 30 

3.1.2 Peripheral Design 33 

3.1.2.1 Wishbone Interconnect 33 

3.1.2.2 Serial Communications 34 

3.1.2.3 Display 35 

3.1.3 Memory Design 36 

3.1.3.1 RAM 36 

3.1.3.2 Peak Detection 36 

3.2 Software Design 38 

3.2.1 HAL 39 

3.2.2 Application Layer 40 

3.2.3 Program Flow 40 

CHAPTER 4: VERIFICATION\DEBUGGING 42 

4.1 Hardware 42 

4.2 Software 45 

CHAPTER 5: SUMMARY 48 

REFERENCES 50 

APPENDIX A: HARDWARE DESIGN DOCUMENTS 54 

Schematic:  TopLevel.SchDoc 55 

Schematic:  Memory.SchDoc 56 

Schematic:  Peripherl.SchDoc 57 

Schematic:  TDisplay.SchDoc 58 

Schematic:  WB_GraphController.SchDoc 59 



 

 

vii 

VHDL File:  PeakDet3.vhd 60 

VHDL File:  WB_LCD_Controller.vhd 63 

APPENDIX B: SOFTWARE SOURCE 65 

Source File(s):  CRC16.c and CRC16.h 66 

Source File(s):  Datatype.h 69 

Source File(s):  EnvDataPacket.c and EnvDataPacket.h 70 

Source File(s):  FullScanPacket.c and FullScanPacket.h 73 

Source File(s):  HAL.h 75 

Source File(s):  hardware.h 76 

Source File(s):  ISR.c 77 

Source File(s):  LCDOut.c and LCDOut.h 78 

Source File(s):  Main.c 80 

Source File(s):  PowerControl.c and PowerControl.h 84 

Source File(s):  Que.c and Que.h 87 

Source File(s):  ReadingPacket.c and ReadingPacket.h 90 

Source File(s):  Sensor.c 92 

Source File(s):  TSK3000_Reg.c and TSK3000_Reg.h 97 

Source File(s):  uart16550A.c and uart16550a.h 102 

Source File(s):  WindowReader.c and WindowReader.h 108 



viii 

 

LIST OF FIGURES 

Figure 2.1 Basic Layout of a FPGA.................................................................................... 8 

Figure 2.2.  Abstraction of a 2-LUT ................................................................................... 9 

Figure 2.3.  Productivity Gap [4] ...................................................................................... 10 

Figure 2.4.  Basic AMBA [9]............................................................................................ 14 

Figure 2.5.  Basic CoreConnect Architecture [9]. ............................................................ 15 

Figure 2.6.  Basic (Shared Bus) Wishbone Architecture [9]. ........................................... 16 

Figure 2.7.  Point to point Wishbone Interconnection [19] .............................................. 17 

Figure 2.8.  Wishbone Data Flow Interconnection [19] ................................................... 17 

Figure 2.9.  Wishbone Crossbar Switch Interconnection [19].......................................... 18 

Figure 2.10.  Single Wishbone Read cycle ....................................................................... 22 

Figure 3.1.  Top Level Diagram........................................................................................ 25 

Figure 3.2.  Changing processor Options.......................................................................... 26 

Figure 3.3.  Basic five-stage pipeline [21]........................................................................ 29 

Figure 3.4.  Memory Map................................................................................................. 31 

Figure 3.5.  Peripheral Control Schematic........................................................................ 32 

Figure 3.6.  Peripheral Core Configuration on the Wishbone Interconnect ..................... 34 

Figure 3.7.  Memory Control Schematic .......................................................................... 37 

Figure 3.8.  General Program Flow. ................................................................................. 41 

Figure 4.1.  WB_GraphControl.SchDoc........................................................................... 43 

Figure 4.2.  Logic Analyzer and Simulation Output......................................................... 44 

Figure 4.3.  Logic Analyzer view ..................................................................................... 45 

Figure 4.4.  Instrument Panel and Nexus Debugger ......................................................... 46 



ix 

 

Figure 5.1.  Display Output............................................................................................... 49 

 



x 

 

LIST OF TABLES 

Table 2-1.  Wishbone signals used [19] [20]. ................................................................... 20 

Table 3-1.  TSK3000A Pipeline stage description [20].................................................... 29 

 
 
 
 



xi 

 

LIST OF ABBREVIATIONS 

ACK Acknowledge 

ADC Analog to Digital Converters 

ADR Address Bus 

AHB Advanced High Speed Bus 

AMBA  Advanced Micro-controller Bus Architecture 

APB Advanced Peripheral Bus 

ARM Advanced RISC Machine 

ASIC Application Specific Intergraded Circuit   

ASP Advanced System Bus 

CAD Computer Added Design 

CLB Configurable Logic Blocks 

CLK Clock 

CYC Cycle 

DAT Data Bus 

DCR Device Control Register (bus) 

DMA Direct Memory Access 

DSP Digital Signal Processor 

DXP Design Explorer 

ECG Electrocardiogram 

EX Execute 

FF Flip-Flop 

FPGA Field Programmable Gate Array 

HAL Hardware Abstraction Layer 

HDL  Hardware Description Language 

ID Instruction Decode 

IF Instruction Fetch 

IO Input/Output 

IP Intellectual Property 

ISR Interrupt Service Routine 

JTAG Joint Test Action Group 

LAX Logic Analyzer 

LCD Liquid Crystal Display 

LUT Look Up Table 

MA Mater A 

MB Master B 

MDU Multiply Divide Unit 

MEM Memory Access 



xii 

 

OPB On-chip Peripheral Bus 

OS Operating System 

PC Program Counter 

PC Personal Computer 

PIO Parallel Input/Output 

PLB Processor Local Bus 

PLC Programmable Logic Controller 

PPC Power Personal Computer 

RAM Random Access Memory 

RISC Reduced Instruction Set Computer 

ROM  Read Only Memory 

RST Reset 

SA Slave A 

SB Slave B 

SC Slave C 

SEL Select 

SoC  System on Chip 

SoPC System on a Programmable Chip 

SoRC System-on-a-Reprogrammable Chip 

SRAM Static Random Access Memory 

STB Strobe 

TSK3000A Tasking 3000A 

UART Universal Asynchronous Receive Transmit 

VGA Video Graphics Adapter 

VHDL VHSIC Hardware Description Language 

VHSIC Very High Speed Integrated Circuit 

WB Register Write Back 

WB  Wishbone Bus 

WE Write Enable 

WinCE Windows Compact Edition 
 



 

CHAPTER 1:  INTRODUCTION 

System on a Programmable Chip (SoPC) designs are becoming more common as 

embedded computing solutions [11].  Some reasons for this are the constantly increasing 

complexity of embedded systems and the decreasing time to market.  It is becoming 

increasingly difficult for hardware only or software only designs to meet the requirements 

of system.  Using a SoPC design approach allows the designer to take advantage of the 

major benefits of both hardware and software based approaches in order to meet 

requirements [3].  

 The use of programmable logic allows the system architect to make some changes to 

the system, and allows design flaws to be easily fixed, without affecting the schedule or 

the budget as greatly as a strictly hardware design.  On the other hand, hardware based 

designs can be specialized to more efficiently execute some operations [1].  SoPC designs 

also allow flexibility in systems where the architecture is not finalized during the initial 

portions of the design process [2].    

Another reason SoPC designs are becoming more prevalent is that all peripherals 

required may be custom designed, or copied from other designs, and can be included in 

one chip [11].  Traditionally, this type of design would be called a System on Chip (SoC) 

and the hardware implementation would be in an Application Specific Intergraded Circuit 

(ASIC).  However, the cost and risk associated with ASIC designs are avoided by the use 

of a Field Programmable Gate Array (FPGA), used in SoPC design.  SoC and SoPC 

designs are very similar.  Almost any digital design, which can be implemented through 



2 

 

schematic, netlist, or Hardware Description Language (HDL), can be implemented on 

either substrate.  However, a limitation of SoPCs is the limited ability to integrate analog 

devices into the design.   

Popular analog devices, for instance, Analog to Digital Converters (ADC), may 

be included on special FPGAs called Platform FPGAs.  Platform FPGAs contain many 

other digital, analog, or mix signal devices.  These are referred to as defused cores.  

Defused cores range in size and complexity from block RAM to embedded processors.  

An example of the defused core used in this thesis is the hardware multipliers and block 

RAM contained on the Xilinx XCS1000 [27]. 

 Along with defused cores, many proprietary and open source [13] designs, called 

Intellectual Property (IP) cores, are available for use.  IP cores are available in many 

different stages of completeness, ranging from development to fully tested and warranted.  

Chapter 2.2 gives a more complete explanation of IP cores.      

Using a unified design environment during the design process, helps reduce the 

possibility that components will not easily interface with each other.  This is done by 

standardizing the interfaces between on chip peripherals.  Altium Designer, which was 

used for this research, eases design by making most IP cores available with a Wishbone 

bus interface.  This bus is discussed in more detail later.   

1.1 Previous Work 

The design developed during the writing of this thesis may be used as a 

replacement for the front-end portion of a chemical detector.  The design constraints for 

the detector require an interface to the sensor engine through serial communication, a 

method of processing the data received from the sensor, and visual output.  



3 

 

The design is derived from a project currently under development, implemented in 

C++, as an application running on a Windows Compact Edition Operating System (OS).  

One major issue with the current design is the amount of time spent finding peaks once 

the data has been collected.  

This project sets up the framework for a system that can read a sensor over RS-232, 

store the data, perform peak detection in hardware, and then display the results.  

Although the peak detection method is important, to ensure proper classification, it is not 

the focus of this thesis.  A second group at the University of North Carolina at Charlotte 

is researching this topic in parallel. 

A major design change from the current implementation is the lack of an OS.  For 

this project, the benefits of an OS are not significant enough to warrant the effort or 

processing overhead required.  The current implementation uses C++, however because 

of its considerable overhead compared to C, most embedded processor compilers do not 

support C++.  Therefore, a majority of the current implementation was not reusable. 

  Numerous works based on SoC or SoPC designs have previously been presented, 

most of these focus on the design process using tools supplied from FPGA manufactures, 

Xilinx and Altera.  Most of these designs like [17] use platform FPGAs with defused 

microprocessor cores.  In these designs, the debugging of the operating system is not 

considered, so the majority of the debugging capabilities available are through an 

embedded operating system.   

Other works, which are more closely related to this thesis, detail SoPCs using 

embedded processor cores that feature on chip debugging.  One such work is [24], which 

discusses the design of a SoPC based Programmable Logic Controller (PLC).  This 



4 

 

design uses an Altera FPGA and their Nios embedded processor to implement the control 

and communications required in a PLC. 

Another project closely related to this thesis, but also utilizes a higher performance 

system is presented by Al Khatib [17].  Al Khatib’s design puts two Digital Signal 

Processor (DSP) cores on a single SoC in order to accurately track the variances in a 

human heartbeat through an electrocardiogram (ECG).  The work is closely related to this 

thesis for both its use of embedded IP cores and for its requirement to do peak detection 

on an input signal.  However, the similarities end there.  The real time requirements of 

the system posed in [17] are much greater therefore, a higher end and expensive design is 

chosen.  In addition, the peak detection that is implemented in [17] is appropriate given 

that the signal to be detected has a consistent shape and large signal to noise ratio; these 

are not the case for this thesis. 

1.2 Importance 

According to United States government’s information on exposure to Sarin Nerve 

Gas [26], during the first Gulf War, exposure to detectible concentration of sarin for 34 

seconds can cause death, with side effects starting after only one second.  The fact that a 

faster detection of a dangerous chemical can save lives is one of the most important 

reasons this thesis is important.  Although this thesis does not go into complete detail of 

the chemical detection process or the workings of the sensor, it is important to consider 

the basics of detection, chemical detection.   

To identify a particular agent with confidence, very often multiple peaks must be 

present or absent.  The combinations of these peaks determine the type of chemical 



5 

 

present.  The operation of the sensor is a serial process, therefore accelerating each peak 

detection can save seconds in the total process.  

Another important characteristic of migrating the current implementation into an 

SoPC is the possibility to, in the future, move the control portion of the sensor into a 

single chip.  As discussed previously, this thesis poses an alternate general system design 

for only the peak detection and display portions of this design.  However, this is no 

reason to expect that the entire control portion of the system could not be implemented in 

an SoPC design given the proper time and resources.  Another advantage of this design is 

possible battery savings if the two boards are combined in a single SoPC design.  The 

current design uses a DSP and a general-purpose embedded processor, running the 

operating system for the front end.   

1.3 Thesis Organization 

This thesis is organized such that background information required in each chapter 

is presented in the previous chapters.  The intent is that someone with little knowledge of 

the subject should be able to read and understand the information presented. 

Chapter 2 presents some basics of SoPC design.  This chapter provides a background 

in IP cores, compares the major bus architectures in use, and discusses some terminology 

used during design and verification.  

Chapter 3 discusses the design decisions made during development.  The first sub 

section discusses the hardware design phase of the thesis, including processor choice, 

peripheral design and design layout.  The second subsection discusses the software 

design, including abstraction layers and program flow. 



6 

 

Chapter 4 presents the tools and methods used for debugging both the hardware and 

software portions, and their interdependences.   

The summary of the results is detailed in Chapter 5 followed by the references in 

Chapter 6.



 

CHAPTER 2:    SYSTEM ON A PROGRAMMABLE CHIP DESIGN 

The Xilinx Design for reuse methodology [14] discusses the shift from SoC to 

SoPC, although they use the term System-on-a-Reprogrammable Chip (SoRC).  This 

manual defines SoRC as the grouping of an entire system on a single, programmable, 

chip.  The SoRC design normally contains some kind of computation engine, user 

defined logic and on chip memory, all connected through a system level integration 

method.  The following subsections give detail of these elements.   

2.1 FPGAs 

The FPGA is the substrate on which an SoPC design is implemented. Basically an 

FPGA is an integrated circuit which contains configurable memory blocks, allowing the 

designer to implement a logic or system design [15]. 

Figure 2.1 shows the basic layout of an FPGA.  The Configurable Logic Blocks 

(CLB) are located in rows and columns.  The routing network shown connects one CLB 

to the next in order to form the desired logic.  Each CLB contains smaller blocks, Flip-

Flops (FF) and Look up Tables (LUT).  The CLB also contains some internal routing in 

order to connect the Flip-Flops and LUTs required.  Flip-Flops are used to store 

information from one clock cycle to the next and are required for some but not all 

operations.  LUTs are programmable memory blocks.  These LUTs are normally 

programmed prior to run time with the desired outputs based on the inputs.  Figure 2.2 

depicts the operation of a two input LUT, or 2-LUT.  All LUTs will only have one 

possible output, but the number of inputs (n) determines the total amount of combinations 



8 

 

possible, which is 2n, and is equal to the amount of memory required for each LUT.  In 

Figure 2.2, the 2-LUT will have 22 = 4 possible combinations.  Although the example 

shown is a 2-LUT, typically, FPGAs use 4-LUTs, but this may vary between 

manufactures [15]. 

 

Switch Box

Connect

Box 

CLB 

LUT 

LUT 

FF 

FF 

Switch Box 

Connect

Box 

CLB 

LUT 

LUT 

FF 

FF 

Switch Box 

Connect

Box 

CLB 

LUT 

LUT 

FF 

FF 

Switch Box

Connect

Box 

CLB 

LUT 

LUT 

FF 

FF 

Connect

Box 

CLB 

LUT 

LUT 

FF 

FF 

Connect

Box 

CLB 

LUT 

LUT 

FF 

FF 

CLB 

LUT 

LUT 

FF

FF

CLB 

LUT 

LUT 

FF

FF

CLB 

LUT 

LUT 

FF

FF

 

Figure 2.1 Basic Layout of a FPGA 
 

The configuration of an FPGA is generally an automated process,  Computer Added 

Design (CAD) tools convert input schematic, netlist , or HDL designs into a bit stream 

which is then used to program the connection/configuration and memory blocks of the 

FPGA.  There are four basic steps required for CAD tools to create the configuration file, 

or bit stream, needed to implement the design on an FPGA: 



9 

 

1. Synthesis, during this step the user's input design is converted to low level 

logic gates which are used by the second step. 

2. Mapping, since the number of FFs and the size LUTs varies between chips 

and manufactures, mapping is an important step that builds up the 

configuration for each CLB, based on the chip selected.  Mapping decides 

what logic should be combined into a CLB. 

3. Place and Route determines which CLB the logic is placed.  Place and 

Route also determines the configuration of the connect and switch boxes.   

4. The final Step is to convert the configuration information into a bit stream 

that can be downloaded into the FPGA. 

 

 

Figure 2.2.  Abstraction of a 2-LUT 



10 

 

2.2 IP Cores 

The semiconductor industry continues to increase the number of transistors per 

chip, keeping pace with Moore’s law.  Moore’s law states that the numbers of transistors 

on a chip will double every 18–24 months [6].  This constant increase creates a challenge 

for designers to find ways to decrease the productivity gap [4].  The productivity gap is 

the distance between the two lines shown on Figure 2.3.  The top line represents the 

increasing complexity and capability of the hardware, while the lower line illustrates 

designer productivity.  One method used to fill this gap is to reuse components.  Many 

times these components are custom designs that make each product unique; however, 

most components needed have been previously designed.  These existing components 

may include memory, embedded processors, standard input/output (IO) devices, and 

other logic devices [7].  These components, which can be custom designed or existing, 

are often called IP cores.   

 

Figure 2.3.  Productivity Gap [4] 



11 

 

IP cores used in SoC designs may be either mixed signal or completely digital 

logic devices.  Mixed signal cores can include radios, analog to digital converter, digital 

to analog converters, and many more devices [5].  Mixed signal cores may be included in 

SoC designs since they specify ASIC designs; however, SoPC designs run on existing 

hardware and can only include mixed signal cores when included in a platform-based 

design.  The most common IP cores used in SoPC design are digital cores.  These cores 

include, but are not limited to, implementation of IO devices, signal encoding, embedded 

processors, and custom logic.   

2.2.1 Types of IP Cores 

According to the Reuse Reference Manuel, which lays out guidelines for the 

industry, the three main types of IP cores are hard, firm, and soft [7].  

Hard IP cores are optimized for their application and normally are guaranteed 

from the provider.  This type of core reduces risk since they have been built and tested, 

however they are less portable and more expensive than other types.  Until recently, the 

majority of cores available were hard cores.  A good example of this is the Advanced 

RISC (Reduced Instruction Set Computer) Machine (ARM) line of processors that are 

only available from the design house in the form of a hard IP core [12].  

A small percentage of the IP core market is available in the form of firm IP.  

These blocks offer similar reliability benefits of hard IP, however they are parameterized, 

meaning designers can specify aspects of the core to fit more applications and hardware 

platforms [4]. 

The majority of cores used in SoPC designs are soft IP.  These cores are useful to 

digital designers since they often come in the form of modifiable HDL.  This form of IP 



12 

 

does not come with the guarantees of the others, since the hardware can be changed and 

will be laid out differently each time.  Often soft IP will come in an encrypted form 

making it extremely difficult to modify, but allowing the other benefits of soft cores [4].   

2.2.2 Availability and Reuse 

The most common source for IP cores, in a company is existing designs.  This 

type of reuse may allow designers to reduce design risk by using familiar cores.  

However, often because of other concerns, this may be the least dependable source.  

Typically, designs must be completed in a short time to reduce the time to market or to 

keep a project on time and under budget.  However, to create reusable IP, the design 

process will generally take additional weeks to complete [8].  Internally designed cores 

will, and should, play a large part in designs, but the design process must take a “design 

for reuse” approach in order for the reuse to pay off [8]. 

IP cores are also available from many third party vendors and open source 

projects on the Internet.  The most common may come as individual cores or as packages 

like Xilinx Embedded Development Kit.  Altium Designer also comes with a set of IP 

cores.  Using prepackaged cores may increase productivity by ensuring they will work 

together, providing a common network architecture, and  reducing research and 

procurement time for each core.  Although the designer’s productivity may be increased 

and risk reduced by using pre packaged cores, the system’s performance may not be 

optimal.  Prepackaged cores are designed for general use; designs specialized for 

individual applications can offer improvements such as speed or size. 



13 

 

2.3 I/O selection 

During normal development of an embedded system, the decision of what types 

of device I/O are required must be made early, often the ideal processor cannot be used 

because it does not support the correct or enough device I/O.  This is not a problem when 

designing a device using an SoPC as the main processing component.  In this case, the 

designer may include all the required I/O options to include most types of I/O ports, or 

including custom I/O.  When platform FPGAs are used, they may contain defused IP, 

using these IP blocks is advantageous, however extra IP can be added beyond the defused 

blocks. 

2.4 Bus selection 

Communications between different portions of a system are standardized by 

attaching each component to a bus.  A bus is a set of wires, which are shared by 2 or 

more components.  Most buses have one device that controls the communication, called 

the master, and other devices that respond to commands sent from the master, called 

slaves.  Some buses are specialized for certain applications, for example, accessing 

memory, and others are more generic and suitable for use by many peripherals.    

The following subsections provide an overview of the three main bus standards 

used.  Many other bus architectures like in [23] have been purposed, however, using a 

standard architecture increases the number of IP cores available.  All of these standards 

have the same basic goal, which is to easily connect IP cores.   

2.4.1 AMBA 

ARM’s Advanced Micro-controller Bus Architecture (AMBA) is actually a 

collection of buses.  The two buses that are intended to connect the processor are the 



14 

 

Advanced High Speed Bus (AHB) and the Advanced System Bus (ASP).  Both of these 

buses are intended to communicate to high speed peripherals like Direct Memory Access 

(DMA) controllers, and include an Arbiter, which controls access to the bus.  The slower 

devices like a Universal Asynchronous Receive Transmit (UART) or a parallel 

input/output (PIO) are located on a second bus called the Advanced Peripheral Bus 

(APB). 

 

Figure 2.4.  Basic AMBA [9]. 

2.4.2 CoreConnect 

In Figure 2.4, the basic architecture of AMBA is illustrated.  This figure shows 

that any communication between the AHB/ASP and slower peripherals, located on the 

APB, are accomplished through a bridge.  The purpose of the bridge is to allow the 



15 

 

AHB/ASP to continue to operate at its maximum speed but still communicate to slower 

devices.   

 

Figure 2.5.  Basic CoreConnect Architecture [9]. 

IBM created CoreConnect to interface with their Power PC (PPC) line of 

embedded processors, with the intent to provide the highest performance possible.  

Although CoreConnect was designed for use with the PPC, any processors designed with 

the correct interface may use it.  As with AMBA, CoreConnect is actually a combination 

of multiple buses.  The main interface to the processor is through the Processor Local Bus 

(PLB).  This is the standard interface to high-speed peripherals and provides the 

processor access to slower peripherals through a bridge.  Communication between cores 

on the PLB that involve smaller amounts of data can dramatically decrease the 



16 

 

performance of the PLB.  To overcome this, these devices are also connected to the 

Device Control Register (DCR) bus.  

Slower cores like UARTs and keyboard interfaces are connected to the On-chip 

Peripheral Bus (OPB).  Communication between the OPB and the PLB is done through 

bridges [10].   

Figure 2.5 illustrates the basic architecture of the CoreConnect.  It should be 

noted that it is very similar to AMBA, with the addition of the DRC. 

 

Figure 2.6.  Basic (Shared Bus) Wishbone Architecture [9]. 

2.4.3 Wishbone 

The Wishbone Bus architecture, shown in Figure 2.6, can be much simpler than 

CoreConnect or AMBA.  The Wishbone standard was originally developed by Silicore 

Corp., but is now maintained by Opencores.org [13], a website for developers of open 

source cores to post and download designs.  The major difference between CoreConnect 

and AMBA is that the Wishbone architecture includes only a high-speed bus.  However 

many designs, such as the one used in this thesis, include two Wishbone buses, one for 



17 

 

high-speed peripherals like memory and a second for slower devices.  Since the 

Wishbone bus is used in this thesis, the following sub sections give more detail on its 

operation.  

2.4.3.1 Wishbone Interconnections 

There are four basic types of Wishbone interconnections: shared bus (shown 

above), point-to-point, data flow, and crossbar switch [19].  As the name indicates, the 

point-to-point , shown in Figure 2.7, interconnection allows two cores to talk to each 

other.  This is the simplest implementation, with one master and one the slave. 

 

Figure 2.7.  Point to point Wishbone Interconnection [19] 

The Data flow Interconnection is a more complicated option, because each core in 

the system acts as both a master and slave.  This type of connection allows work to be 

parallelized between the cores, possibly improving the performance of the system. 

 

Figure 2.8.  Wishbone Data Flow Interconnection [19] 



18 

 

The final type interconnection used in the Wishbone standard is the crossbar 

switch, shown in Figure 2.9.  This interconnection allows a system to include multiple 

masters and multiple slaves.  The Wishbone interconnect determines the routing required 

to connect each master to the requested slave device.   

 

Figure 2.9.  Wishbone Crossbar Switch Interconnection [19] 

2.4.3.2 Wishbone Interface 



19 

 

Table 2-1 gives a brief description of the Wishbone interface signals used in this thesis.  

The Wishbone interface standard supports more signals; however, this table is limited to 

the signals in this thesis used. 



20 

 

Table 2-1.  Wishbone signals used [19] [20]. 

Name Symbol Output Of Description 

Acknowledge ACK Slave Set by the slave to acknowledge the start 

of the cycle, cleared by the slave to 

indicate the completion of the cycle.  

Clearing this bit informs the master that 

output data is valid, for a read cycle.  

During write cycle operation, clearing 

this bit may have different meanings for 

each core, however, at a minimum, this 

informs the master that the input data has 

been read and will be processed. 

Address Bus ADR[] Master The binary output of this bus determines 

which core is used and any commands 

sent to the core.  The bus width can vary 

depending on the attached cores and the 

requirements of the system.   

Clock CLK Master/System The clock rate may be set by the master 

or the system clock. 

Cycle CYC Master The cycle bit is set by the master to 

indicate the start of a cycle and remains 

high until the end of the cycle. 



21 

 

Name Symbol Output Of Description 

Data Bus DAT[] Master/Slave The master and slave each have an input 

and output bus.  The bus width can vary 

depending on the attached cores and the 

requirements of the system.   

Reset RST Master/System The reset signal may be asserted by the 

master from the global system reset. 

Select SEL Master The select signal is used to extend the 

addressing from words to bytes. 

Strobe STB Master This signal is set by the master at the 

beginning of a cycle and cleared after 

acknowledgement from the slave. 

Write Enable WE Master The masters signal to the slave that it is 

clear to write the output data.   

 

A slave core can be read from in two methods; single and multiple reads.  Figure 

2.10 shows a single read from the masters’ point of view.  The cycle is initiated when 

both the STB_O and CYC_O are set.  At the same point, the master clears the WE_O to 

indicate a read cycle, and sets data to ADR_O and SEL_O, if needed.  When the slave 

core begins to process the data, it sets the ACK_I, places the output data on DAT_I, then 

clears ACK_I.  To end the single read cycle, the master reads the data on DAT_I and 

clears both STB_O and CYC_O.  In the case of a multiple read, the cycle would be the 



22 

 

same with one exception, CYC_O would not be cleared until all data was read.  STB_O 

would continue to cycle with each read as an acknowledgement to the slave.  

 

Figure 2.10.  Single Wishbone Read cycle 

2.5 Verification and Test 

Verification of a design is the process of determining if the design has correct 

functionality prior to implementing it on the platform [28].  When designing a system 

that is made from existing cores, much of the verification is performed by the core 

vendors.  The design of custom cores should be verified using simulation, to ensure the 

interface and results are as expected.   



23 

 

  Software portions of the project may also be verified by simulation or by running 

them on a development machine, also known as the host.  Running on a host system can 

verify the operation of the portions of the software that are not hardware dependent.  

Aspects like timing and some interfaces must be verified through simulation or held for 

testing on the target. 

 For this work, testing is described as verifying inputs and outputs of the system 

running on the target environment. 



 

CHAPTER 3:  DEVELOPMENT 

3.1 Hardware Design  

As described in Chapter 2.4.3, the main communications interface in this design is 

the Wishbone Bus.  The decision to use this interface was made early in the process 

because of the abundance of peripherals made available through Altium Designer.  

Although most peripherals are available in non-Wishbone variant, using the bus greatly 

reduced the complexity of the processor code and simplified the hardware interface 

design.  

The schematic shown in Figure 3.1 has three main components.  First, in the center 

is the processor.  The two green blocks represent other schematics.  The schematic on the 

left contains all logic, which resides on the peripheral bus and on the right the Memory 

bus.  Altium Designer requires all connections external to the FPGA to be located on the 

top level schematic, therefore the serial port, Video Graphics Adapter (VGA) connection, 

and Random Access Memory (RAM), are also located on this schematic.  Each of these 

schematics has many input and output ports.  These are represented by the yellow arrows, 

the direction of these ports, input or output, determines which way the arrow points, into 

or out of the symbol. 

The schematic symbol of the processor shown is typical of the 32-bit processors 

available in Altium Designer; that is all 32-bit processors available contain a Wishbone 

wrapper.  This feature enables processors to be changed, at the hardware level, simply by  

 



25 

 

 

 

 

 

 

Figure 3.1.  Top Level Diagram 



26 

 

right clicking on the processor and selecting a different type.  This is shown in the drop 

down box of Figure 3.2.  This feature would come in handy if the target FPGA were 

changed, for instance to a Xilinx Vertex II Pro, a platform FPGA containing a PPC [18].   

This type of change would reduce the number of LUTs used on the chip by using the 

defused core and may improve performance.  The benefits and drawbacks of such an 

approach are described later in Chapter 3.1.1, however the main reason the Tasking 

3000A (TSK3000A) was chosen is to keep this design portable to any FPGA. 

 

Figure 3.2.  Changing processor Options. 

Figure 3.2 also shows the configuration options available for the processors.  The 

first option is the amount of internal memory available.  The benefit of this selection is 

the ability to use as few block RAM elements as possible to implement the processors 

software.  The next option determines where multiplication is carried out, either emulated 



27 

 

by the complier or actually carried out on the processor.  Selecting the hardware Multiply 

Divide Unit (MDU) results in faster operation, but with greater physical resource usage.   

The final two options are used for debugging.  Disabling the Joint Test Action 

Group (JTAG) debug port would reduce the processor size, but would also remove the 

ability to debug software problems.  The design used in this thesis is not large enough to 

require the restriction of the internal memory, MDU, or JTAG; therefore the options 

selected are optimized for speed and ease of use. 

3.1.1 Available Processors and Selection 

Altium designer comes with a large number of processors ranging from 8-bit 

processors like the 8051 to the 32-bit Power PC (PPC405A).  Some of the higher end 

processors, the PPC405A, MicroBlaze, ARM 7 and Nios II, are hardware specific and 

could not be used on the evaluation board used for this thesis.  However, because of the 

Wishbone wrapper which encapsulates all of these processors, if the design were 

migrated to one of these processors, the hardware change would consist of changing the 

selection in the drop down box shown in Figure 3.2.   

As mentioned previously, the availability of numerous Wishbone-compliant cores 

supplied with Altium made the decision to use this interface a simple one, however it did 

not narrow the choice of processors.  The decision did remove many of the 8-bit 

processors except the TSK165 that also includes the Wishbone wrapper.  Four main 

factors supported the final decision to use the TSK3000A.  First was the abundance of 

example code, second, the possibility to more easily transition to a platform FPGA, third 

the optional hardware MDU, and fourth is an option that has been advertised, but not yet 

implemented.  In Spring of 2006, at the Embedded Systems Conference, Altium 



28 

 

demonstrated Designer’s ability to easily convert C code to HDL [30].  Although it is 

almost guaranteed not to execute as fast as hand coded HDL, it could, if implemented, 

improve processing time with little to no effect on design time, compared to the strictly 

software design.  This feature was advertised in Spring 2006 however, it has not yet been 

released to consumers. 

3.1.1.1 Pipeline Architecture 

The TSK3000A is a 32-bit Reduced Instruction Set Computer (RISC) processor.  

This type of processor was introduced in the early 1980s and has seen considerable 

changes since then.  One feature of RISC processors is that instructions are executed in a 

five-stage pipeline architecture.  A five-stage pipeline means portions of five instructions 

are loaded at one time, each of these instructions are broken into logical steps called 

stages, described in Table 3-1.  

 In Figure 3.3, each row represents a new instruction, with the current processor 

cycle highlighted in green.  This figure shows that as one instruction is starting, others are 

finishing.  For most instruction types, this is acceptable; however, there are some 

instruction types, for instance a branch, which disrupt this flow.  When a branch 

instruction is executed, in the Execute (EX) stage, the next instruction following the 

branch is executed as well, prior to moving to the new location.  This allows the 

TSK3000A to only waste one instruction in the pipeline [20].   



29 

 

Table 3-1.  TSK3000A Pipeline stage description [20] 

Instruction Fetch (IF) The address stored in the Program Counter 

(PC) is used to retrieve the next instruction 

from memory. 

Instruction Decode (ID) Required information is retrieved from 

registers.   

Execute (EX) Depending on the instruction type, 

calculations are performed, and the PC is 

updated 

Memory Access (MEM), During load or store instructions, the output 

data is read or written. 

Register Write Back (WB) The results from the EX or MEM stages 

are written to general purpose registers. 

 

 

Figure 3.3.  Basic five-stage pipeline [21] 

3.1.1.2 Interrupts 

The processor contains 32 configurable hardware exceptions called interrupts and 

one internal timer interrupt.  Each of the hardware interrupts has four possible situations 



30 

 

when an interrupt will be generated:  low level, high level, falling edge, or rising edge.  

The initial configuration of these interrupts takes place at the hardware level through the 

schematic editor when configuring the Wishbone Interconnect, a core that is detailed in 

later Chapters.  The hardware and software are linked through the automatic generation 

of “hardware.h” when using C source, as was for this thesis, or “hardware.asm” for an 

assembly project.   

During the software configuration of the interrupts, the selection must be made 

for standard or vectored interrupts.  In standard interrupt mode, every interrupt calls the 

same function that in turn determines the priority of the current interrupts and executes 

the required functions.  In vectored interrupt mode, each interrupt has a dedicated handler 

that is called.  The priority of this vectored interrupts are based on the interrupt number, 

with zero being the highest.    

As will be discussed in Chapter 3.1.2 the TSK3000A communicates to peripheral 

cores through the Wishbone interface, however since the processor acts as a master on 

this bus, cores that wish to talk to the master must be polled for their status or signal an 

interrupt when data is ready.   

3.1.1.3 Processor Memory Organization 

The TSK300A has dedicated ranges of memory reserved for external memory and 

peripherals.  Any read or writes to these memory locations are directed to the 

corresponding Wishbone port.  From the embedded software’s point of view, when a call 

to an external device is made the processor handles all necessary Wishbone interface 

actions to read or write to the intended device.  Figure 3.4 shows the memory mapping 

for this thesis.  This figure shows the memory areas which may be mapped to peripherals, 



31 

 

external memory, and internal memory, on the left.  On the right, the peripherals and 

external memory which are actually mapped into this area are shown.  

 

Figure 3.4.  Memory Map 

Mapping of the peripherals and external memory, and their corresponding 

memory addresses, shown on Figure 3.4 was made easy by using the Wishbone 

Interfaces of the Peripheral and Memory Control Schematics that will be discussed 

further in Chapters 3.1.2 and 3.1.3.  These devices were imported on the schematic view 

of the processor, however, if the Wishbone interface was not used, or if individual 

memory partitions were required, they could be specified through the processor 

configuration menu.  To incorporate the hardware design into the embedded  



32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  Peripheral Control Schematic. 

 



33 

 

software project, as discussed in Chapter 3.1.1.2 on interrupts, the memory addresses are 

also added to “hardware.h” or “hardware.asm.”  

3.1.2 Peripheral Design 

The Peripheral Control portion of this design contains three major sections, 

Wishbone interconnect, serial and display.  A general overview of Figure 3.5 shows that 

the serial connection is a uart16550 core, the display portion of the design consists of 

U_DispCtrl, U_GphCtrl, and U_DisplayCtr, and these are all linked together using the 

Wishbone interconnect.  These portions of the design are discussed in greater detail in the 

following sub sections.   

3.1.2.1 Wishbone Interconnect 

The peripheral cores, shown on Figure 3.5, are all attached to the Wishbone 

interconnect.  This component is the main interface with the processor.  It handles the 

routing of instructions, seen as simple memory reads and writes from the embedded 

software.  As discussed in Chapter 3.1.3, any memory reads or writes performed on 

addresses 0xFF00000 to 0xFFFFFFFF are directed to the peripheral ports of the 

processor.  These instructions are further decoded and forwarded to their intended 

peripheral.  Setting up this decoding is accomplished through the schematic view of 

Altium Designer, and is shown in Figure 3.6.  The configure window of Figure 3.6 shows 

the summary of the attached peripherals and their properties.  The order peripherals listed 

on this view determines the order they will appear on the schematic symbol.  Selecting 

Add or Edit Device on this window will bring up a more detailed dialog box, shown in 

Device Properties, which allows modification of the properties shown in the summary 

window.  



34 

 

 

 

Figure 3.6.  Peripheral Core Configuration on the Wishbone Interconnect 

3.1.2.2 Serial Communications 

Originally, serial communication was accomplished by use of the WB_UART8 

core, an implementation of a UART.  However, after much time was spent attempting to 

implement the driver, the effort was abandoned.  There appeared to be some flaw in 

either the core implementation or the documentation supplied.  The core would only 

signal the receive interrupt while it was also transmitting. 

As an alternate solution, the uart16550 from opencores.org [13] was chosen.  This 

core is a soft IP core, available in the HDL Verilog.  Integrating this core and 

implementing the driver did not take much time at all.  Two main advantages accelerated 



35 

 

the implementation of the drive, first was correct documentation of the registers.  Second, 

was the fact that the HDL was available for reference while debugging the driver code.  

The only problem seen during the implementation was the repeat of data sent to the video 

port.  To determine the solution to this problem the UART core code was examined.  

From this examination, it was noted that the uart16550 does not do any address decoding, 

except to determine which register is being reference.  Therefore, the Wishbone 

interconnect must only forward information to the uart16550 when it is intended for this 

core. 

3.1.2.3 Display  

The display requirements of this project did not dictate that a VGA output be 

used, however the availability of the VGA, and lack of a simpler Liquid Crystal Display 

(LCD) forced the use of the VGA output.  Use of the VGA output also allowed the 

addition of the graph display.  The feature, which consumed relatively little design time, 

eased debugging during the hardware/software integration. 

The component U_TDisplay, which is an instantiation of TDisplay.SchDoc is 

modified from a reference design provide with Altium Designer.  The original design 

included only the LCD display and required modification to include the graph output.   

Control of the LCD display is handled through U_DisplayCtrl, an instantiation of 

a VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL) 

document called WB_LCD_Controller.vhd. This design is also derived from a reference 

design, the main functionality and interface to the TDispay.SchDoc remained the same.  

However, the implementation was modified to enable communication over the Wishbone 

bus. 



36 

 

The final core used in the peripheral design is the U_GphCtrl, an instantiation of 

the schematic document WB_GraphControler.SchDoc.  This design, used with the 

Wishbone Interconnect, allows synchronous one-way communication from the processor 

to the graph display. 

3.1.3 Memory Design 

During design of the memory control, a dual master approach to the external 

RAM was created.  This design allows the peak detector and the processor to access the 

same memory space using the Wishbone bus.  As with the peripheral control bus, the 

communication from the processor is routed through a Wishbone Interconnect.  

3.1.3.1 RAM 

A major difference between this bus and the peripheral bus is the addition of the 

Wishbone Dual Master, shown in Figure 3.7.  The Dual Master allows the two 

components to access the same core, in this case the SD Controller, a instance the of 

WB_MEM_CTRL configured for two static RAM (SRAM) chips [29]. 

The Dual Master is configurable to suit almost any 8, 16, and 32-bit wide memory 

buses and any address width from 0 to 32-bits.  The priority given to each master is also 

configurable.  Currently the Dual Master is configured to using a first come first serve 

priority called Round Robin, but could be configured to a preemptive scheme giving 

either precedence [31]. 

3.1.3.2  Peak Detection 

As mentioned in the introduction to this thesis, the peak detection algorithm is not 

the focus and therefore a simple implementation has been created.  From an interface  

 



37 

 

 

 

 

 

Figure 3.7.  Memory Control Schematic 



38 

 

point of view, the peak detector is a Wishbone slave to the processor and a Wishbone 

master to the SRAM. 

 The current implementation does not utilize the Wishbone master portion in order 

to access the SRAM, therefore the values for each data set must be written directly to the 

core.  When a new value is written, the core compares it to the previous largest value and, 

if greater, stores this value and its corresponding index.  

The core has four commands.  First is to reset the core; when this command is 

received, the greatest point and its index are cleared.  The second command is to receive 

data; this data is passed in on the DAT_I line of the core along with the command and is 

immediately compared to the previous data.  The final commands are to retrieve the 

greatest point and its location, which are passed back on the DAT_O lines of the core. 

3.2 Software Design 

The software used in the implementation of this thesis is a combination of reused, 

derived and custom code.  Reused code came with Altium Designer as parts existing 

from example projects.  Derived code came from multiple sources.  The first was from 

example projects.  Much of the derived code started out as C++.  This code is mainly 

used to determine the validly of the information sent from the sensor.  This code has 

changed dramatically from the original C++ into the C used in this project.  Finally, 

custom code is used to link all others together.  Included in this is code generated by the 

development environment in order to link the hardware and software portions of the 

project. 



39 

 

3.2.1  HAL 

According to Noergaard in the “Embedded Systems Architecture”, embedded 

system applications are split into two layers: the system and application [16].  A more 

common name for the system layer is the Hardware Abstraction Layer (HAL).  This layer 

exists as a buffer between the source that describes the operations and the hardware, 

where the operations are performed.  Much of this abstraction is handled by the complier, 

for example the programmer does not need to modify how the “+” operator works on 

integers when switching between processors with different instruction sets.  This type of 

operation is handled at a lower level.  The HAL exists to cover the operations that are not 

handled by the complier.   

Some examples of this are enabling and disabling interrupts, and controlling 

external cores.  One core used that required many functions, and is part of the HAL, is the 

UART.  All functions that perform operations on the UART core are grouped together in 

uart16550.c and uart16550.h.  Any change to this core may result in a change to files in 

the abstraction layer only.  

The majority of the HAL exist as source and header file combinations. Two 

exceptions to this are set information to the peak detector and to the graph.  These cores 

are simpler, requiring only simple memory reads or writes to accomplish a single task.  

The graphing core has only one function, writing the new value to the graph.  The peak 

detector has four functions: reset, set data, get the peak height, and get peak location.  

The abstraction for these cores is performed in HAL.h.  In order to use HAL functions in 

the Application layer, a function prototype must exist prior to the calling function; 

including HAL.h will ensure the HAL prototypes exist. 



40 

 

3.2.2 Application Layer 

Noergaard describes the application layer as the place which an embedded system 

is given its purpose and where the functionality is implemented [16].  This layer pulls 

together peripherals, defined in the HAL, with built in processor functionality.   

Application layer components of this thesis are sensor related, and packet related 

functions.  They are not time sensitive and were therefore prime to be designed and tested 

on a host computer.  This process is discussed more in the software verification and 

debugging portion of this thesis. 

3.2.3 Program Flow 

The general program flow of this thesis is very similar to any normal embedded 

application.  The input data is read from the sensor through the serial interrupt service 

routine (ISR).  The data is passed from the ISR to the main program though a queue.  The 

main program will process the data retrieved from the queue or wait for more data to 

arrive.  The flow shown in Figure 3.8 does not include the details queuing and dequeuing 

of received data, but instead gives a more general overview of the program flow. 



41 

 

 Start 

 Continue to look for an ID byte. 

 

Search through the queue 

 for the first ID byte. 
Was an ID byte found? 

Is the found ID an Ack or Nak? 

 Set an Event 

 

Was the ID for a Read Packet or Environment Packet 

Set the packet length and 
build the packet. 

Is this a valid Environment packet? 

Do Environment Packet Actions 

 The Environment packet signals the

 end of one data set and the beginning

 of the next. When this packet is 

 received. The Peak Detector should be ran. 

Is this a valid Read Packet? 

Do Read Packet Actions 

Each Read Packet is a portion of a whole 

point. When a whole point is received 

it is stored for use by the Peak Detector. 

The CRC was invalid, put all of the 

 bytes back in the buffer except the ID. 

goto Start 

yes no 

yes 

no 

yes no 

yes 

no yes no 

yes no 

General Program Flow. 

 

Figure 3.8.  General Program Flow.



 

CHAPTER 4:  VERIFICATION\DEBUGGING 

To ensure proper operation of each of the cores used, in the design, many testing 

methods were used.  These include stub programs, simulation, and measurement of the 

system during operation using an oscilloscope and a logic analyzer core. 

4.1 Hardware 

Prior to building the peak detector into the project, functional verification was 

performed using a VHD test bench.  This test bench tests both the Wishbone 

communications interface and the functionality of the peak detector.  The simulation was 

ran using Altium Designer’s built in Design Explorer (DXP) simulator.  Although this 

simulator is not as fully featured as some others like, ModelSim, it proves to be very 

capable when used in conjunction with a test bench.     

After the cycles of modifying both the core and the test bench resulted in 

satisfactory results, the core was added to the project.  At this point, there did prove to be 

some trouble with the implementation.  As a result, no communications between the peak 

detector and the processor were successful.  While troubleshooting the problem, the first 

assumption made was that an error existed in the implementation of the Wishbone bus 

communication.  To identify the cause, a logic analyzer core was connected to both the 

working UART core and the peak detector core.  This logic analyzer (LAX) is included 

as part of Altium’s instrument library, which is controlled through Designer’s instrument 

panel.  The LAX can be connected to a hardware trigger or can also be set to trigger on 

inputs to the LAX.   



43 

 

The LAX used to troubleshoot the peak detector communication problem was 

removed soon after solution was found, however an example of its connection and the 

core exist in the Wishbone graph controller.  This simple schematic, shown in Figure 4.1, 

used in conjunction with the Wishbone interconnect, allows the control of the graph to be 

mapped to a single memory address in the processors memory space.  

 

Figure 4.1.  WB_GraphControl.SchDoc 

The LAX used in the schematic has one 16-bit input and 1 kilobit of memory.  

The bus connectors shown in red allow buses of different widths to be connected, with 

the numbers on each side determining where each pin is mapped on the other.  For 



44 

 

instance, WE is mapped to pin one of the bus breakout labeled U2, going through the bus 

connecter pin 0 is mapped to pin 8 of the logic analyzer.    

Triggering of the LAX can be performed through an internal trigger or configured 

through the Altium Designer’s Instrument Panel.  For this example, the instrument 

control was used; therefore, the external trigger line in Figure 4.1 was tied to ground.  

Data collected through the LAX can be saved or cycled in continuous capture mode. 

Although this design was created in schematic capture, it is converted 

automatically, by Altium into structural VHDL.  This enabled the circuit to be simulated 

prior to being built into the FPGA, with one exception.  The logic analyzer had to be 

manually commented out during simulation.  This exception is no problem since the logic 

analyzer serves no purpose during simulation, only runtime. 

 

Figure 4.2.  Logic Analyzer and Simulation Output 

Some difference was seen between the LAX output and the simulation.  This 

difference is shown in Figure 4.2.  This figure shows the results from the LAX side by 

side with the results from simulation.  The difference seen is in the acknowledge (ACK) 

signal, which is incorrectly shown rising at the same time as the graph output data is set.  

This difference is not a problem in the core or the simulation but a result of the difference 



45 

 

between the LAX and the simulation.  The logic analyzer samples the data when rising 

edge of the clock is seen, this means it will not see data that is scheduled to be set at the 

clock.  Simulation data shows signals as they are scheduled to be set therefore can change 

more frequently than the clock.  The similarity marked likes in the figure show how the 

time in the simulation corresponds to the logic analyzer.  Ideally, the sample clock of the 

logic analyzer should be twice rate of the circuit under test [25].   

 

Figure 4.3.  Logic Analyzer view 

In order to see the transitions on the logic analyzer seen in simulation, and prove 

this theory is correct, the clock signal on the input of the circuit under test was reduced.  

This reduction was necessary since the clock used on the logic analyzer is already at the 

maximum on the board.  This temporary change allowed the data seen in Figure 4.3 to be 

collected.  As discussed earlier, this figure shows the sample clock at twice the rate of the 

data and allows the transitions on both the positive and negative edges of the circuit’s 

clock to be shown. 

4.2 Software 

The application layer of this thesis was started prior to the completion of the 

system’s hardware implementation.  This was accomplished by writing an example 



46 

 

program to run on the host computer.  This program had two threads: a read thread to 

simulate the ISR that would be used on the target, and main thread.  The program is a 

combination of C++ and C. C++ and the Microsoft Foundation Class was used to ease 

host development, and C was used for source code intended for the final design.  This 

program helped immensely in the development of this portion of the code.   

 

Figure 4.4.  Instrument Panel and Nexus Debugger 

During normal embedded application development, a common problem is that when 

attempting to step through the main application, the ISR is constantly called.  This one 

major problem was avoided, initially, by using this Windows application, allowing 

simpler verification of all the application layer functions.  Another solution to this ISR 



47 

 

issue when debugging on the target platform, was to temporarily disable interrupts.  This 

was often required and made easy through the tools supplied with Altium Designer.   

Debugging the embedded software on the target was performed at the C source code 

level, but could also have been performed at the assembly code level.  When debugging 

at the C code level, Designer provided the ability to step through the source, watch and 

change variables, and reset the processing.  Designer also provided a debugging console, 

allowing experienced users to step, run, evaluate, and more.  The commands used in this 

console are similar to ones used in the open source debugger, GDB.     

Memory and registers were viewed and modified using the Nexus debugger.  This 

tool is available through the instrument panel and is shown in Figure 4.4.  Mainly this 

tool was used to modify the status register, in order to disable interrupts, when debugging 

other sections of the application.  However, this tool also provides an alternate method to 

debug at the assembly code level. 

 
 
 



 

CHAPTER 5:  SUMMARY 

The main objective of this thesis was to design the command and control which may 

be linked to a sensor using a SoPC approach.  To accomplish this task a design was 

created which used an embedded processor, serial port, display capabilities and the shell 

for a hardware peak detector.  All the listed cores were in the form of soft core IP with 

some level of reuse.   

The internal communication of the SoPC design was implemented using the 

Wishbone bus.  Using Altium Designer’s Unified Development Environment in 

conjunction with the Wishbone bus enabled each core to be mapped directly to the 

embedded processors memory, creating the hardware/software interface.   

The entire embedded system was designed, configured, programmed, and debugged 

in the same development environment.  This environment provided hardware and 

software simulation, hardware debugging with logic analyzer cores and software 

debugging at both the source and assembly levels 

The current output is shown in Figure 5.1.  The window closer to the top of this 

photo is the simulated LCD display, a 16x2 display, used to show the peak height and 

location.  The first line of this LCD shows the current input index and value followed, the 

second line displays the peak index and value from the last window. 

 Below the LCD display is the graph output.  This graph scrolls displaying the latest 

data point, this was used as a visual debugging aid to show the peak detection was 

operational.  Also, used to verify the operation was a recording of the sensor data.  This 



49 

 

recording was replayed from the host computer and ensured the data was received 

correctly and the correct point was determined to be the peak. 

 

Figure 5.1.  Display Output 

 



50 

 

REFERENCES 

[1] M. Meerwein, C Baumgartner, “Linking Codesign and Reuse in Embedded Systems 

Design,” Proceedings of the Eight International Workshop on Hardware/Software 

Codesign, 2000.  pp 93-97 

[2] R. Ernst, “Codesign of Embedded Systems: Status and Trends,” IEEE Design & Test 

of Computers.  April 1998, pp. 45-54 

[3] S. Ha, C. Lee, “Hardware-software Codesign of Multimedia Embedded Systems: 

The PeaCE Approach,” Proceedings of the 12th IEEE International Conference on 

Embedded and Real-Time Computing Systems and Applications (RTCSA'06), 2006 

[4] R. Saleh, S Wilton, “System-on-Chip: Reuse and Integration,” Proceedings of the 

IEEE, June 2006, pp. 1050-1068 

[5] R. Zurawski, et al, “Embedded Systems Handbook”,  CRC Press, Boca Raton, FL, 

2006 

[6] G. Moore, “Cramming More Components Onto Integrated Circuits”, Electronics, 

Vol. 38, pp. 114–117, April 1965. 

[7]  M. Keating and P. Bricaud, “Reuse Methodology Manual: For System-on-a-Chip 

Designs”, Third ed. Boston, MA: Kluwer, 2002. 

[8]  A. Reutter, W. Rosenstiel, “An Efficient Reuse System for Circuit Design,” 

Proceedings of DATE Conference 1999, March 9-12, 1999, Munich Germany 

[9]  R. Usselmann, “OpenCores SoC Bus Review”, Website:  

http://www.opencores.org/projects.cgi/web/wishbone/soc_bus_comparison.pdf, 

November 2006. 



51 

 

[10] “IBM CoreConnect bus cores” http://www-

306.ibm.com/chips/techlib/techlib.nsf/techdocs/F175B826ECE6FDE08725711F007

70F60/$file/G224-7587-01_coreconnect_pb.pdf, November 2006. 

[11] T. Oliver, et al, “Accelerating an Embedded RTOS in a SoPC Platform”, TENCON 

2004.  IEEE Region 10 Conference, August 2004.  pp 415-418. 

[12] ARM Product Information,  Website:  http://www.arm.com/products/, April 2007. 

[13] Opencores.Org General Information, Website:  http://www.opencores.org, January 

2007. 

[14] “Xilinx Design Reuse Methodology for ASIC and FPGA Designers”, Website: 

http://www.xilinx.com/ipcenter/designreuse/docs/Xilinx_Design_Reuse_Methodolo

gy.pdf, November 2006. 

[15] D. Hodges, et al, “Analysis and Design of Digital Integrated Circuits”, Third ed. Mc 

Graw Hill, New York, NY.  2004.  

[16] T. Noergaard, "The Embedded Systems Architecture: A Comprehensive Guide for 

Engineers and Programmers”, 1st ed. Oxford, United Kingdom: Elsevier Inc. 2005 

[17] I. Al Khatib, et al, “A Multiprocessor System-on-Chip for Real-Time Biomedical 

Monitoring and Analysis: Architectural Design Space Exploration”, Proceedings of 

the Design Automation Conference 2006, July 24–28, 2006, San Francisco, 

California, USA. 

[18] A. Shebli, et al, “FPGA-based System-on-Chip Designs for Real-Time Applications 

in Particle Physics”, Proceedings of the Real Time Conference, IEEE-NPSS, 2005 

[19] “Wishbone System-on-Chip (SoC) Interconnection Architecture for Portable IP 

Cores” Revision: B.3, September 7, 2002  



52 

 

[20] “TSK3000A 32-bit RISC Processor”, Website:  

http://www.altium.com/files/AltiumDesigner6/LearningGuides/CR0121 TSK3000A 

32 bit RISC Processor.pdf 

[21] “Graphic For Five Stage Pipeline”, Website: 

http://upload.wikimedia.org/wikipedia/commons/2/21/Fivestagespipeline.png, 

December 2006, 

[22] S. Uhrig, et al, “Coupling of a Reconfigurable Architecture and a Multithreaded 

Processor Core with Integrated Real-Time Scheduling”, The 20th International on 

Parallel and Distributed Processing, April 2006. 

[23] S. Kohara, et al, “An Interface-Circuit Synthesis Method with Configurable 

Processor Core in IP-Based SoC Designs”,  Asia and South Pacific Conference on 

Design Automation, Jan 2006 

[24] M. Hung , “Development Scheme of SoPC-Based Reconfigurable Controllers”, 

Proceedings of the 2006 IEEE International Conference on Networking, Sensing and 

Control, April 2006 

[25] S. Kuo, B. Lee, “Real-Time Digital Signal Processing”,  first ed.  Wiley, West 

Sussex, England. 2001. 

 [26] “Desert Storm Employment, Observations, And Lessons Learned”, Website:  

http://www.gulflink.osd.mil/fox_vehicle_ii/fox_vehicle_ii_s05.htm 

[27] “Xilinx Spartan 3 brochure”, Website: 

http://www.xilinx.com/publications/prod_mktg/pn0010983.pdf, February 2007. 



53 

 

[28] M. Bushnel, V. Agrawal, “Essentials Of Electronic Testing For Digital, Memory and 

Mixed-Signal VLSI Circuits”, First ed. Kluwer Academic Publishers, New York 

NY, 2002. 

[29] “WB_MEM_CTRL Configurable Wishbone Memory Controller”, Website: 

http://www.altium.com/files/AltiumDesigner6/LearningGuides/ CR0152 

WB_MEM_CTRL Configurable Wishbone Memory Controller.pdf 

[20] “TSK3000A 32-bit RISC Processor”,  Website: 

http://www.altium.com/files/AltiumDesigner6/LearningGuides/CR0121 TSK3000A 

32 bit RISC Processor.pdf 

[30] “Why-embedded-developers-EN”, Website:  http://www.altium.com/files/pdfs/Why-

embedded-developers-EN.pdf 

 [31] “WB_DUALMASTER Configurable Wishbone Dual Master”,  Website: 

http://www.altium.com/files/AltiumDesigner6/LearningGuides/CR0151 

WB_DUALMASTER Configurable Wishbone Dual Master.pdf 

 



54 

 

APPENDIX A:  HARDWARE DESIGN DOCUMENTS 

This appendix includes the hardware design documents, which are original to this thesis.  

These documents include the schematics and VHDL code used to implement the design.  

In each schematic green blocks, represent sub-modules, which may be other schematics, 

VHDL, or Verilog.  Modules that are not listed in this appendix remain unchanged from 

example projects packaged with Altium Designer and the uart16550 core downloaded 

from Opencores.org. 

    

 
 
 
 



55 

 

 
 
 
 

Schematic:  TopLevel.SchDoc 



56 

 

 

 

 

 

Schematic:  Memory.SchDoc 



57 

 

 

 

 

 

Schematic:  Peripherl.SchDoc 



58 

 

 

 
 
 

Schematic:  TDisplay.SchDoc 



59 

 

 

 

 

 

Schematic:  WB_GraphController.SchDoc 



60 

 

-------------------------------------------------------------------------------- 
--By:  Nicholas Wieder 
VHDL File:  PeakDet3.vhd 
--Description: This file contains the entity and architecture of the peak 
--    detector.  The current implementation uses only the mpu_... and works 
--    as a slave to the main processor.  the peak detection is a simple  
--    greatest point. 
-------------------------------------------------------------------------------- 
 
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.Std_Logic_1164.all; 
use IEEE.std_logic_unsigned.all; 
use IEEE.std_logic_arith.all; 
-------------------------------------------------------------------------------- 
 
-------------------------------------------------------------------------------- 
entity PeakDet3 is 
      generic 
       ( 
         Q_SIZE: integer := 201; 
         TEST: Std_Logic := '0' 
       ); 
      port 
       ( 
        --Wish Bone interface 
        mpu_STB_I   : In    Std_Logic; 
        mpu_CYC_I   : In    Std_Logic; 
        mpu_ACK_O   : Out   Std_Logic; 
        mpu_ADR_I   : In    Std_Logic_Vector(5 DownTo 0); 
        mpu_DAT_O   : Out   Std_Logic_Vector(31 DownTo 0); 
        mpu_DAT_I   : In    Std_Logic_Vector(31 DownTo 0); 
        mpu_SEL_I   : In    Std_Logic_Vector(3 DownTo 0); 
        mpu_WE_I    : In    Std_Logic; 
        mpu_CLK_I   : In    Std_Logic; 
        mpu_RST_I   : In    Std_Logic; 
 
         --Memory stuff 
        mem_STB_O   : Out   Std_Logic; 
        mem_CYC_O   : Out   Std_Logic; 
        mem_ACK_I   : In    Std_Logic; 
        mem_ADR_O   : Out   Std_Logic_Vector(20 DownTo 0); 
        mem_DAT_I   : In    Std_Logic_Vector(31 DownTo 0); 
        mem_DAT_O   : Out   Std_Logic_Vector(31 DownTo 0); 
        mem_SEL_O   : Out   Std_Logic_Vector(3 DownTo 0); 
        mem_WE_O    : Out   Std_Logic; 
        mem_CLK_O   : Out   Std_Logic; 
        mem_RST_O   : Out   Std_Logic 
       ); 
end PeakDet3; 
-------------------------------------------------------------------------------- 
 
-------------------------------------------------------------------------------- 
architecture behave of PeakDet3 is 
    Signal ACK          : Std_Logic; 
    Signal DoRead       : Std_Logic; 
    Signal DoWrite      : Std_Logic; 
    Signal DoReset      : Std_Logic; 
    Signal RunPeakDet   : Std_logic; 
    Signal Command      : Std_Logic_Vector( 5 DownTo 0); 
    Signal DataOut      : Std_logic_vector(31 downto 0); 
    Signal OutPutEvent  : Std_Logic; 
    Signal size         : Std_logic_vector(31 downto 0); 
    Signal DataReady    : Std_logic; 
    Signal tempPeakValue : Std_logic_vector(31 downto 0); 
    signal tempPeakIndex : Std_logic_vector(31 downto 0); 
    Signal ClrAck        : Std_logic; 
 
 
 



61 

 

    constant CMD_RESET         : Std_Logic_Vector( 5 DownTo 0) := "000000"; 
    constant CMD_SIZE          : Std_Logic_Vector( 5 DownTo 0) := "000001"; 
    constant CMD_DATA          : Std_Logic_Vector( 5 DownTo 0) := "000010"; 
    constant CMD_GET_PEAK_VALUE: Std_Logic_Vector( 5 DownTo 0) := "000011"; 
 
 
    type SEQ_STATE_TYPE is ( Start, ReadNext, CheckForPeak, Done); 
    signal SEQ_STATE: SEQ_STATE_TYPE; 
 
    subtype storageit is std_logic_vector(31 downto 0); 
    type storage_array is array (0 to (Q_SIZE-1)) of storageit; 
    signal Internal_Storage: storage_array; 
 
-------------------------------------------------------------------------------- 
-- Convert a 32 bit std_logic_vector into an integer 
-------------------------------------------------------------------------------- 
function slv2int (Input: std_logic_vector(31 downto 0)) return integer is 
       variable i: integer := 0; 
       variable O: integer := 0; 
 begin 
       --This is used as an array index so the first bit must be 0 
       for i in 30 downto 0 loop 
           if Input(i) = '1' then 
               O := O + (2**i); 
           end if; 
       end loop; 
       return O; 
end; 
-------------------------------------------------------------------------------- 
 
-------------------------------------------------------------------------------- 
-- The start of the architecture 
-------------------------------------------------------------------------------- 
Begin 
    mpu_ACK_O   <= ACK; 
    DoRead     <= mpu_STB_I And mpu_CYC_I And (Not mpu_WE_I) ; 
    DoWrite    <= mpu_STB_I And mpu_CYC_I And (mpu_WE_I) ; 
    Command    <= mpu_ADR_I(5 DownTo 0) when ((DoRead ='1' or DoWrite ='1' or DoReset = '1') and ClrACK = '0'); 
 
    --order a reset if    RST_I or  CMD_RESET was sent (=000000) 
    DoReset    <= mpu_RST_I or (not(mpu_ADR_I(0) or mpu_ADR_I(1) or mpu_ADR_I(2) or mpu_ADR_I(3) or mpu_ADR_I(4) or 
mpu_ADR_I(5)) and (DoRead or DoWrite)); 
 
    GenerateACKandMem_W: 
    Process(mpu_CLK_I,mpu_RST_I,ACK,mpu_STB_I,mpu_CYC_I,ClrACK) 
    Begin 
        If Rising_Edge(mpu_CLK_I) Then 
           If mpu_RST_I = '1' Then 
               ACK <= '0'; 
            ElsIf ACK = '0' Then                           -- If not in a current cycle. 
               ACK <= mpu_CYC_I And mpu_STB_I;                     -- If wishbone cycle started then acknowledge it. 
            Elsif ClrACK = '1' then                        -- Clearing ACK means the output Data is there 
               ACK <= '0';                                 -- Else back to zero. 
            End If; 
        End If; 
    End Process; 
 
    theControlFSM: 
    Process(mpu_CLK_I,mpu_RST_I,mpu_DAT_I,DoRead,DoWrite,DoReset,RunPeakDet,SEQ_STATE,DataReady) 
        variable currentIndex   : std_logic_vector(31 downto 0); 
    Begin 
          If Rising_Edge(mpu_CLK_I) Then 
            If (DoReset = '1') Then                             -- if reset the  set all values to default    (Command = CMD_RESET)  or 
               RunPeakDet <= '0'; 
               size <=  (Others => '0'); 
               tempPeakIndex <= (others => '0'); 
               tempPeakValue <= (others => '0'); 
               currentIndex := (others => '0'); 
               mpu_DAT_O <= (others => '0'); 
               for i in 0 to (Q_SIZE-1) loop 



62 

 

                   Internal_Storage(i) <= (Others => '0'); 
               end loop; 
               ClrACK <= '1'; 
            ElsIf DoWrite = '1' and ClrACK = '0'  then 
                if (RunPeakDet = '1') Then                -- Do the real work 
                  RunPeakDet <= '0'; 
                elsif Command = CMD_SIZE then                -- Save the Size of the array 
                  size <= mpu_DAT_I; 
                elsif Command = CMD_DATA then                -- Save the Save the data and see it this is the largest 
                  Internal_Storage(slv2int(currentIndex)) <= mpu_DAT_I; 
 
                  if (mpu_DAT_I > tempPeakValue) then 
                     tempPeakIndex <= currentIndex; 
                     tempPeakValue <= mpu_DAT_I; 
                  end if; 
                  currentindex := currentIndex + 1; 
                end if; 
                ClrACK <= '1'; 
             Elsif DoRead = '1' and ClrACK = '0' then 
               if(TEST = '0') then 
                    if Command = CMD_GET_PEAK_VALUE then 
                      mpu_DAT_O <= tempPeakValue; 
                    else 
                      mpu_DAT_O <= tempPeakIndex; 
                    end if; 
               else -- Test = 1 
                    if Command = CMD_GET_PEAK_VALUE then 
                      mpu_DAT_O <=X"00000003"; 
                    else 
                      mpu_DAT_O <=X"00000002"; 
                    end if; 
               end if; -- test 
               ClrACK <= '1'; 
            Else 
               ClrACK <= '0'; 
            End if; 
 
        End If; 
    End Process; 
 
    --Assign values to the unUsed port 
    mem_STB_O  <= '0'; 
    mem_CYC_O  <= '0'; 
    mem_ADR_O  <= (Others => '0'); 
    mem_DAT_O  <= (Others => '0'); 
    mem_SEL_O  <= (Others => '0'); 
    mem_WE_O   <= '0'; 
    mem_CLK_O  <= mpu_CLK_I; 
    mem_RST_O  <= mpu_RST_I; 
 
end behave; 
-------------------------------------------------------------------------------- 



63 

 

-------------------------------------------------------------------------------- 
--By:  Nicholas Wieder 
VHDL File:  WB_LCD_Controller.vhd 
--Description: This file contains the entity and architecture of the LCD  
--    controller.  It was derived from LCD_Controller.vcd.  Modifications to  
--    this design were made to enable the congroller to work on the Wishbone  
--    bus. 
-------------------------------------------------------------------------------- 
 
-------------------------------------------------------------------------------- 
Library IEEE; 
Use IEEE.Std_Logic_1164.All; 
-------------------------------------------------------------------------------- 
 
-------------------------------------------------------------------------------- 
Entity WB_LCD_Controller Is port 
   ( 
     -- WB interface 
     CLK_I     : In  Std_Logic; 
     RST_I     : In  Std_Logic; 
 
     CYC_I     : In  Std_Logic; 
     STB_I     : In  Std_Logic; 
     ACK_O     : Out Std_Logic; 
     WE_I      : In  Std_Logic; 
 
     DAT_O     : Out Std_Logic_Vector(15 DownTo 0); 
     DAT_I     : In  Std_Logic_Vector(15 DownTo 0); 
 
     ADR_I     : In  Std_Logic_Vector(5 DownTo 0); 
     SEL_I     : in  Std_Logic_Vector( 3 DownTo 0); 
 
     -- Display Memory interface 
     MEM_W           : out   std_logic; 
     MEM_AD          : out   std_logic_vector(6 downto 0); 
     MEM_DB          : out   std_logic_vector(7 downto 0) 
   ); 
End WB_LCD_Controller; 
-------------------------------------------------------------------------------- 
 
-------------------------------------------------------------------------------- 
Architecture Structure Of WB_LCD_Controller Is 
    Signal ACK          : Std_Logic; 
    Signal DoRead       : Std_Logic; 
    Signal DoWrite      : Std_Logic; 
    signal sendW        : Std_logic; 
    Signal Command      : Std_Logic_Vector( 5 DownTo 0); 
    Signal DataOut      : Std_logic_vector(7 downto 0); 
    Signal AddOut       : Std_logic_Vector(6 downto 0); 
    Signal OutPutEvent  : Std_Logic; 
 
Begin 
    ACK_O      <= ACK; 
    DoRead     <= STB_I And CYC_I And (Not WE_I) ; 
    DoWrite    <= STB_I And CYC_I And (WE_I) ; 
    Command     <= ADR_I(5 DownTo 0); 
 
    --Data output is always NULL 
    DAT_O <= (Others => '0'); 
 
    GenerateACKandMem_W: 
    Process(CLK_I,RST_I,ACK,STB_I,CYC_I) 
    Begin 
        If Rising_Edge(CLK_I) Then 
           If RST_I = '1' Then 
               ACK <= '0'; 
            ElsIf ACK = '0' Then                           -- If not in a current cycle. 
               ACK <= CYC_I And STB_I;                     -- If wishbone cycle started then acknowledge it. 
            Else 
               ACK <= '0';                                 -- Else back to zero. 



64 

 

            End If; 
        End If; 
    End Process; 
 
    DriveOutputRegisters: 
    Process(CLK_I,RST_I,DAT_I,DoWrite) 
    Begin 
        If Rising_Edge(CLK_I) Then 
            sendW<= '1'; 
            If RST_I = '1' Then 
               AddOut <= (others => '0'); 
            ElsIf DoWrite = '1' Then 
               if Command = "000000" Then   -- return home 
                  AddOut <= "0000000"; 
               elsif Command = "000001" then 
                  AddOut  <= DAT_I(14 downto 8); 
               end if; 
            Else 
                sendW<= '0'; 
            End If; 
        End If; 
    End Process; 
 
    --Set output to the temp value 
    MEM_AD <= AddOut; 
    Mem_W <= sendW when (Not (Command = "000000")) else '0'; 
    MEM_DB <= DAT_I(7 downto 0); 
 
End Structure; 
-------------------------------------------------------------------------------- 
 



65 

 

APPENDIX B:  SOFTWARE SOURCE 

This appendix includes the software source code, which is original or was modified for 

this thesis.  All files listed contain the same style header which includes the arthur’s 

name, file name, and a description.  Files that are not original also contain a change log.  

Files that directly interface with the sensor contain the line “PROPRIETARY 

INFORMATION OMITTED.”  to signify at least one line has been removed from the 

original source. 

 



66 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  CRC16.c and CRC16.h 
Description:  Implements 16-bit CRC checking using the non-reusable 
prime polynomial: "x^16+x^12+x^5+x^1". Bytes of a packet can be checked 
by accumulating their sum one at time, or by evaluating a range of 
bytes in an array.  A 16-bit CRC is guaranteed to detect ALL errors 
that occur in 16 or fewer CONSECUTIVE bits. 
***********************************************************************/ 
#include "CRC16.h" 
 
int crcSum = 0; 
 
const unsigned short crcTable[256] = 
        { 
         (short)0x0000, (short)0x1021, (short)0x2042, (short)0x3063, 
         (short)0x4084, (short)0x50A5, (short)0x60C6, (short)0x70E7, 
         (short)0x8108, (short)0x9129, (short)0xA14A, (short)0xB16B, 
         (short)0xC18C, (short)0xD1AD, (short)0xE1CE, (short)0xF1EF, 
         (short)0x1231, (short)0x0210, (short)0x3273, (short)0x2252, 
         (short)0x52B5, (short)0x4294, (short)0x72F7, (short)0x62D6, 
         (short)0x9339, (short)0x8318, (short)0xB37B, (short)0xA35A, 
         (short)0xD3BD, (short)0xC39C, (short)0xF3FF, (short)0xE3DE, 
         (short)0x2462, (short)0x3443, (short)0x0420, (short)0x1401, 
         (short)0x64E6, (short)0x74C7, (short)0x44A4, (short)0x5485, 
         (short)0xA56A, (short)0xB54B, (short)0x8528, (short)0x9509, 
         (short)0xE5EE, (short)0xF5CF, (short)0xC5AC, (short)0xD58D, 
         (short)0x3653, (short)0x2672, (short)0x1611, (short)0x0630, 
         (short)0x76D7, (short)0x66F6, (short)0x5695, (short)0x46B4, 
         (short)0xB75B, (short)0xA77A, (short)0x9719, (short)0x8738, 
         (short)0xF7DF, (short)0xE7FE, (short)0xD79D, (short)0xC7BC, 
         (short)0x48C4, (short)0x58E5, (short)0x6886, (short)0x78A7, 
         (short)0x0840, (short)0x1861, (short)0x2802, (short)0x3823, 
         (short)0xC9CC, (short)0xD9ED, (short)0xE98E, (short)0xF9AF, 
         (short)0x8948, (short)0x9969, (short)0xA90A, (short)0xB92B, 
         (short)0x5AF5, (short)0x4AD4, (short)0x7AB7, (short)0x6A96, 
         (short)0x1A71, (short)0x0A50, (short)0x3A33, (short)0x2A12, 
         (short)0xDBFD, (short)0xCBDC, (short)0xFBBF, (short)0xEB9E, 
         (short)0x9B79, (short)0x8B58, (short)0xBB3B, (short)0xAB1A, 
         (short)0x6CA6, (short)0x7C87, (short)0x4CE4, (short)0x5CC5, 
         (short)0x2C22, (short)0x3C03, (short)0x0C60, (short)0x1C41, 
         (short)0xEDAE, (short)0xFD8F, (short)0xCDEC, (short)0xDDCD, 
         (short)0xAD2A, (short)0xBD0B, (short)0x8D68, (short)0x9D49, 
         (short)0x7E97, (short)0x6EB6, (short)0x5ED5, (short)0x4EF4, 
         (short)0x3E13, (short)0x2E32, (short)0x1E51, (short)0x0E70, 
         (short)0xFF9F, (short)0xEFBE, (short)0xDFDD, (short)0xCFFC, 
         (short)0xBF1B, (short)0xAF3A, (short)0x9F59, (short)0x8F78, 
         (short)0x9188, (short)0x81A9, (short)0xB1CA, (short)0xA1EB, 
         (short)0xD10C, (short)0xC12D, (short)0xF14E, (short)0xE16F, 
         (short)0x1080, (short)0x00A1, (short)0x30C2, (short)0x20E3, 
         (short)0x5004, (short)0x4025, (short)0x7046, (short)0x6067, 
         (short)0x83B9, (short)0x9398, (short)0xA3FB, (short)0xB3DA, 
         (short)0xC33D, (short)0xD31C, (short)0xE37F, (short)0xF35E, 
         (short)0x02B1, (short)0x1290, (short)0x22F3, (short)0x32D2, 
         (short)0x4235, (short)0x5214, (short)0x6277, (short)0x7256, 
         (short)0xB5EA, (short)0xA5CB, (short)0x95A8, (short)0x8589, 
         (short)0xF56E, (short)0xE54F, (short)0xD52C, (short)0xC50D, 
         (short)0x34E2, (short)0x24C3, (short)0x14A0, (short)0x0481, 
         (short)0x7466, (short)0x6447, (short)0x5424, (short)0x4405, 
         (short)0xA7DB, (short)0xB7FA, (short)0x8799, (short)0x97B8, 
         (short)0xE75F, (short)0xF77E, (short)0xC71D, (short)0xD73C, 
         (short)0x26D3, (short)0x36F2, (short)0x0691, (short)0x16B0, 
         (short)0x6657, (short)0x7676, (short)0x4615, (short)0x5634, 
         (short)0xD94C, (short)0xC96D, (short)0xF90E, (short)0xE92F, 
         (short)0x99C8, (short)0x89E9, (short)0xB98A, (short)0xA9AB, 
         (short)0x5844, (short)0x4865, (short)0x7806, (short)0x6827, 
         (short)0x18C0, (short)0x08E1, (short)0x3882, (short)0x28A3, 
         (short)0xCB7D, (short)0xDB5C, (short)0xEB3F, (short)0xFB1E, 
         (short)0x8BF9, (short)0x9BD8, (short)0xABBB, (short)0xBB9A, 
         (short)0x4A75, (short)0x5A54, (short)0x6A37, (short)0x7A16, 



67 

 

         (short)0x0AF1, (short)0x1AD0, (short)0x2AB3, (short)0x3A92, 
         (short)0xFD2E, (short)0xED0F, (short)0xDD6C, (short)0xCD4D, 
         (short)0xBDAA, (short)0xAD8B, (short)0x9DE8, (short)0x8DC9, 
         (short)0x7C26, (short)0x6C07, (short)0x5C64, (short)0x4C45, 
         (short)0x3CA2, (short)0x2C83, (short)0x1CE0, (short)0x0CC1, 
         (short)0xEF1F, (short)0xFF3E, (short)0xCF5D, (short)0xDF7C, 
         (short)0xAF9B, (short)0xBFBA, (short)0x8FD9, (short)0x9FF8, 
         (short)0x6E17, (short)0x7E36, (short)0x4E55, (short)0x5E74, 
         (short)0x2E93, (short)0x3EB2, (short)0x0ED1, (short)0x1EF0 
        }; 
 
 
 
/***************************************************************************** 
Name       : CRC16_calcCRC 
Parameters : unsigned char* bytes, int startIndex, int endIndex 
Returns    : unsigned short 
Description: Calculates CRC sum based on the bytes contained within the 
 specified range of the passed array.  The CRC value will be calculated 
 using the bytes in the CByteBuffer from index "startIndex" (inclusive) to 
 "endIndex" (exclusive). 
*****************************************************************************/ 
unsigned short CRC16_calcCRC(unsigned char* bytes, int startIndex, int endIndex) 
{    
    unsigned short crcSum = 0; 
    int index; 
 
    for(index = startIndex; index < endIndex; index++) 
    { 
        // index in the pre-computed lookup table 
        int bIndex = (((crcSum&0x0000FFFF) >> 8) ^ ((bytes[index])&0x000000FF));   
        crcSum = ((crcSum<<8)&0x0000FFFF) ^ crcTable[bIndex]&0x0000FFFF;     
        crcSum = crcSum & 0x0000FFFF; 
    } 
    return crcSum; 
} 
 
 



68 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  CRC16.c and CRC16.h 
Description: Implements 16-bit CRC checking using the non-reduceable 
prime polynomial: "x^16+x^12+x^5+x^1". Bytes of a packet can be checked 
by accumulating their sum one at at time, or by evaluating a range of 
bytes in an array.  A 16-bit CRC is guaranteed to detect ALL errors 
that occur in 16 or fewer CONSECUTIVE bits. 
***********************************************************************/ 
 
#if !defined(CRC16_H_) 
#define CRC16_H_ 
 
/***************************************************************************** 
Name       : CRC16_calcCRC 
Parameters : unsigned char* bytes, int startIndex, int endIndex 
Returns    : unsigned short 
Description: Calculates CRC sum based on the bytes contained within the 
 specified range of the passed array.  The CRC value will be calculated 
 using the bytes in the CByteBuffer from index "startIndex" (inclusive) to 
 "endIndex" (exclusive). 
*****************************************************************************/ 
extern  unsigned short CRC16_calcCRC(unsigned char* bytes, int startIndex, int endIndex); 
 
#endif //!defined(CRC16_H_) 



69 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  Datatype.h 
Description: This file contains the common data type definitions used 
               through this application. 
***********************************************************************/ 
#ifndef __DATATYPE_H__ 
#define __DATATYPE_H__ 
 
#define UINT8   unsigned char 
#define UINT16  unsigned short int 
#define UINT32  unsigned int 
#define UINT64  unsigned long long 
 
#define SINT8   signed char 
#define SINT16  signed short int 
#define SINT32  signed int 
#define SINT64  signed long long 
 
#define true 1 
#define false 0 
#define bool unsigned char 
#define BOOL unsigned char 
 
#define BYTE unsigned char 
#define USHORT unsigned short 
#define UCHAR unsigned char 
#define DWORD unsigned int 
#define UINT unsigned int 
 
#define LOBYTE(w)           ((BYTE)(w)) 
#define HIBYTE(w)           ((BYTE)(((w) >> 8) & 0xFF)) 
 
#endif 



70 

 

/*********************************************************************** 
By: Nicholas Wieder 
Source File(s):  EnvDataPacket.c and EnvDataPacket.h 
Description: this file represents an environmental data packet that is sent 
from the sensor and contains current unitID, temperature, pressure, and error 
information. An environmental message is sent out from the sensor on 
following conditions: 
1) At the end of the method sequence 
2) In idle mode, this message is sent out every second. When an error occurs 
during the method sequence mode, the sensor module stays in the scanning 
mode and waits to send out the environmental message until the end 
of the method sequence. 
***********************************************************************/ 
#include "EnvDataPacket.h" 
#include "string.h" 
 
// All conversion factors Directly from the Sensor Communication ICD 
PROPRIETARY INFORMATION OMITTED. 
 
/***************************************************************************** 
Name       : EnvDataPacket_Create 
Parameters : None 
Returns    : bool 
Description: This function will create a EnvDataPacket from the raw bytes 
read from the sensor. 
*****************************************************************************/ 
BOOL EnvDataPacket_Create(UCHAR * packetBytes, EnvData * theED) 
{ 
PROPRIETARY INFORMATION OMITTED. 
} 



71 

 

/*********************************************************************** 
By: Nicholas Wieder 
Source File(s):  EnvDataPacket.c and EnvDataPacket.h 
Description: this file represents an environmental data packet that is sent 
from the sensor and contains current unitID, temperature, pressure, and error 
information. An environmental message is sent out from the sensor on 
following conditions: 
 1) At the end of the method sequence 
 2) In idle mode, this message is sent out every second. When an error occurs 
    during the method sequence mode, the sensor module stays in the scanning 
    mode and waits to send out the environmental message until the end 
    of the method sequence. 
***********************************************************************/ 
#if !defined(EnvDataPacket_H_) 
#define EnvDataPacket_H_ 
 
#include "CRC16.h" 
#include "Datatype.h" 
 
PROPRIETARY INFORMATION OMITTED. 
 
/***************************************************************************** 
Name       : EnvData 
Description: This structure contains all variables needed when extracting the 
environment data packet. 
*****************************************************************************/ 
typedef struct 
{ 
    // The serial number of the unit. 
    int m_unitID; 
 
    // The internal pressure of the detector stored as the raw value passed in 
    // the packet.  This value must be converted to PSI and KPA values. 
    float m_pressureValue; 
 
    // The temperature of the sensor (in degrees Celsius). 
    float m_sensorTemp; 
     
    // The temperaure of the board (in degrees Celsius). 
    float m_boardTemp; 
     
    // This bit is not implemented in the Environmenal Data Packet. 
    //bool m_lowBatteryError;   // not implemented in the protocoll 
     
    // Indicates whether the current pressure is +-0.1 PSI from the  
    // target setting. 
    BOOL m_pressureError; 
     
    // Indicates whether the current sensor temperature is greater than +-2.0  
    // degrees from the target setting. 
    BOOL m_temperatureError; 
     
    // This bit shall be toggled by the sensor module each time an EnvDataPacket  
    // ('E' packet) is  sent to the RS-232 application.  This bit toggling drives  
    // the Expert heartbeat display (blinking red/green  
    // "communication" indicator). 
    BOOL m_comBit; 
     
    // The battery voltage (Volts). 
    float m_batteryVoltage; 
     
    // The battery current (Amps). 
    float m_batteryCurrent; 
     
    // This bit is used to signal the RS-232 Application (Inhand) that the On/OFF  
    // button has been pressed during operation and to begin preparation for  
    // removal of power.  See the Shutdown sequence diagram in Appendix C in the  
    // Communications ICD. 
    BOOL m_shutdown; 
} EnvData; 



72 

 

 
/***************************************************************************** 
Name       : EnvDataPacket_Create 
Parameters : None 
Returns    : bool 
Description: This function will create a EnvDataPacket from the raw bytes 
read from the sensor. 
*****************************************************************************/ 
extern BOOL EnvDataPacket_Create(UCHAR* packetBytes, EnvData* theED); 
 
#endif //!defined(EnvDataPacket_H_) 



73 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  FullScanPacket.c and FullScanPacket.h 
Description: This packet is used to change the only scanning method of 
the sensor module (full-scan and fixed-Vrf scans). The sensor module 
saves the method into memory and immediately starts to execute the 
scanning method. 
***********************************************************************/ 
 
#include "FullScanPacket.h" 
#define FullScanPacket_BYTE 'y' 
#define FullScanPacket_SIZE 23 
 
PROPRIETARY INFORMATION OMITTED. 
 
FullScan fullScanData; 
 
/***************************************************************************** 
Name       : FullScanPacket_Create 
Parameters : None 
Returns    : None 
Description: This functions returns the byte representation of this packet, 
including the identifier byte, payload, and calculated CRC value. 
*****************************************************************************/ 
void FullScanPacket_Create(BYTE * packetBytes) 
{ 
PROPRIETARY INFORMATION OMITTED. 
} 
 
/***************************************************************************** 
Name       : FullScanPacket_Create 
Parameters : float recircPumpVoltage,float rfVoltage,float startVc, 
float vcStepSize, int numOfVcSteps,float vrfStepSize, int numOfVrfSteps, 
int stepDuration 
Returns    : BOOL 
Description: This function will create a FullScanPacket using 
FullScanPacket_Create, then send it over the serial port to the sensor. 
*****************************************************************************/ 
BOOL FullScanPacket_Send(float recircPumpVoltage, float rfVoltage, float startVc, float vcStepSize, int  
                                                     numOfVcSteps, float vrfStepSize, int numOfVrfSteps, int stepDuration) 
{ 
PROPRIETARY INFORMATION OMITTED. 
} 



74 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  FullScanPacket.c and FullScanPacket.h 
Description: This packet is used to change the only scanning method of 
the sensor module (full-scan and fixed-Vrf scans). The sensor module 
saves the method into memory and immediately starts to execute the 
scanning method. 
***********************************************************************/ 
#if !defined(FullScanPacket_H_) 
#define FullScanPacket_H_ 
 
#include "HAL.h" 
#include "CRC16.h" 
#include "Datatype.h" 
 
/***************************************************************************** 
Name       : FullScan 
Description: This structure contains all variables needed when building the 
Full Scan Packet. 
*****************************************************************************/ 
typedef struct 
{ 
     // Recirculation pump voltage = 0-12V. This value is ignored when automatic 
     // tracking of sensor pressure is enabled. 
     float m_recircPumpVoltage; 
 
     float m_rfVoltage; 
     float m_startVc; 
     float m_vcStepSize; 
     int   m_numOfVcSteps; 
     float m_vrfStepSize; 
     int   m_numOfVrfSteps; 
     int   m_stepDuration; 
} FullScan; 
 
/***************************************************************************** 
Name       : FullScanPacket_Create 
Parameters : None 
Returns    : None 
Description: This functions returns the byte representation of this packet, 
including the identifier byte, payload, and calculatead CRC value. 
*****************************************************************************/ 
//extern void FullScanPacket_Create(BYTE* packetBytes); 
 
/***************************************************************************** 
Name       : FullScanPacket_Create 
Parameters : None 
Returns    : bool 
Description: This function will create a FullScanPacket using 
FullScanPacket_Create, then send it over the serial port to the sensor. 
*****************************************************************************/ 
extern bool FullScanPacket_Send(float recircPumpVoltage, float rfVoltage, float startVc, float vcStepSize,                   
                                                  int numOfVcSteps, float vrfStepSize, int numOfVrfSteps, int stepDuration); 
 
#endif //!defined(FullScanPacket_H_) 



75 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  HAL.h 
Description: This file contains the needed #includes and #defines for 
               the Hardware Abstraction Layor (HAL). 
***********************************************************************/ 
#ifndef __HAL_H__ 
#define __HAL_H__ 
 
#include "hardware.h" 
#include "tsk3000_reg.h" 
#include "uart16550A.h" 
#include "LCDOut.h" 
 
#define BAUDRATE 115200 
#define XTALFREQ (50000000.0) 
#define FCLK (XTALFREQ /1.0) 
 
#define PEAK_DET(x)  *((volatile unsigned int *)(Base_PeakDetector + (x))) 
#define RESET                    0x0 
//#define SIZE                     0x1 
#define DATA                     0x2 
#define GET_PEAK_VALUE           0x3 
 
#define GRAPH   *((volatile unsigned char *)(Base_Graph)) 
 
extern const unsigned int __no_sdata _lc_ub_stack;   // symbol from *.map file to determine top of RAM used by C program 
 
#endif  //__HAL_H__ 



76 

 

/*********************************************************************** 
By:  Altium Designer (Automatically generated) 
Source File(s):  hardware.h 
Description: The contents of this file, below this section were automatically generated 
   inorder to link the hardware and software portions of the design. 
***********************************************************************/ 
//.............................................................................. 
// Automatically generated header file. 
// Generated: 1:51:21 PM  4/15/2007 
// This file should not be edited. 
//.............................................................................. 
 
#ifndef __HARDWARE_H__ 
#define __HARDWARE_H__ 
 
//.............................................................................. 
#define Base_Serial                0xFF000100 
#define Size_Serial                0x00000020 
#define Intr_Serial_A                2 
//.............................................................................. 
 
//.............................................................................. 
#define Base_LCD                   0xFF000000 
#define Size_LCD                   0x00000040 
//.............................................................................. 
 
//.............................................................................. 
#define Base_Graph                 0xFF000300 
#define Size_Graph                 0x00000001 
//.............................................................................. 
 
//.............................................................................. 
#define INTERRUPT_CONTROL_CFG     0x00000004 
#define INTERRUPT_KINDS_CFG       0x00000000 
#define INTERRUPT_EDGE_KIND_CFG   0x00000000 
#define INTERRUPT_LVL_KIND_CFG    0x00000004 
//.............................................................................. 
 
//.............................................................................. 
#define Base_P1                    0x00000000 
#define Size_P1                    0x00008000 
//.............................................................................. 
 
//.............................................................................. 
#define Base_PeakDetector          0x01200000 
#define Size_PeakDetector          0x00000040 
//.............................................................................. 
 
//.............................................................................. 
#define Base_RAM                   0x01000000 
#define Size_RAM                   0x00200000 
//.............................................................................. 
 
#endif // __HARDWARE_H__ 



77 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  ISR.c 
Description:  The functions contained in this file contain all ISRs 
used in the current program. 
***********************************************************************/ 
 
#include "HAL.h" 
#include "Que.h" 
#include "StrIO.h" 
 
/***************************************************************************** 
Name       : Serial_Rx_ISR 
Parameters : None 
Returns    : None 
Description: This function is responsible for removing data from the hardware 
UART's buffer and placing it in the queue for the main portion 
of the program to process.  This function will the Ack and Nak 
events which are used to inform the transmitting portion that the 
current latest information sent was received correctly. 
*****************************************************************************/ 
void __interrupt(Intr_Serial_A) Serial_Rx_ISR(void) 
{ 
     DisableInterrupts(); 
 
     //Clear the Interrupt flag in the 
     //Processor and the UART core 
     ClearInterruptEdgeFlags(1 << Intr_Serial_A); 
     uart_clrIRQs(); 
 
     //Read the UART buffer untill it is empty 
     // -- Emyty is signaled by returning -1. 
     int x = - 1; 
     do 
     { 
          x = uart_getChar(); 
          if (x != - 1) 
          { 
               //The AckEvent and NakEvent flags 
               // are used when transmitting to 
               // determine if the data was recieved 
               // correctly. 
               if (x == ACK) 
                    AckEvent = 1; 
               else if (x == NAK) 
                    NakEvent = 1; 
 
                    //Store the data in the queue. 
                    // Save everything, even ack and nak 
                    // these will be trashed by the main 
                    // if they are not needed. 
               Q_Enqueue(& rx_q, (BYTE) x); 
 
               //if this byte made or kept the buffer full 
               // display it.  This is FYI for the user. 
               if (Q_Full(& rx_q)) 
               { 
                    LCDNextAt(16); 
                    OutStr("                ", 0); 
                    LCDNextAt(16); 
                    OutStr("Buffer Full", 0); 
               } 
          } 
     } 
     while (x != - 1); 
 
     EnableInterrupts(); 
} 



78 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  LCDOut.c and LCDOut.h 
Description: Part of the HAL used to output characters to the LCD window 
seen on the CRT 
***********************************************************************/ 
#include "LCDOut.h" 
#define MAX 32 
static int lastAddress = - 1; 
 
/***************************************************************************** 
Name:       LCDInit 
Parameters: None 
Returns:    None 
Description: Initalize the LCD by clearing all spaces 
*****************************************************************************/ 
void LCDInit(void) 
{ 
     int i; 
     LCD_REG(LCD_CTRL) = 0; 
 
     for (i = 0; i < MAX; i++) 
          LCDCharOut(' ', - 1); 
 
     lastAddress = - 1; 
} 
 
/***************************************************************************** 
Name:       LCDCharOut 
Parameters: UCHAR text,UINT address 
Returns:    None 
Description: Output a single char to the LCD, if the address is -1 it will 
use the previous address +1 
*****************************************************************************/ 
void LCDCharOut(UCHAR text, UINT address) 
{ 
     if (address == - 1) 
          lastAddress = (++lastAddress) % MAX; 
     else 
          lastAddress = address % MAX; 
 
     if (lastAddress < 16) 
          LCD_REG(LCD_W) = (lastAddress << 8) + text; 
     else //spot 16 is stored in mem location 64 so add 48 
          LCD_REG(LCD_W) = ((lastAddress + 48) << 8) + text; 
} 
 
/***************************************************************************** 
Name:       LCDNextAt 
Parameters: UINT address 
Returns:    None 
Description: Force the next char to go to the specified spot 
*****************************************************************************/ 
void LCDNextAt(UINT address) 
{     lastAddress = (address - 1) % MAX;     } 



79 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  LCDOut.c and LCDOut.h 
Description: Part of the HAL used to output characters to the LCD window 
seen on the CRT 
***********************************************************************/ 
#ifndef __LCDOUT_H__ 
#define __LCDOUT_H__ 
 
#include "Datatype.h" 
#include "hardware.h" 
 
#define LCD_REG(x)  *((volatile unsigned int *)(Base_LCD + (x))) 
#define LCD_CTRL    0 
#define LCD_W       1 
 
/***************************************************************************** 
Name:       LCDInit 
Parameters: None 
Returns:    None 
Description: Initalize the LCD by clearing all spaces 
*****************************************************************************/ 
extern void LCDInit(void); 
 
/***************************************************************************** 
Name:       LCDCharOut 
Parameters: UCHAR text,UINT address 
Returns:    None 
Description: Output a single char to the LCD, if the address is -1 it will 
use the previous address +1 
*****************************************************************************/ 
extern void LCDCharOut(UCHAR text,UINT address); 
 
/***************************************************************************** 
Name:       LCDNextAt 
Parameters: UINT address 
Returns:    None 
Description: Force the next char to go to the specified spot 
*****************************************************************************/ 
extern void LCDNextAt(UINT address); 
 
#endif //__LCDOUT_H__ 



80 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  Main.c 
Description: This file contains main, initialization, and other global 
functions. 
***********************************************************************/ 
#include "HAL.h" 
#include "strio.h" 
#include "stdio.h" 
#include "ctype.h" 
#include ".\Sensor\Que.h" 
 
#define VERSION 900 
 
void RunSensor(void); 
 
/***************************************************************************** 
Name       : Sleep 
Parameters : Time to sleep in ms (int) 
Returns    : None 
Description: This function will hold the processor for ~t ms. when running 
at 50MHz. 
*****************************************************************************/ 
void Sleep(int t) 
{ 
     int i; 
     while (t--) 
     { 
          for (i = 0; i < 4500; i++) 
               __nop(); 
     } 
} 
 
/***************************************************************************** 
Name       : ProcInit 
Parameters : None 
Returns    : None 
Description: Processor Initialization, sets up interrupts needed in the 
application.  The macros like "INTERRUPT_CONTROL_CFG" are 
automatically generated as part of the HAL and may change as the 
design changes.  For these macros to be present the processor 
abstraction layer, under DSF of the embedded project, must be 
selected. 
*****************************************************************************/ 
void ProcInit(void) 
{ 
     DisableInterrupts(); 
     SetInterruptMode(INTERRUPT_CONTROL_CFG); 
     SetVectoredInterrupts(INTERRUPT_CONTROL_CFG); 
     SetEnabledInterrupts(INTERRUPT_CONTROL_CFG); 
     ClearInterruptEdgeFlags(INTERRUPT_EDGE_KIND_CFG); 
     // SetEnabledInterrupts(INTERRUPT_CONTROL_CFG | 1); 
     // ClearInterruptEdgeFlags(INTERRUPT_EDGE_KIND_CFG | 1); 
     // SetIntervalTimer(FCLK/1000); 
     // EnableIntervalTimer(); 
     EnableInterrupts(); 
} 
 
/***************************************************************************** 
Name       : main 
Parameters : None 
Returns    : None 
Description: Initializes the processor and starts the sensor.  This function 
also contains debug code which may be enable. 
*****************************************************************************/ 
void main(void) 
{ 
     unsigned char   Sample = 0; 
     int             index; 
     int             peakOut = - 1; 



81 

 

 
     // point to 1st free 256byte bank after top of stack 
     int           * array = (int *)(((unsigned int)(& _lc_ub_stack) | 0xFF) + 1); 
 
     Q_Init(& rx_q); 
     Q_Init(& leftover_q); 
     ProcInit(); 
     LCDInit(); 
 
     //Init the Uart 
     uart_Init(Base_Serial, FCLK, 115200); 
     //uart_Init(Base_Serial, FCLK, 9600); 
 
     LCDNextAt(0); 
     OutStr("Built: " __TIME__ "\r\n", 0); 
 
     while (1) 
     { 
          RunSensor(); 
     } 
 
     while (0) 
     { 
          PEAK_DET(RESET); 
 
          for (index = 0; index < 128; index++) 
          { 
 
               if (index == 63 || index == 66) 
                    PEAK_DET(DATA) = 10; 
               else if (index == 64 || index == 65) 
                    PEAK_DET(DATA) = 25; 
               else 
                    PEAK_DET(DATA) = 0; 
          } 
 
          index = PEAK_DET(DATA); 
          peakOut = PEAK_DET(GET_PEAK_VALUE); 
          LCDNextAt(16); 
          OutStr("Peak:%d,", index); 
          OutStr("Val:%d\r\n", peakOut); 
     } 
 
     //Test Uart on HT and no isr 
     while (0) 
     { 
 
          for (char * p = "\rHello, world!\r\n"; * p; p++) // Making good use of a Null-Terminated String. 
          { // When the Null is reached the repeat condition is false. 
               uart_putChar(* p); 
               Sleep(10); 
          } 
          while (1) 
          { 
               int x = uart_getStatus(); 
               int rec = uart_getChar(); 
               if (rec != - 1) 
               { 
 
                    OutStr("%x:", rec); 
                    uart_putChar((BYTE) rec); 
               } 
          } 
     } 
 
     //Test with loop back and no ISR 
     while (0) 
     { 
          LCDNextAt(16); 
          for (char * p = "Hello, world!  "; * p; p++) // Making good use of a Null-Terminated String. 



82 

 

          { // When the Null is reached the repeat condition is false. 
               uart_putChar(* p); 
               Sleep(10); 
               int stat = uart_getStatus(); 
               int rec = uart_getChar(); 
               if (rec != - 1) 
                    Q_Enqueue(& rx_q, (BYTE) rec); 
 
               if (!Q_Empty(& rx_q)) 
               { 
                    OutStr("%c", Q_Dequeue(& rx_q)); 
               } 
               else 
               { 
                    //      1234567890123456; 
                    OutStr("0x%X   ", stat); 
                    OutStr("Qs=%6d", rx_q.Size); 
                    Sleep(500); 
               } 
               Sleep(10); 
 
               Sleep(10); 
          } 
 
     } 
 
     //Test with loop back using the rec buffer and rec isr 
     while (0) 
     { 
          LCDNextAt(16); 
          for (char * p = "Hello, world!  "; * p; p++) // Making good use of a Null-Terminated String. 
          { // When the Null is reached the repeat condition is false. 
               uart_putChar(* p); 
               Sleep(10); 
               int stat = uart_getStatus(); 
               if (!Q_Empty(& rx_q)) 
               { 
                    OutStr("%c", Q_Dequeue(& rx_q)); 
               } 
               else 
               { 
                    //      1234567890123456; 
                    OutStr("0x%X   ", stat); 
                    OutStr("Qs=%6d", rx_q.Size); 
                    Sleep(500); 
               } 
               Sleep(10); 
          } 
     } 
 
     //Test the Transmit function using HT 
     while (0) 
     { 
          LCDNextAt(16); 
          for (char * p = "\n\rStart \n\r"; * p; p++) // Making good use of a Null-Terminated String. 
          { // When the Null is reached the repeat condition is false. 
               uart_putChar(* p); 
               Sleep(10); 
          } 
          BYTE * p = (BYTE *) "Hello, world!"; 
          uart_write(p, 14); 
          for (char * p = "\n\rEnd!\n\r"; * p; p++) // Making good use of a Null-Terminated String. 
          { // When the Null is reached the repeat condition is false. 
               uart_putChar(* p); 
               Sleep(10); 
          } 
     } 
 
     //See what is coming over the serial, the first 16 chars anyway 
     while (0) 



83 

 

     { 
          static int count = 0; 
          if (count == 0) 
               LCDNextAt(0); 
          if (!Q_Empty(& rx_q)) 
          { 
               OutStr("%2X", Q_Dequeue(& rx_q)); 
               count++; 
          } 
 
          // if (count > 16) 
          //    while (1) __nop(); 
     } 
 
     //just rec and echo 
     while (1) 
     { 
          for (char * p = "\rHello, world!\r\n"; * p; p++) // Making good use of a Null-Terminated String. 
          { // When the Null is reached the repeat condition is false. 
               uart_putChar(* p); 
               Sleep(10); 
          } 
 
          while (1) 
          { 
               if (!Q_Empty(& rx_q)) 
               { 
                    char c = Q_Dequeue(& rx_q); 
                    //OutStr("%c", c); 
                    uart_putChar(c); 
               } 
               else 
                    __nop(); 
          } 
     } 
} 
 
/***************************************************************************** 
Name:       __Out_Char 
Parameters: unsigned char c 
Returns:    None 
Description: This function is used to determine where all String IO output 
goes, currently it only goes to the LCD but could also go to the UART 
*****************************************************************************/ 
void __Out_Char(unsigned char c) 
{ 
     // uart_putChar(c); 
     LCDCharOut(c, - 1); 
} 



84 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  PowerControl.c and PowerControl.h 
Description: This packet is used to powers on/off the unit according to 
the specified parameters. A power control command will always be sent 
if the passed parameters do not match the believed current power state. 
However, if the passed parameters are the same as the current power 
state, the "forceWrite" flag will determine whether the power control 
packet is written or not. Returns true if the power control command 
is successfully sent to the sensor, false otherwise. This method will 
immediately return true without sending a power command to the sensor 
if the request matches the current power state. When this function 
returns false, it is believed that the sensor did not switch the power 
and the internal state is not modified. 
***********************************************************************/ 
#include "PowerControl.h" 
 
PROPRIETARY INFORMATION OMITTED. 
 
PowerControl PCState; 
 
/***************************************************************************** 
Name       : PowerControlPacket_Create 
Parameters : BYTE* data 
Returns    : None 
Description: This functions returns the byte representation of this packet, 
including the identifier byte, payload, and calculated CRC value. 
*****************************************************************************/ 
void PowerControlPacket_Create(BYTE* data) 
{ 
PROPRIETARY INFORMATION OMITTED. 
} 
 
/***************************************************************************** 
Name       : PowerControl_SetState 
Parameters : BOOL mainPower, BOOL recirculation, BOOL moleSieve, 
BOOL samplePump, BOOL vrf, BOOL data, BOOL shutdown, BOOL forceWrite 
Returns    : BOOL 
Description: This function will create a FullScanPacket using 
PowerControl_Create, then send it over the serial port to the sensor. 
*****************************************************************************/ 
BOOL PowerControl_SetState(BOOL mainPower, BOOL recirculation, BOOL moleSieve, 
                               BOOL samplePump, BOOL vrf, BOOL data, BOOL shutdown, BOOL forceWrite) 
{ 
PROPRIETARY INFORMATION OMITTED. 
} 



85 

 

/*********************************************************************** 
By: Nicholas Wieder 
Source File(s):  PowerControl.c and PowerControl.h 
Description: This packet is used to powers on/off the unit according to 
the specified parameters. A power control command will always be sent 
if the passed parameters do not match the believed current power state. 
However, if the passed parameters are the same as the current power 
state, the "forceWrite" flag will determine whether the power control 
packet is written or not. Returns true if the power control command 
is successfully sent to the sensor, false otherwise. This method will 
immediately return true without sending a power command to the sensor 
if the request matches the current power state. When this function 
returns false, it is believed that the sensor did not switch the power 
and the internal state is not modified. 
***********************************************************************/ 
#if !defined(PowerControlPacket_H_) 
#define PowerControlPacket_H_ 
 
#include "HAL.h" 
#include "CRC16.h" 
#include "Datatype.h" 
 
#define ON  1 
#define OFF 0 
#define FORCE_WRITE 1 
 
 
/***************************************************************************** 
Name       : FullScan 
Description: This structure contains all variables needed when building the 
Power Control Packet. 
*****************************************************************************/ 
typedef struct 
{ 
    // Indicates whether the main power is on. 
    BOOL m_mainPowerOn; 
 
    // Indicates whether the Vrf waveform generator is on. 
    BOOL m_vrfOn; 
     
    // Indicates whether data transmission is on (when it is on, reading  
    // packets are sent from the sensor every millisecond). 
    BOOL m_transmitDataOn; 
     
    // Indicates whether the sample pump is on. 
    BOOL m_samplePumpOn; 
     
    // Indicates whether the mole sieve is engaged. 
    BOOL m_moleSieveOn; 
 
    // Indicates whether the recirculation pump is on. 
    BOOL m_recircPumpOn; 
 
    // when this bit is set the unit will shut down in 2 seconds. 
    BOOL m_shutdown; 
 
}PowerControl; 
     
/***************************************************************************** 
Name       : PowerControlPacket_Create 
Parameters : BYTE* data 
Returns    : None 
Description: This functions returns the byte representation of this packet, 
including the identifier byte, payload, and calculatead CRC value. 
*****************************************************************************/ 
//extern void PowerControlPacket_Create(BYTE* data); 
 
/***************************************************************************** 
Name       : PowerControl_SetState 
Parameters : BOOL mainPower, BOOL recirculation, BOOL moleSieve, 



86 

 

BOOL samplePump, BOOL vrf, BOOL data, BOOL shutdown, BOOL forceWrite 
Returns    : BOOL 
Description: This function will create a FullScanPacket using 
PowerControl_Create, then send it over the serial port to the sensor. 
*****************************************************************************/ 
extern BOOL PowerControl_SetState(BOOL mainPower, BOOL recirculation, BOOL moleSieve, 
                               BOOL samplePump, BOOL vrf, BOOL data, BOOL shutdown, BOOL forceWrite); 
 
#endif //PowerControlPacket_H_ 



87 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  Que.c and Que.h 
Description:  The functions contained in these files maintain a 
                FIFO queue. However the que will not automatically over 
                write the oldest value if the queue is full, it must 
                be De-queued first. 
***********************************************************************/ 
#include "Que.h" 
 
Q_T rx_q, leftover_q; 
 
/***************************************************************************** 
Name:       Q_Init 
Parameters: which queue 
Returns:    None 
Description: Initializes the queue 
*****************************************************************************/ 
void Q_Init(Q_T * q) 
{ 
     unsigned int i; 
     for (i = 0; i < Q_SIZE; i++) 
          q->Data[i] = '\0'; // to simplify our lives when debugging 
     q->Head = 0; 
     q->Tail = 0; 
     q->Size = 0; 
} 
 
/***************************************************************************** 
Name:       Q_Empty 
Parameters: which queue 
Returns:    TRUE or if the queue is empty, else FALSE 
Description: Test is queue is empty 
*****************************************************************************/ 
BOOL Q_Empty(Q_T * q) 
{ 
     return q->Size == 0; 
} 
 
/***************************************************************************** 
Name:       Q_Full 
Parameters: which queue 
Returns:    TRUE if the queue is full, else FALSE 
Description: Test is queue is full 
*****************************************************************************/ 
BOOL Q_Full(Q_T * q) 
{ 
     return q->Size == Q_SIZE; 
} 
 
/***************************************************************************** 
Name:       Q_Enqueue 
Parameters: which queue and value to put in it. 
Returns:    TRUE if a value was successfully en-queued, else false; 
Description: Enqueues value and returns 0 if fail 
*****************************************************************************/ 
BOOL Q_Enqueue(Q_T * q, unsigned char d) 
{ 
     // What if queue is full? 
     if (!Q_Full(q)) 
     { 
          q->Data[q->Tail] = d; 
          q->Tail++; 
          if (q->Tail > Q_SIZE) 
               q->Tail = 0; 
          q->Size++; 
          return 1; // success 
     } 
     else 
          return 0; // failure 



88 

 

} 
 
/***************************************************************************** 
Name:       Q_Dequeue 
Parameters: which queue 
Returns:    ASCII Char 
Description: 
*****************************************************************************/ 
unsigned char Q_Dequeue(Q_T * q) 
{ 
     unsigned char t = 0; 
 
     // Must check to see if queue is 
     // empty before dequeueing 
     if (!Q_Empty(q)) 
     { 
          //Disable Interrupts 
          unsigned int oldStat = GetStatusRegister(); 
          DisableInterrupts(); 
 
          t = q->Data[q->Head]; 
          q->Data[q->Head] = '\0'; // to simplify debugging 
          q->Head++; 
          if (q->Head > Q_SIZE) 
               q->Head = 0; 
          q->Size--; 
 
          //Restore interrupts 
          SetStatusRegister(oldStat); 
     } 
     return t; 
} 



89 

 

/*********************************************************************** 
  By:  Nicholas Wieder 
  Source File(s):  Que.c and Que.h 
  Description:  The functions contained in these files maintain a 
                FIFO queue. However the que will not automaticly over 
                write the oldest value if the queue is full, it must 
                be De-queued first. 
***********************************************************************/ 
#if !defined(QUE_H_) 
#define QUE_H_ 
 
#include "HAL.h" 
#include "Datatype.h" 
 
#define Q_SIZE 1000 
 
typedef struct 
{ 
     unsigned char         Data[Q_SIZE]; 
     volatile unsigned int Head; // points to oldest data element 
     volatile unsigned int Tail; // points to next free space 
     volatile unsigned int Size; // quantity of elements in queue 
} Q_T; 
extern Q_T rx_q, leftover_q; 
 
/***************************************************************************** 
Name:       Q_Init 
Parameters: which queue 
Returns:    None 
Description: Initializes the queue 
*****************************************************************************/ 
extern void Q_Init(Q_T * q); 
 
/***************************************************************************** 
Name:       Q_Empty 
Parameters: which queue 
Returns:    TRUE or if the queue is empty, else FALSE 
Description: Test is queue is empty 
*****************************************************************************/ 
extern BOOL Q_Empty(Q_T * q); 
 
/***************************************************************************** 
Name:       Q_Full 
Parameters: which queue 
Returns:    TRUE if the queue is full, else FALSE 
Description: Test is queue is full 
*****************************************************************************/ 
extern BOOL Q_Full(Q_T * q); 
 
/***************************************************************************** 
Name:       Q_Enqueue 
Parameters: which queue and value to put in it. 
Returns:    TRUE if a value was successfully en-queued, else false; 
Description: Enqueues value and returns 0 if fail 
*****************************************************************************/ 
extern BOOL Q_Enqueue(Q_T * q, unsigned char d); 
 
/***************************************************************************** 
Name:       Q_Dequeue 
Parameters: which queue 
Returns:    ASCII Char 
Description: 
*****************************************************************************/ 
extern unsigned char Q_Dequeue(Q_T * q); 
 
#endif //QUE_H_ 



90 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  ReadingPacket.c and ReadingPacket.h 
Description: This file contains all required functions to extract 
information from a valid reading packet sent from the sensor. 
***********************************************************************/ 
 
#include "ReadingPacket.h" 
 
PROPRIETARY INFORMATION OMITTED. 
 
/***************************************************************************** 
Name       : ReadingPacket_Create 
Parameters : UCHAR* packetBytes, BOOL getPos, int* dest 
Returns    : bool 
Description: This function will extract data from a reading packet. the value 
will be pased packe in *dest.  the return value of this function indicates the 
packet was valid and a value was returned in *dest. 
*****************************************************************************/ 
BOOL ReadingPacket_Create(UCHAR* packetBytes, BOOL getPos, int* dest) 
{ 
PROPRIETARY INFORMATION OMITTED. 
} 
 
 



91 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  ReadingPacket.c and ReadingPacket.h 
Description: This file contains all required functions to extract 
information from a valid reading packet sent from the sensor. 
***********************************************************************/ 
#if !defined(ReadingPacket_H_) 
#define ReadingPacket_H_ 
 
#include "datatype.h" 
#include "CRC16.h" 
 
/***************************************************************************** 
Name       : ReadingPacket_Create 
Parameters : UCHAR* packetBytes, BOOL getPos, int* dest 
Returns    : bool 
Description: This function will extract data from a reading packet. the value 
will be passed in *dest.  the return value of this function indicates the 
packet was valid and a value was returned in *dest. 
*****************************************************************************/ 
extern BOOL ReadingPacket_Create(UCHAR* packetBytes,BOOL getPos, int* dest); 
 
#endif //!defined(ReadingPacket_H_) 



92 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  Sensor.c 
Description: The functions contained in this file are used to run the 
Sensor. 
***********************************************************************/ 
 
#include "FullScanPacket.h" 
#include "EnvDataPacket.h" 
#include "ReadingPacket.h" 
#include "WindowReader.h" 
#include "PowerControl.h" 
#include "Que.h" 
#include "HAL.h" 
#include "strio.h" 
#include "ctype.h" 
 
#define MAX_PACKET_SIZE 70 
 
int numPoints = 41; 
 
BYTE currentPacket[MAX_PACKET_SIZE]; 
int currentPacketSize = 0; 
 
EnvData EData; 
int * thisWindow; 
int thisWindowIndex = 0; 
int thisPoint; 
 
extern void Sleep(int t); 
 
/***************************************************************************** 
Name       : getNextByte 
Parameters : None 
Returns    : BYTE 
Description: This function will pull data from  the leftover que first then 
from the Rx que. if neither has data it will block for until 
data is added to the Rx que by the Rx ISR. 
*****************************************************************************/ 
BYTE getNextByte() 
{ 
     //wait for something to have data; 
     while (1) 
     { 
          //Pull from theleftover que first 
          if (!Q_Empty(& leftover_q)) 
               return Q_Dequeue(& leftover_q); 
          else if (!Q_Empty(& rx_q)) 
               return Q_Dequeue(& rx_q); 
     } 
} 
 
/***************************************************************************** 
Name       : extractPackets 
Parameters : None 
Returns    : None 
Description: This is where the real work of this program is performed.  This 
function parses the data placed in the Rx que.  It builds packets 
packets and sends points to the Peak detector for corruption.  It 
also displays the results to the user through the LCD and graph 
displays. 
*****************************************************************************/ 
void extractPackets() 
{ 
     // A packet must start with an identifying character, discard 
     // characters at the beginning of the stream until a recognized 
     // identifier character is found. Log all stripped bytes to the error 
     // file (as a warning, not an error). 
 
     bool          gotIdbyte = false; 



93 

 

     bool          done = false; 
     unsigned char identByte = 0; 
     int           packetLength; 
     int           i = 0; // Just an index used later 
 
     // keeps track of consequtive invalid R packets. If we get a lot of 
     // these then set comm error 
     static int    invalidECount = 0; 
 
     static int    NICKSTEMPRCTR = 0; //DEL THIS NICK 
     static int    TRASHEDBYTES = 0; 
 
     // read the que until it's empty 
     while (!Q_Empty(& rx_q)) 
     { 
          gotIdbyte = false; 
          while (!Q_Empty(& rx_q) && !gotIdbyte) // while not empty 
          { 
               identByte = getNextByte(); 
 
               if (identByte == EnvDataPacket_IDENTIFIER_BYTE || 
                   identByte == ReadingPacket_IDENTIFIER_BYTE || 
                   identByte == ACK || identByte == NAK) 
               { 
                    // have a valid identifier byte 
                    gotIdbyte = true; 
               } 
               else 
               { 
                    // Remove the invalid byte from the buffer. 
                    TRASHEDBYTES++; 
               } 
          } // end while 
 
          if (gotIdbyte) 
          { // after all invalid bytes are stripped off 
               // and the current byte is an identifier 
               if (identByte == ACK) // IF (the current byte is an ACK) 
               { 
                    // SIGNAL the event for PacketAcknowledgedEvent (listened 
                    // for in the writePacket() method) 
                    AckEvent = 1; 
               } 
               else if (identByte == NAK) // ELSE IF (the current byte is an NAK) 
               { 
                    // SIGNAL the event for PacketNotAcknowledgedEvent 
                    // (listened for in the writePacket() method) 
                    NakEvent = 1; 
               } 
               else // not an ack or nak 
               { 
                    // Set up the expected length based on the id byte 
                    if (identByte == EnvDataPacket_IDENTIFIER_BYTE) 
                         packetLength = EnvDataPacket_SIZE; 
                    else if (identByte == ReadingPacket_IDENTIFIER_BYTE) 
                         packetLength = ReadingPacket_SIZE; 
                    else 
                         packetLength = 0; 
 
                         //We are reading in a new packet, wait to read it 
                         // all before before moveing on. 
                    currentPacketSize = 0; 
                    currentPacket[currentPacketSize++] = identByte; 
                    UINT limit = 0xfffffff; 
                    UINT cycles = 0; 
                    while (currentPacketSize < packetLength && cycles < limit) 
                    { 
                         if (!Q_Empty(& rx_q)) 
                              currentPacket[currentPacketSize++] = getNextByte(); 
                         cycles++; 



94 

 

                    } 
 
                    // IF (Ensure Nothing crazy happened and we recieved the 
                    //  correct number of bytes) 
                    if (currentPacketSize == packetLength) 
                    { 
                         BOOL payloadNotValid = false; 
 
                         if (identByte == EnvDataPacket_IDENTIFIER_BYTE) 
                         { 
                              if (EnvDataPacket_Create(currentPacket, & EData)) 
                              { 
                                   // LCDNextAt(16); 
                                   // OutStr("E Rec, t=%f",EData.m_sensorTemp); 
                                   NICKSTEMPRCTR = 0; 
                                   TRASHEDBYTES = 0; 
                                   invalidECount = 0; 
 
                                   //Reset the hardware peak detection 
                                   PEAK_DET(RESET) = 1; 
                                   GRAPH = 0; 
 
                                   //Used in to make the window in R-packet below 
                                   thisWindowIndex = 0; 
                                   LCDNextAt(0); 
                                   OutStr("NEW E-PACKET    ", 0); 
                              } 
                              else 
                              { 
                                   invalidECount++; 
 
                                   // if too many consecutive invalid E's then 
                                   // set the comm error 
                                   if ((invalidECount >= 10)) // 10 times 
                                   { 
 
                                        // set the sensorstream read error for 
                                        // UpdateMonitors to read - this 
                                        // will send us to error state 
                                        LCDNextAt(16); 
                                        //      1234567890123456 
                                        OutStr("Invalid E %6d", invalidECount); 
                                   } 
                                   payloadNotValid = true; 
                              } 
 
                         } // end envdatapacket 
 
                         if (identByte == ReadingPacket_IDENTIFIER_BYTE) 
                         { 
                              int thisR; 
                              int numToSkip = 3; 
                              if (ReadingPacket_Create(currentPacket, 1, & thisR)) 
                              { 
                                   NICKSTEMPRCTR++; 
                                   payloadNotValid = false; 
 
                                   //Add add this R to the Point, if it is the 
                                   // last add the point to the array; 
                                   if (WindowReader_RSaver(thisR, & thisPoint)) 
                                   { 
                                        //Store the point into Memory 
                                        thisWindow[thisWindowIndex++] = thisPoint; 
                                        PEAK_DET(DATA) = thisPoint; 
 
                                        //Display only the middle two bytes 
                                        //GRAPH = thisPoint>>4; 
                                        //A little more fidelity, the below sets 
                                        // the range to 1b00 -> 1100 
                                        GRAPH = (thisPoint - 0x1100) / 0xA; 



95 

 

 
                                        LCDNextAt(0); 
                                        OutStr("Cr:%2d, ", thisWindowIndex - 1); 
                                        OutStr("Val:%X ", thisPoint); 
 
                                        //Reset this point to zero 
                                        thisPoint = 0; 
                                   } 
 
                                   //Wait for the compleate window to come in 
                                   if (thisWindowIndex == (numPoints)) 
                                   { 
                                        //Reset the pointer (used above) 
                                        thisWindowIndex = 0; 
                                        int index = PEAK_DET(DATA); 
                                        int peakOut = PEAK_DET(GET_PEAK_VALUE); 
 
                                        LCDNextAt(16); 
                                        OutStr("Pk:%2d, ", index); 
                                        OutStr("Val:%X ", peakOut); 
                                        //Sleep(1000); 
 
                                        //Reset the peak detector for the next window 
                                        PEAK_DET(RESET) = 1; 
                                        GRAPH = 0; 
                                   } 
                              } 
                              else 
                              { 
                                   payloadNotValid = true; 
                                   //LCDNextAt(16); 
                                   //      1234567890123456 
                                   //OutStr("Invalid R Packet",0); 
                              } 
 
                         } // end readdatapacket 
 
                         //  If the packet data was not valid: print the error 
                         if (payloadNotValid) 
                         { 
                              gotIdbyte = false; 
 
                              //put everything but the first packet in the leftover que 
                              for (int i = 1; i < packetLength; i++) 
                                   Q_Enqueue(& leftover_q, currentPacket[i]); 
 
                                   // Remove the invalid byte from the buffer. 
                              TRASHEDBYTES++; 
                         } 
                    } 
 
               } // end not an ack or nak 
          } 
     } //while not done 
} 
 
/***************************************************************************** 
Name       : RunSensor 
Parameters : None 
Returns    : None 
Description: This function is called by main(), It sets up the sensor to 
transmit data and starts extractPackets when data is received. 
*****************************************************************************/ 
void RunSensor() 
{ 
     LCDNextAt(0); 
     OutStr("Sending Power   ", 0); 
     PowerControl_SetState(false, false, false, false, false, false, false, true); 
     Sleep(10); 
     PowerControl_SetState(true, true, false, true, false, true, false, true); 



96 

 

     Sleep(500); 
     PowerControl_SetState(true, true, false, true, true, true, false, true); 
 
     LCDNextAt(0); 
     OutStr(("FullScan 700    "), 0); 
     FullScanPacket_Send(9.0, 700, - 20.0, 0.25, numPoints, 1, 0, 15); 
 
     // point to 1st free 256byte bank after top of stack 
     thisWindow = (int *)(((unsigned int)(& _lc_ub_stack) | 0xFF) + 1); 
 
     PEAK_DET(RESET); 
 
     if (!Q_Empty(& rx_q)) 
     { 
          LCDNextAt(0); 
          OutStr("Waiting for Data", 0); 
          Sleep(500); 
     } 
 
     while (1) 
     { 
          if (!Q_Empty(& rx_q)) 
               extractPackets(); 
     } //end while 
} 



97 

 

/*********************************************************************** 
By:  Unknown - Altium 
Source File(s):  TSK3000_Reg.c and TSK3000_Reg.h 
Description: This file contains was included in the example project 
"TSK3000 MOD Player" 
************************************************************************ 
Change Log: 
20071201 -- NSW: Added the Function, SetVectoredInterrupts. 
***********************************************************************/ 
 
//.............................................................................. 
#include "TSK3000_Reg.h" 
//.............................................................................. 
 
//.............................................................................. 
void SetStatusRegister(unsigned int value) 
{ 
     __mtc0(value, COP_Status); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
unsigned int GetStatusRegister(void) 
{ 
     return __mfc0(COP_Status); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void SetEnabledInterrupts(unsigned int value) 
{ 
     __mtc0(value, COP_InterruptEnable); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
unsigned int GetEnabledInterrupts(void) 
{ 
     return __mfc0(COP_InterruptEnable); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void ClearInterruptEdgeFlags(unsigned int value) 
{ 
     __mtc0(value, COP_InterruptPending); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
unsigned int GetPendingInterrupts(void) 
{ 
     return __mfc0(COP_InterruptPending); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
unsigned int GetHighestPendingInterrupt(void) 
{ 
     return(__mfc0(COP_Status) >> 11) & 0x1F; 
} 
 
//.............................................................................. 
 



98 

 

//.............................................................................. 
unsigned int GetTimeBase_LO(void) 
{ 
     return __mfc0(COP_TimebaseLO); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
unsigned int GetTimeBase_HI(void) 
{ 
     return __mfc0(COP_TimebaseHI); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void SetIntervalTimer(unsigned int value) 
{ 
     __mtc0(value, COP_Compare); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
unsigned int GetIntervalTimer(void) 
{ 
     return __mfc0(COP_Compare); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void ResetIntervalTimer(void) 
{ 
     SetStatusRegister(GetStatusRegister() | (Status_IntervalTimerReset)); 
     SetStatusRegister(GetStatusRegister() & (~Status_IntervalTimerReset)); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void SetExceptionReturn(unsigned int value) 
{ 
     __mtc0(value, COP_ExceptionReturn); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
unsigned int GetExceptionReturn(void) 
{ 
     return __mfc0(COP_ExceptionReturn); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void SetExceptionBase(unsigned int value) 
{ 
     __mtc0(value, COP_ExceptionBase); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
unsigned int GetExceptionBase(void) 
{ 
     return __mfc0(COP_ExceptionBase); 
} 



99 

 

 
//.............................................................................. 
 
//.............................................................................. 
void SetInterruptMode(unsigned int value) 
{ 
     __mtc0(value, COP_InterruptMode); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
unsigned int GetInterruptMode(void) 
{ 
     return __mfc0(COP_InterruptMode); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void EnableInterrupts(void) 
{ 
     SetStatusRegister(GetStatusRegister() | Status_InterruptEnable); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void DisableInterrupts(void) 
{ 
     SetStatusRegister(GetStatusRegister() & (~Status_InterruptEnable)); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void EnableIntervalTimer(void) 
{ 
     SetStatusRegister(GetStatusRegister() | Status_IntervalTimerEnable); 
} 
 
//.............................................................................. 
 
//.............................................................................. 
void DisableIntervalTimer(void) 
{ 
     SetStatusRegister(GetStatusRegister() & (~Status_IntervalTimerEnable)); 
} 
 
//.............................................................................. 
 
/***************************************************************************** 
Name       : SetVectoredInterrupts 
Parameters : unsigned int 
Returns    : None 
Description: This function was added to allow the uses of Vectored Interrupts 
*****************************************************************************/ 
void SetVectoredInterrupts(unsigned int value) 
{ 
     unsigned int status; 
     status = GetStatusRegister(); 
     if (value) 
          status |= Status_VectorModeEnable; 
     else 
          status &= !Status_VectorModeEnable; 
     SetStatusRegister(status); 
} 



100 

 

/*********************************************************************** 
By:  Unknown - Altium 
Source File(s):  TSK3000_Reg.c and TSK3000_Reg.h 
Description: This file contains was included in the example project 
"TSK3000 MOD Player" 
************************************************************************ 
Change Log: 
20071201 -- NSW: Added the Function, SetVectoredInterrupts. 
***********************************************************************/ 
 
#ifndef TSK3000_REG_H 
#define TSK3000_REG_H 
 
//.............................................................................. 
#define COP_Status           0 
#define COP_InterruptEnable  1 
#define COP_InterruptPending 2 
#define COP_TimebaseLO       3 
#define COP_TimebaseHI       4 
#define COP_Compare          5 
#define COP_DebugData        6 
#define COP_ExceptionReturn  7 
#define COP_ExceptionBase    8 
#define COP_InterruptMode    9 
//.............................................................................. 
 
//.............................................................................. 
#define Status_InterruptEnable           0x0001 
#define Status_UserMode                  0x0002 
#define Status_InterruptEnable_Previous  0x0004 
#define Status_UserMode_Previous         0x0008 
#define Status_InterruptEnable_Old       0x0010 
#define Status_UserMode_Old              0x0020 
#define Status_Reserved0                 0x0040 
#define Status_IntervalTimerReset        0x0080 
#define Status_IntervalTimerEnable       0x0100 
#define Status_VectorModeEnable          0x0200 
#define Status_WishboneTimeOut           0x0400 
//.............................................................................. 
 
//.............................................................................. 
extern void SetStatusRegister(unsigned int value); 
extern unsigned int GetStatusRegister(void); 
//.............................................................................. 
 
//.............................................................................. 
extern void SetEnabledInterrupts(unsigned int value); 
extern unsigned int GetEnabledInterrupts(void); 
//.............................................................................. 
 
//.............................................................................. 
extern void ClearInterruptEdgeFlags(unsigned int value); 
extern unsigned int GetPendingInterrupts(void); 
extern unsigned int GetHighestPendingInterrupt(void); 
//.............................................................................. 
 
//.............................................................................. 
extern unsigned int GetTimeBase_LO(void); 
extern unsigned int GetTimeBase_HI(void); 
//.............................................................................. 
 
//.............................................................................. 
extern void SetIntervalTimer(unsigned int value); 
extern unsigned int GetIntervalTimer(void); 
extern void ResetIntervalTimer(void); 
//.............................................................................. 
 
//.............................................................................. 
extern void SetExceptionReturn(unsigned int value); 
extern unsigned int GetExceptionReturn(void); 



101 

 

//.............................................................................. 
 
//.............................................................................. 
extern void SetExceptionBase(unsigned int value); 
extern unsigned int GetExceptionBase(void); 
//.............................................................................. 
 
//.............................................................................. 
extern void SetInterruptMode(unsigned int value); 
extern unsigned int GetInterruptMode(void); 
//.............................................................................. 
 
//.............................................................................. 
extern void EnableInterrupts(void); 
extern void DisableInterrupts(void); 
extern void EnableIntervalTimer(void); 
extern void DisableIntervalTimer(void); 
//.............................................................................. 
 
/***************************************************************************** 
Name       : SetVectoredInterrupts 
Parameters : unsigned int 
Returns    : None 
Description: This function was added to Allow the uses of Vectored Interrupts 
*****************************************************************************/ 
extern void SetVectoredInterrupts(unsigned int value); 
 
#endif 



102 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  uart16550A.c and uart16550a.h 
Description: This file contains the nessessary functions to use the 
uart16550 core from opencores.org, downloaded 20070305 
***********************************************************************/ 
 
#include <stdlib.h> 
#include "uart16550A.h" 
extern void Sleep(int t); 
 
//Call out the Function Registers 
#define AddrBYTE(BASEADDR)      ((volatile unsigned char *)BASEADDR) 
#define UART16550A_RHR(ADDR)    AddrBYTE(ADDR)[0] 
#define UART16550A_THR(ADDR)    AddrBYTE(ADDR)[0] 
#define UART16550A_IER(ADDR)    AddrBYTE(ADDR)[1] 
#define UART16550A_IIR(ADDR)    AddrBYTE(ADDR)[2] 
#define UART16550A_FCR(ADDR)    AddrBYTE(ADDR)[2] 
#define UART16550A_LCR(ADDR)    AddrBYTE(ADDR)[3] 
#define UART16550A_MCR(ADDR)    AddrBYTE(ADDR)[4] 
#define UART16550A_LSR(ADDR)    AddrBYTE(ADDR)[5] 
#define UART16550A_MSR(ADDR)    AddrBYTE(ADDR)[6] 
#define UART16550A_DB1(ADDR)    AddrBYTE(ADDR)[8] 
#define UART16550A_DB2(ADDR)    AddrBYTE(ADDR)[12] 
 
//ONLY AVALIABLE WHEN LCR BIT 7 IS SET, used to set the baud rate 
#define UART16550A_DLL(ADDR)    AddrBYTE(ADDR)[0] 
#define UART16550A_DLH(ADDR)    AddrBYTE(ADDR)[1] 
 
//Commands used when addressing the Registers 
#define UART16550A_IER_RX       0x1 
#define UART16550A_IER_TX       0x2 
#define UART16550A_IER_RLS      0x4 
#define UART16550A_IER_MS       0x8 
 
#define UART16550A_IIR_RLS      0xC7 
#define UART16550A_IIR_RX       0xC5 
#define UART16550A_IIR_TIME     0xCD 
#define UART16550A_IIR_MS       0xC1 
 
#define UART16550A_FCR_CLR_RX   0x2 
#define UART16550A_FCR_CLR_TX   0x4 
#define UART16550A_FCR_1BYTE    0x00 
#define UART16550A_FCR_4BYTES   0x40 
#define UART16550A_FCR_8BYTES   0x80 
#define UART16550A_FCR_14BYTES  0xC0 
 
#define UART16550A_LCR_8N1       0x03 
#define UART16550A_LCR_SET_BUAD  0x80 
 
#define UART16550A_MCR_RTS       0x2 
#define UART16550A_MCR_LBK       0x20 
 
#define UART16550A_LSR_DR        0x1 
#define UART16550A_LSR_OE        0x2 
#define UART16550A_LSR_PE        0x4 
#define UART16550A_LSR_FE        0x8 
#define UART16550A_LSR_BI        0x10 
#define UART16550A_LSR_TH_EMPTY  0x20 
#define UART16550A_LSR_TX_EMPTY  0x40 
#define UART16550A_LSR_ERROR     0X80 
 
//Below are definitions used for this project only 
bool AckEvent = 0; 
bool NakEvent = 0; 
 
//If more then one UART core was present the functions below would need to be 
// updated to always pass the baseAddr of the initended UART 
static unsigned long uart_baseaddr = 0; 
 



103 

 

/***************************************************************************** 
Name:       readReg -- MACRO 
Parameters: unsigned long 
Returns:    int 
Description: inorder to retreve the propper result from this core it must 
be read from twice.  This may be some discrepency in the designers Wishbone 
implenentation and Altiums, but by TRIAL and error this was determined to be 
the case. 
*****************************************************************************/ 
#define readReg(addr)  ((addr <<8) + addr) 
 
 
/***************************************************************************** 
Name:       uart_Init 
Parameters: unsigned long baseaddr, unsigned long fclk, unsigned long baudrate 
Returns:    None 
Description: UART Initalization.  The current configuration is setup for 8-N-1 
and will signal a inturrupt when the recieve buffer has more the 4 bytes in it 
*****************************************************************************/ 
void uart_Init(unsigned long baseaddr, unsigned long fclk, unsigned long baudrate) 
{ 
     //save the base addr -- this is done because I only have 1 uart 
     uart_baseaddr = baseaddr; 
 
     // Set the Baud Rate 
     UART16550A_LCR(uart_baseaddr) = UART16550A_LCR_SET_BUAD; 
     unsigned long reload = (unsigned long)(fclk / (16 * baudrate)); 
     UART16550A_DLH(uart_baseaddr) = (reload >> 8) & 0xFF; 
     UART16550A_DLL(uart_baseaddr) = reload & 0xFF; 
 
     //Set to 8n1 
     UART16550A_LCR(uart_baseaddr) = UART16550A_LCR_8N1; 
 
     //set to flag an int when the rx buffer is not empty 
     // and to signal the ISR when 4 bytes are in the buffer 
     UART16550A_IER(uart_baseaddr) = UART16550A_IER_RX; 
     UART16550A_FCR(uart_baseaddr) =  
                         UART16550A_FCR_4BYTES | UART16550A_FCR_CLR_RX | UART16550A_FCR_CLR_TX; 
 
     UART16550A_MCR(uart_baseaddr) = UART16550A_MCR_RTS; 
 
     uart_clrIRQs(); 
} 
 
 
/***************************************************************************** 
Name:       uart_putChar 
Parameters: unsigned char c 
Returns:    None 
Description: Places a char in the Hardware transmint buffer. 
*****************************************************************************/ 
inline void uart_putChar(unsigned char c) 
{ 
     //Wait while the tx buffer is full?? 
     while(uart_txFull()); 
     UART16550A_THR(uart_baseaddr) = c; 
} 
 
/***************************************************************************** 
Name:       uart_putChar 
Parameters: unsigned char c 
Returns:    unsigned char or -1 
Description: if there is data in the hardware rx buffer then it is read, 
otherwise a -1 is returned siginifing the buffer is empty. 
*****************************************************************************/ 
inline int uart_getChar(void) 
{ 
     return readReg(UART16550A_LSR(uart_baseaddr)) & (UART16550A_LSR_DR | UART16550A_LSR_OE) ?  
                                                     readReg(UART16550A_RHR(uart_baseaddr)): - 1; 
} 



104 

 

 
/***************************************************************************** 
Name:       uart_clrIRQs 
Parameters: None 
Returns:    None 
Description: Clears the UART core's inturrupt lines, which can be cleared by 
simply reading the IIR and MSR registers. 
*****************************************************************************/ 
inline int uart_clrIRQs(void) 
{ 
     int readit = readReg(UART16550A_MSR(uart_baseaddr)); 
     return readReg(UART16550A_IIR(uart_baseaddr)); 
} 
 
/***************************************************************************** 
Name:       uart_txFull 
Parameters: None 
Returns:    bool 
Description: queries the uart status register to determine if the tx buffer 
is full. 
*****************************************************************************/ 
inline bool uart_txFull(void) 
{ 
     return(readReg(UART16550A_LSR(uart_baseaddr)) & UART16550A_LSR_OE); 
} 
 
/***************************************************************************** 
Name:       uart_rxEmpty 
Parameters: None 
Returns:    bool 
Description: queries the uart status register to determine if the Rd buffer 
is empty. 
*****************************************************************************/ 
inline bool uart_rxEmpty(void) 
{ 
     return !(readReg(UART16550A_LSR(uart_baseaddr)) & UART16550A_LSR_DR); 
} 
 
/***************************************************************************** 
Name:       uart_getStatus 
Parameters: None 
Returns:    Int 
Description: returns the value fo the line status register 
*****************************************************************************/ 
inline int uart_getStatus(void) 
{ 
     return readReg(UART16550A_LSR(uart_baseaddr)); 
} 
 
/***************************************************************************** 
Name:       uart_write 
Parameters: unsigned char * data, int size 
Returns:    bool 
Description: writes the elements of the input array to the serial port. The 
return value repersents sussess of the sensor recieving the commands.  This 
function is specalize for this project. 
*****************************************************************************/ 
bool uart_write(unsigned char* data, int size) 
{ 
     BOOL found = 0; 
     AckEvent = 0; 
     NakEvent = 0; 
 
     for (int try = 0; try < 3; try++) 
     { 
          int maxCycles = 1000; 
          int i, cycles = 0; 
 
          //Set RTS 
          //UART16550A_MCR(uart_baseaddr) = 0; 



105 

 

 
          //DTR delay time gives the sensor time to stop 
          Sleep(5); 
 
          for (i = 0; i < size; i++) 
          { 
               //wait for room in the tx buffer 
               while (uart_txFull()); 
 
                //send the char 
               uart_putChar(data[i]); 
               Sleep(1); 
          } 
 
          //Clear RTS 
          // UART16550A_MCR(uart_baseaddr) = UART16550A_MCR_RTS; 
 
          //wait for ack/nak or timeout 
          while (1) 
          { 
               if ((AckEvent || NakEvent)) 
                    break; 
               if (maxCycles < cycles++) 
                    break; 
               Sleep(1); 
          } 
 
          if (AckEvent) //    if ACK 
          { 
               return true; // the packet was acknowledged 
          } 
     } 
     return false; 
} 
 
/***************************************************************************** 
Name:       uart_readAllRegs 
Parameters: None 
Returns:    bool 
Description: This function is very handy in debugging problems with this core 
*****************************************************************************/ 
bool uart_readAllRegs(void) 
{ 
     int rhr, ier, iir, lcr, lsr, msr; 
 
     int dbg2 = readReg(UART16550A_DB2(uart_baseaddr)); 
     int size = (dbg2 >> 12) & 0xFF; 
 
     rhr = readReg(UART16550A_RHR(uart_baseaddr)); 
     ier = readReg(UART16550A_IER(uart_baseaddr)); 
     iir = readReg(UART16550A_IIR(uart_baseaddr)); 
     lcr = readReg(UART16550A_LCR(uart_baseaddr)); 
     lsr = readReg(UART16550A_LSR(uart_baseaddr)); 
     msr = readReg(UART16550A_MSR(uart_baseaddr)); 
 
     //This if statement does nothing usefull, force the complier 
     // to assign memory for each of the var.s 
     if (rhr && iir && lcr && lsr && msr && ier && dbg2 && size) 
          return true; 
     else 
          return false; 
} 



106 

 

/*********************************************************************** 
By         : Nicholas Wieder 
File       : uart16550A.c and uart16550a.h 
Description: This file contains the necessary functions to use the 
uart16550 core from opencores.org, downloaded 20070305 
***********************************************************************/ 
 
#ifndef _UART_H 
#define _UART_H 
#define UART16550A 
 
#include "Datatype.h" 
 
//these def are used  for this project only 
extern bool AckEvent; 
extern bool NakEvent; 
#define NAK 0x15 
#define ACK 0x06 
 
/***************************************************************************** 
Name:       uart_Init 
Parameters: unsigned long baseaddr, unsigned long fclk, unsigned long baudrate 
Returns:    None 
Description: UART Initialization.  The current configuration is setup for 8-N-1 
and will signal a interrupt when the receive buffer has more the 4 bytes in it 
*****************************************************************************/ 
extern void uart_Init(unsigned long baseaddr, unsigned long fclk, unsigned long baudrate); 
 
/***************************************************************************** 
Name:       uart_putChar 
Parameters: unsigned char c 
Returns:    None 
Description: Places a char in the Hardware transmit buffer. 
*****************************************************************************/ 
extern inline void uart_putChar(unsigned char c); 
 
/***************************************************************************** 
Name:       uart_putChar 
Parameters: unsigned char c 
Returns:    unsigned char or -1 
Description: if there is data in the hardware rx buffer then it is read, 
otherwise a -1 is returned signifying the buffer is empty. 
*****************************************************************************/ 
extern inline int uart_getChar(void); 
 
/***************************************************************************** 
Name:       uart_clrIRQs 
Parameters: None 
Returns:    None 
Description: Clears the UART core's interrupt lines, which can be cleared by 
simply reading the IIR and MSR registers. 
*****************************************************************************/ 
extern inline int uart_clrIRQs(void); 
 
/***************************************************************************** 
Name:       uart_txFull 
Parameters: None 
Returns:    bool 
Description: queries the uart status register to determine if the tx buffer 
is full. 
*****************************************************************************/ 
extern inline bool uart_txFull(void); 
 
/***************************************************************************** 
Name:       uart_rxEmpty 
Parameters: None 
Returns:    bool 
Description: queries the uart status register to determine if the Rd buffer 
is empty. 
*****************************************************************************/ 



107 

 

extern inline bool uart_rxEmpty(void); 
 
/***************************************************************************** 
Name:       uart_getStatus 
Parameters: None 
Returns:    Int 
Description: returns the value of the line status register 
*****************************************************************************/ 
extern inline int uart_getStatus(void); 
 
/***************************************************************************** 
Name:       uart_write 
Parameters: unsigned char * data, int size 
Returns:    bool 
Description: writes the elements of the input array to the serial port. The 
return value represents success of the sensor receiving the commands.  This 
function is specialize for this project. 
*****************************************************************************/ 
extern bool uart_write(unsigned char* data, int size); 
 
/***************************************************************************** 
Name:       uart_readAllRegs 
Parameters: None 
Returns:    bool 
Description: This function is very handy in debugging problems with this core 
*****************************************************************************/ 
extern bool uart_readAllRegs(void); 
 
#endif /* _UART_H */ 



108 

 

/*********************************************************************** 
By:  Nicholas Wieder 
Source File(s):  WindowReader.c and WindowReader.h 
Description: This file contains functions used to store Reading packet 
data into a single point, and into a window. 
***********************************************************************/ 
 
#include "WindowReader.h" 
 
#define NUM_TO_BLANK 8 
#define NUM_TO_AVE   7 
#define VOLTAGE_CONV 1.00711e-4  //3.3/32767.0 
 
/***************************************************************************** 
Name       : WindowReader_FillWindow 
Parameters : int currentR, int* window, int windowSize 
Returns    : bool 
Description: A return value of TRUE means all needed points were received and 
the window is full 
*****************************************************************************/ 
BOOL WindowReader_FillWindow(int currentR, int* window, int windowSize) 
{ 
 
    static int currentPointIndex = 0; 
    int thisPoint; 
 
    if(currentR < windowSize) 
    { 
        // if the point is ready use it 
        if(WindowReader_RSaver(currentR,&thisPoint)) 
        { 
            //the point was made so add it to the array then increment the pointer 
            window[currentPointIndex++] = thisPoint; 
 
            //check if this was the last point 
            if(currentPointIndex == windowSize) 
            { 
                currentPointIndex = 0; 
                return 1; 
            } 
        } 
    } 
    else  // the current point is larger then the window 
    { 
        window[currentPointIndex] = 0; 
    } 
 
    //this will happen a lot; 
    return 0; 
 
} 
 
/***************************************************************************** 
Name       : WindowReader_RSaver 
Parameters : int currentR, int* window, int windowSize 
Returns    : bool 
Description: A return value of TRUE means all needed Reading Packets were 
received and a full point has been return in *dest. 
*****************************************************************************/ 
BOOL WindowReader_RSaver(int currentR, int* dest) 
{ 
    static int Count = 0; 
    static int runningSum; 
 
    // wait for the number to blank to come in 
    if(++Count > NUM_TO_BLANK) 
    { 
        runningSum += currentR; 
         
        //if this was the last R Packet in this data point find the ave and return true 



109 

 

        if(Count >= (NUM_TO_BLANK+NUM_TO_AVE)) 
        { 
            *dest = (runningSum / NUM_TO_AVE); 
            runningSum = 0; 
            Count = 0; 
            return 1; 
        } 
    } 
 
    // not ready yet return 0 twice 
    *dest = 0; 
    return 0; 
} 
 
 



110 

 

/*********************************************************************** 
By         : Nicholas Wieder 
File       : WindowReader.c and WindowReader.h 
Description: This file contains functions used to store Reading packet 
data into a single point, and into a window. 
***********************************************************************/ 
#if !defined(WindowReader_H_) 
#define WindowReader_H_ 
 
#include "ReadingPacket.h" 
 
/***************************************************************************** 
Name       : WindowReader_FillWindow 
Parameters : int currentR, int* window, int windowSize 
Returns    : bool 
Description: A return value of TRUE means all needed points were received and 
the window is full 
*****************************************************************************/ 
extern BOOL WindowReader_FillWindow(int currentR, int* window, int windowSize); 
 
/***************************************************************************** 
Name       : WindowReader_RSaver 
Parameters : int currentR, int* window, int windowSize 
Returns    : bool 
Description: A return value of TRUE means all needed Reading Packets were 
received and a full point has been return in *dest. 
*****************************************************************************/ 
extern BOOL WindowReader_RSaver(int currentR, int* dest); 
 
#endif //WindowReader_H_ 
 
 

 


