

 1

Parallel Implementations of Direct Solvers For Sparse Systems
of Linear Equations on PVM System and nCUBE Machine1

Xuyang Li
Civil Engineering Department / 4190 Bell Engineering Center

Azhar Maqsood, James M. Conrad2
Computer Systems Engineering / 313 Engineering Hall

University of Arkansas, Fayetteville, AR 72701
E-mail: {xl0, am02, jmc3}@engr.engr.uark.edu

1 Proceedings of the 1996 Arkansas Computer Conference, Sercy, AR, pp. 52-63, March 1996. This version has been reformatted.
2 Currrently at UNC Charlotte, 9201 University City Blvd, Charlotte, NC 28223, jmconrad@uncc.edu

Abstract - The basic problems in developing parallel
direct solvers of sparse systems of linear equations are
discussed in this report. These problems, including
the storage schemes of sparse matrices, the running
environment of the programs, and the parallelization
of the sequential algorithms, are handled while
keeping current parallel computer architectures in
mind. The behavior of the parallel machines used for
the underlying problem is also discussed in this report.
The problem is applied over two different parallel
environments: the Parallel Virtual Machine (PVM)
and the nCUBE machine (Hypercube). Test results
for both versions are analyzed in terms of the machine
structure and algorithm design.

1. Introduction
Solving large systems of equations in which a

majority of the coefficients are zero is very important
in scientific research and engineering computing.
Systems of equations like these, called sparse systems
of equations, are often encountered in numerical
deductions of problems for which analytical solutions
are very hard to obtain. Examples of such problems
include solving partial differential equations by
numerical methods, multi-dimensional spline
interpolations and finite element method calculations
in weather forecasting, computer aided design and
computer assisted manufacturing, fluid dynamics
calculations, and simulation of natural behaviors.
Some problems result in systems of linear equations
with coefficient matrices of special structures, others
result in systems of linear equations with coefficient
matrices of random structures. It is often inefficient
and sometimes impossible to solve sparse systems of
equations by using dense matrix system solvers
because the memory occupied by the zero elements of
the matrix is too large to handle. Solving these
systems of equations involve more complex
algorithms and data structures than their dense
counterparts.

A system of n linear equations has the
following form:

a x a x a x b

a x a x a x b

a x a x a x b

n n

n n

n n n n n n

0 0 0 0 1 1 0 1 1 0

1 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 1

, , ,

, , ,

, , ,

,

,

.

+ + + =
+ + + =

+ + + =

�

�

�
�

�

�
�

− −

− −

− − − − − −

�

�

� � � �

�

In matrix notation, this system can be represented by
Ax b= ,

where A is the n n× matrix of coefficients such that
A i j ai j[,] ,= ,

b is an n × 1 vector
[, , ,]b b bn

T
0 1 1� −

and x is the desired n × 1 solution vector
[, , ,]x x xn

T
0 1 1� − .

The matrix A is considered sparse if a
computation involving it can utilize the number and
location of its nonzero elements to reduce the run time
over the same computation on a dense matrix of the
same size.

Although there are many good algorithms and
programs on sequential computers that can be used to
solve sparse linear systems, they have limited success
in solving sparse systems of linear equations on
parallel computers [1, p.454]. The reasons for this are
twofold. The iterative methods for sparse linear
systems are fast if they converge. The problem is they
are sometimes not convergent. The direct methods, on
the other hand, are very stable, but they involve a
large amount of communication among processors on
distributed-memory parallel computers. In this report,
different aspects of implementing parallel algorithms
of sparse linear systems are discussed. The storage
scheme, algorithm, and implementation details of a
direct method are given. Finally, the results
comparing with its dense counterpart and its
sequential implementation are also given.

 2

2. Direct Methods Versus Indirect Methods

There are two totally different kinds of methods
for solving systems of linear equations. They are
direct methods and indirect methods. The indirect
methods or iterative methods are techniques to solve
systems of equations of the form Ax b= that generate
a sequence of approximations to the solution vector x.
In each iteration, the coefficient matrix A is used to
perform a matrix-vector multiplication. The number
of iterations required to solve a system of equations
with a desired precision is usually data dependent,
hence, the number of iterations is not known prior to
executing the algorithm. Iterative methods do not
guarantee a solution for all systems of equations, even
though the systems are not singular. This means the
iterative methods may be divergent when applied to
certain data. This was the main reason that direct
methods were chosen to be used in the implementation
presented in this report.

There is another reason why the direct methods
were used in the implementation here: the iterative
methods are sometimes for special purposes. This
means that one iterative method may be only suitable
for solving a special kind of systems of equations,
such as those resulting from finite element method
calculations. For example, the conjugate gradient
method and the preconditioned conjugate gradient
algorithm are only suitable for solving large sparse
systems of linear equations with symmetric positive
definite matrices [1, pp.433 - 436]. Direct methods
are useful for solving sparse linear systems because
they are general and robust. Although there is
substantial parallelism inherent in sparse direct
methods, only limited success has been achieved to
date in developing efficient general-purpose parallel
formulations for them. Developing efficient general-
purpose parallel formations of direct methods for
unstructured or random sparse matrices is currently an
active area of research. Although all of these methods
are based on Gaussian elimination (for general
matrices) and Cholesky factorization (for symmetric
positive definite matrices), their parallel formulations
can be quite complicated.

Here, the Gaussian elimination with partial
pivoting method is implemented on parallel
computers. The implementations can be used for
solving general sparse linear systems.

3. Parallel Computers Used For Implementation

Parallel computers have different structures and
different software environments. The Parallel Virtual
Machine (PVM) was chosen as the first kind of
parallel computing environment for the

implementation. The main reason for choosing the
PVM is that it is a system with multi-architecture
compatibility. The PVM is not a specific machine.
Rather, it is a software environment. PVM permits a
network of heterogeneous UNIX computers to be used
as a single large parallel computer. Thus large
computational problems can be solved by using the
aggregate power of many computers. These machines
are often the most popular computers now in use, such
as the SUN SPARCstations, the CRAY
supercomputers, the 80386/80486 UNIX box, the
Thinking Machines, the DEC Alpha, and the micro
VAX. PVM supplies the functions to automatically
start up tasks on the virtual machine and allows the
tasks to communicate and synchronize with each
other. Applications, written in C or FORTRAN, can
be parallelized by using message-passing constructs
common to most distributed-memory computers. By
sending and receiving messages, multiple tasks of an
application can cooperate to solve a problem in
parallel. PVM supports heterogeneity at the
application, machine, and network level. So PVM
allows application tasks to exploit the architecture best
suited to their solution. All the data conversion that
may be required if two computers use different integer
or floating point representations are handled by PVM.
Even machines that are interconnected by a variety of
different networks can be used by PVM. Programs
running on PVM do not need to know the details of
communication. The library functions used on PVM
system for different architectures have the same
syntax. Because of these, programs written for PVM
system can be easily ported from one architecture to
another without modifications. They can be run
simultaneously on different machines. This flexibility
makes PVM one of the most powerful parallel
computing environments. However, the PVM system
is not perfect. Because the PVM system mainly uses
networks to transmit data from machine to machine,
the performance of the system is largely dependent on
the performance of the networks. This is really a
consequence of its flexibility. This architecture, as the
results shown later, limits the performance of the
parallel implementation of Gaussian elimination
method [2, p.1 - 5].

Another kind of parallel computer used for the
implementation of algorithms was the nCUBE (a
hypercube machine). The nCUBE is a high-
performance parallel computer. The big advantage of
the nCUBE over PVM is that the communication
among processors on the nCUBE is highly efficient.
nCUBE machines are also distributed-memory
machines.

 3

4. Storage Scheme For Sparse Matrices

It is customary to store an n n× dense matrix
in an n n× array. However, if the matrix is sparse,
storage is wasted because a majority of the elements
of the matrix are zero and need not be stored
explicitly. If the positions and values of all the
nonzero elements of the matrix are known, then the
whole matrix is known. It is a common practice to
store only the nonzero elements and to keep track of
their locations in the matrix. Currently there are many
storage schemes that can be used to store and
manipulate sparse matrices [1, pp.409 - 412]. These
specialized schemes not only save storage but also
yield computational savings. Since the locations of
the nonzero elements in the matrix are known
explicitly, unnecessary multiplications and additions
with zero can be avoided. Each of these schemes is
developed for specific purposes. They are suitable for
different implementations on machines with different
architectures. Some data structures are more suitable
for a parallel implementation than others. There is no
single best data structure for storing sparse matrices.
In the implementation presented here, a special
storage scheme is used. This storage scheme is
characterized by the employment of a group of single
direction linked lists and a row pointer vector.

In this scheme, each row of the matrix is
represented by a single direction linked list. One
element of the matrix in a row is represented by a
node in the linked list. The node is represented by the
following data structure using C notation:
struct row {
 float elem;
 int col;
 struct row * next;
}
The field elem of struct row is the value of a
nonzero matrix entry in the current row, while the
field col of struct row is the column number of
this entry. The field next of struct row is a
pointer that points to the node representing the next
nonzero element in the same row. The field next of
the last node of this row is set to NULL.

During initialization and computation, the order
of the nodes in the linked list is kept so that the col is
always in ascending order along the direction of the
linked list. This order keeps the searching of an
element with a certain col number fast.

All the rows in the sparse matrix are bound
together by a vector of structure pointers. Each
element of this vector is a pointer that points to the
first element of the linked list that represents a row in
the matrix with its row number equal to the index of

this element in the vector. So the type of this vector is
as follows:

struct row **
in which struct row is defined above. For the
example matrix shown in Figure 1, the schematic
representation of it is shown in Figure 2.

In the implementation presented later, the
memory occupied by the vector of pointers is
allocated at the time the number of equations n (that
is, the number of rows in the coefficient matrix) is
known. The memory is allocated so that the number
of elements in the vector is exactly n. Memory
occupied by the vector will not change after that.

Note that each row of the sparse matrix of a
non-singular system of linear equations must have at
least one nonzero element (otherwise, it would be
singular), so there should be no element of the above
vector that has the value NULL during the whole
computational process. This means that the above
storage scheme wastes no memory in the vector for
non-singular systems of equations. Also, in the linked
list representation of rows, sequential search for an
element is needed due to the sequential property of the
linked list, and because the storage order of the
elements is maintained as described above, the time
needed for accessing an element in a row is O(s/2),
where s is the number of nonzero elements in the row.
Memory needed for storing a sparse matrix using the
above scheme is calculated as:

N*sizeof (struct row) + n*sizeof (struct row *), where
N is the number of nonzero elements in the matrix,
and n is the number of rows in the matrix. This
number is always changing during processing,
because dynamic memory allocation is used to keep
memory usage the most economical. In the
implementation, an element in the matrix is
considered to be zero if the absolute value of it is less
than or equal to a preset small positive number (user
defined). So in the process of elimination, newly
produced nonzero elements are added to the matrix,
while all the newly produced zero elements are
removed from the matrix.

A =

�

�

�
�
�
�
�
�
�
�

�

	

10 0 0 0 0 2 0 0 0 30
4 0 50 0 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0 0 8 0
9 0 0 0 0 0 10 0 110 0 0
0 0 2 0 0 0 0 0 14 0 0 0
0 0 0 0 30 0 0 0 0 0 0

.
.
.
.
.
.

Figure 1 - A Sparse Matrix

 4

01.0

4.0

6.0

9.0

2.0

3.0

0

1

0

1

2

·32.0

5.0

8.0

10.0

14.0

1

5

3

4

·

·

·

·

53.0

11.0

·

4

Figure 2 - Sparse Matrix Storage Scheme

5. Basic Algorithms

A system of equations Ax=b is usually solved
in two stages. First, through a series of algebraic
manipulations, the original system of equations is
reduced to an upper-triangular system of the form

u x u x u x y

u x u x y

u x y

n n

n n

n n n n

0 0 0 0 1 1 0 1 1 0

1 1 1 1 1 1 1

1 1 1 1

, , ,

, ,

,

,

.

+ + + =
+ + =

=

�

�

�
�

�

�
�

− −

− −

− − − −

�

�

�

This can be written as Ux=y, where U is a matrix in
which all subdiagonal entries are zero. That is U[i,j] =
0 if i > j, otherwise U[i, j] = ui j, . U is called an upper-

triangular matrix. This stage is called factorization.
In the second stage of solving a system of linear
equations, the upper-triangular system is solved for
the variables in reverse order from xn−1 to x0 by a
procedure known as back-substitution. The basic
algorithm used in this implementation is Gaussian
elimination with partial pivoting. The sequential
version of it has several nested loops. Figure 3 shows
the Gaussian elimination with partial pivoting
algorithm used as the basis of parallelization.
Procedure
GAUSSIAN_ELIMINATION_W_PARTIAL_PIVOTING(A, b, n)

var
 marked : array [0 .. n - 1] of boolean;
 pivot : array [0 .. n - 1] of 0 .. n - 1;
 i, j, k, picked : integer;
 tmp, tmp1 : real;

begin
 for i: = 0 to n - 1 do
 begin

 { pivoting operations }
 tmp1 := 0;
 for j := 0 to n - 1 do
 begin
 if ((not marked[j]) and (ABS(A[j, i]) >
 tmp1)) then
 begin
 tmp1 := ABS(A[j, i]);
 picked := j;
 endif;

 endfor;
 tmp1 := A[picked, i];
 marked[picked] := true;
 pivot[picked] := i;

 { elimination operations }
 for j := 0 to n - 1 do
 begin
 if (not marked[j]) then
 begin
 tmp := A[j, i] / tmp1;
 b[j] := b[j] - b[picked] * tmp;
 for k := i + 1 to n - 1 do
 begin
 A[j, k] := A[j, k] - A[picked, k] * tmp;
 endfor;
 endif;
 endfor;
 endfor;
 for i := 0 to n - 1 do
 begin
 if (not marked[i]) then
 begin
 pivot[i] = n - 1;
 endif;
 endfor;
end GAUSSIAN_ELIMINATION_W_PARTIAL_PIVOTING

Figure 3 - Sequential Algorithm of Gaussian
Elimination with Partial Pivoting

After the full matrix A has been reduced to an
upper-triangular matrix U, the back-substitution
operation is conducted to determine the vector x. The
sequential back-substitution algorithm for solving the
upper-triangular system of equations Ux = y is shown
in Figure 4.
procedure BACK_SUBSTITUTION (U, y, pivot, n)

var
 i, j, row : integer;

begin
 for i := n - 1 downto 1 do
 begin
 for row := 0 to n - 1 do
 begin
 if (pivot[row] = i) then
 begin
 exit for;
 endif;
 endfor;

 { solution for i'th variable }
 y[row] := y[row] / U[row, i];

 { back-substitute }
 for j := 0 to n - 1 do
 begin
 if (pivot[j] < i) then
 begin
 y[j] := y[j] - y[row] * U[j, i];
 endif;
 endfor;
 endfor;
 for row := 0 to n - 1 do
 begin
 if (pivot[row] = 0) then
 begin
 exit for;
 endif;
 endfor;
 y[row] := y[row] / U[row, 0];
end BACK_SUBSTITUTION.

Figure 4 - Back-substitution Algorithm

 5

The Gaussian elimination and back-substitution
algorithms were originally designed for solving dense
matrix systems of equations. In order to save
execution time, unnecessary memory movements are
avoided by using the array pivot and marked in the
algorithm. Rather than assigning zero to the
eliminated elements in matrix A, the algorithm simply
leaves them unchanged because they are not used in
the following steps. All the unnecessary assignments
to elements of matrix A are avoided in this way. For
sparse matrix systems of equations, the algorithm
should be modified so that the storage occupied by
newly produced zero elements of matrix A be released
to save memory. Sparse systems of equations often
have very large sparse matrices, so the above
modification is necessary.

6. Parallelization of The Algorithms

6.1 General Criteria And Data Partitioning

6.1.1 Ordering of The System of Equations
The characteristics of the machines used in the

implementation should be considered when
parallelizing the above algorithms. Four steps are
considered in the parallization of the above
algorithms. They are ordering, symbolic factorization,
numerical factorization, and solving a triangular
system. Some parts of these steps may be omitted
when considering the implementation of the
algorithms on specific machines. Ordering is an
important phase of solving a sparse linear system
because it determines the overall efficiency of the
remaining steps. The aim of it is to rearrange the rows
of the original coefficient matrix so that the permuted
matrix leads to a faster and more stable solution. The
numerical stability of the solution is increased by
ensuring that the diagonal elements or pivots are large
compared to the remaining elements of their
respective rows. This is already included in the
sequential algorithm and needs to be parallelized. The
ordering criteria for obtaining a faster parallel solution
are very complex. This process needs large amount of
changing positions of rows in the matrix, so for
distributed-memory machines such as PVM, this
could use a large proportion of the whole computation
time. The benefits resulting from ordering will be
fully surpassed by the waste of time in
communication, because data transmission in PVM
system is crucial to the overall performance of the
implementation. Considering this factor, the
implementations presented here only emphasize the
enhancement of the numerical stability of the solution
and contain a partial pivoting process. A large amount

of communication is avoided by eliminating a full
ordering process.
6.1.2 Data Partitioning And Factorization of The
System of Equations

Due to the availability of very fast serial
algorithms and the high data-distribution cost involved
in parallelizing them, implementations of parallel
symbolic factorization on message-passing computer
(distributed-memory machines) tend to be inefficient.
Moreover, symbolic factorization is often performed
once and then several systems with the same sparsity
pattern are solved, amortizing the cost of symbolic
factorization over all the systems [1, p.458]. On the
other hand, the programs presented here are used to
solve systems of equations that usually have no
relation with each other. So the benefits of using
symbolic factorization in these programs are not
obvious. Because of this, the symbolic factorization
to the system was not conducted in the programs.

In order to conduct numerical factorization in
parallel, the coefficient matrix needs to be mapped
onto all the processors. This involves partitioning the
matrix into small blocks so that each block can be
assigned to a specific processor. It is important to
choose an appropriate data-mapping scheme for
distributed-memory machines. For the PVM and
nCUBE machines, it is best to use the block-striped
partitioning of the matrix because this can reduce the
communication costs. In this partitioning scheme, the
matrix is divided into groups of complete rows, and
each processor is assigned one such group. Each
group contains contiguous rows. For example, a
matrix with 16 rows can be divided into four groups
and each group is assigned to one of four processors.
This is shown in Figure 5.

 0...
P0 1...
 2...
 3...
 4...
P1 5...
 6...
 7...
 8...
P2 9..
 10..
 11..
 12..
P3 13...
 14..
 15..

Figure 5 - Block Striping Partitioning of a 16 x 16
Matrix on 4 processors

 6

The partition is made so that the difference
between the number of rows contained in any two
groups is at most one. This distributes the data evenly
to all the processors.

Apart from the coefficient matrix, the right-
hand side vector of the system of equations is also
partitioned by the same partitioning scheme. Each
processor has its own array pivot and array
marked. In addition to the processors that contain
the data, a separate processor is used as the master
node that controls the whole computational process.
6.2 Parallelizing The Algorithms
6.2.1 Parallelizing The Pivoting Process
The pivoting process is somewhat complicated when
trying to run in parallel. First, each processor or node
searches for the row that has the maximum absolute
element value in the current column. This element is
called the local pivot. The local pivot together with
the ID of the node that contains it is then sent to the
master node. The master node collects all the local
pivots and the corresponding node IDs and compares
the local pivots. The pivot with the largest absolute
value (which is the TRUE pivot) is then found, and
the ID of the node that has this pivot is broadcast to all
the slave nodes. Each node then compares the
received ID with its own, and the one that has the
pivot row broadcasts the entire pivot row to other
slave nodes.

In both the PVM implementation and the
nCUBE implementation, each slave node searches
their local pivot in parallel. In the PVM
implementation, the master node collects the local
pivots sequentially. On the nCUBE, however, the
special structure of the machine is considered so that
the pivoting is conducted in a faster way. This will be
discussed later in this report. The sequential part
limits the speedup of the PVM implementation.
6.2.2 Parallelizing The Elimination Process

The parallel elimination process is relatively
simple compared to the pivoting process. It is also
more efficient. All the nodes eliminate their own part
of data simultaneously using the pivot row received.
Because there is no swapping of rows in the pivoting
and elimination process, the order of the rows has
been random from the beginning. The pivoting and
elimination loads are evenly distributed to all
processors.

Combining the above two parts, the parallel
pivoting and elimination processes are shown in
Figure 6.

Each processor finds
its local pivot

Each local pivot is
sent to master node

Master node collects
all local pivots and
finds the one with

the largest absolute value

Master node broadcasts
the ID of the node

that contains the pivot row

The node that has the pivot row
broadcasts the row to other nodes.

Other nodes get the pivot row.

Each node uses the pivot row
to eliminate its own part of data

Figure 6 - Parallel Pivoting and Elimination
Processes

6.2.3 Parallelizing The Back-substitution Process

Back-substitution is done in parallel, too. The
back-substitution process begins from the last
variable. The order is controlled by the master node.
Because the order of the rows in the matrix is random,
each processor needs to search for the current variable
simultaneously. The node that has found the current
variable broadcasts it to all the other nodes. The next
step is to back-substitute the variable simultaneously
by all the processors. This process repeats until all the
variables are found. The parallel back-substitution
process is shown in Figure 7.

 7

Begin from the
last variable

Each node searches its part of data
for the current variable

The node that contains
the solution of the current

variable broadcasts the value of
 the variable to other nodes.

All the other nodes receive
the solution of that variable

All the nodes back-substitute
the value of the variable.

The above process repeats until solutions
of all the variables are found.

Figure 7 - Parallel Back-substitution Process

6.2.4 Parallelizing The Input And Output Processes

It is natural to consider parallelizing the input
and output processes because they are usually time
consuming. However, from an analysis of the time
used in each part, it was found that the input and
output processes only used a very small fraction of
time of the whole process. Considering this and the
sequential characteristics of the input and output files,
the input process was only parallelized to a minor
degree, and the output process was done sequentially.

7. Implementation of Algorithms on PVM and
nCUBE

7.1 Implementation on The PVM System

The PVM version of the direct solver of
systems of linear equations has two separate modules,
called the master module and the slave module. The
master module is run on the master processor and the
slave module is run on the slave processors. The

master module is responsible for reading command
line parameters that include the number of processors,
the input file name, and the output file name. It is also
responsible for launching the slave module on each
slave processor. This is done by calling the PVM
routine pvm_spawn(). The master module
distributes the work load evenly to the slave
processors. The most important work the master
module does is to help finding the pivot rows in the
elimination process. Functions pvm_initsend(),
pvm_pkint(), pvm_pkfloat(),
pvm_mcast(), and pvm_send()are used to send
messages to other processors. Functions
pvm_recv(), pvm_upkint(), and
pvm_upkfloat()are used to receive messages
from other processors. The master module is also
responsible for collecting the final results and writing
them to the output file.

The slave module first reads the corresponding
part of data from the input file according to their
processor ID and then conducts the elimination and
back-substitution. Finally, the solutions are sent to the
master processor at the request of the master
processor.

7.2 Implementation on The nCUBE System

Implementation on the nCUBE system is quite
similar to the implementation on the PVM system.
However, there is no separate master processor in this
implementation. The first node is used as the master
processor. In the pivoting process, the master
processor collects the local pivot by using a binary
message passing scheme. This scheme greatly
reduces the steps needed for pivoting, especially when
large numbers of processors are used. In each step of
this scheme, message passing is conducted
simultaneously between several pairs of processors
which are direct neighbors to each other. That is, the
Hamming distance between the two processors is one.
Due to the characteristics of the hypercube
architecture, passing messages from one node to its
direct neighbor is faster than passing messages
between nodes that are not direct neighbors. This
scheme is best described by an example. Suppose
eight processors are used in the computation. They
are numbered 0 through 7. Processor 0 is the master
processor. The message passing process contains
three steps. They are shown in Figure 8.
Step 1: 7->6, 5->4, 3->2, 1->0

Step 2: 6---->4, 2---->0

Step 3: 4---------->0

Figure 8 - A Binary Message Passing Scheme on
nCUBE

 8

7.3 Program Interface

7.3.1 Command Line Parameters
The PVM version of the program is launched in

the following way (suppose the master program has
the name “gpmaster”):

gpmaster <# of processors> <input file name>
<output file name>

The nCUBE version of the program is launched by the
xnc utility as follows (suppose the name of the
program is “gs”):

xnc -d <dimension of subcube> gs <input file
name> <output file name>

7.3.2 Input And Output File Format
The formats of the input and output file for

both the PVM version and the nCUBE version are the
same. The input file format is as follows. The first
number in the file is the number of equations.
Following that are the nonzero elements of the
coefficient matrix and the right-hand side of the
equations. Each nonzero element of the matrix is
represented by a triple of numbers: the row number of
this element, the column number of this element, and
the element itself. The right-hand side of each
equation is represented by the following triple of
numbers: the row number, -1, and the value itself.
These triples can be in any order in the input file. For
example, a system with coefficient matrix A shown in
Figure 1 and right-hand side
b T= −[. , . , . , . , . , .]30 2 0 4 0 10 2 514 can be represented by the
following file:
6
0 0 1.0
0 3 2.0
0 5 3.0
0 -1 3.0
1 0 4.0
1 1 5.0
1 -1 -2.0
2 1 6.0
2 5 8.0
2 -1 4.0
3 0 9.0
3 4 10.0
3 5 11.0
3 -1 1.0
4 1 2.0
4 4 14.0
4 -1 2.5
5 2 3.0
5 -1 1.4

The output file format is quite simple. It is shown
below (the ellipses and n are replaced by proper
numbers in real files):

x[0] = ...
x[1] = ...
...
x[n-1] = ...

8. Results

The programs were run to solve systems of
equations resulted from practical problems. The
systems of equations generated in the process of
solving partial differential equations by using bivariate
cubic spline functions [3, p.9 and 5, p.213] were used
in the testing. These systems of equations are typical
sparse systems. In addition to these equations, other
systems of equations generated by a special program
were also tested.

The PVM version was tested on SUN
SPARCStations. For a system of 100 equations, the
result is shown in Table 1. The number of processors
and the corresponding execution time is listed in the
table. In this case no speedup was achieved in the
testing. A system of 600 equations was also used for
testing. The result is shown in Table 2. There is little
speedup in this case. In both cases, the execution time
increases rapidly as the number of processors
increases.

Table 1 - Result of PVM Version Running For a
System of 100 Equations

Number of Processors Execution Time (Seconds)
1 6
2 9
3 11
4 13
5 17
6 16
7 16
8 20
9 25

10 28
The nCUBE version was tested on the

SUNCUBE machine at Texas A&M University. In
this case, the corresponding program for dense matrix
systems was also tested. The results of both sparse
solver and dense solver are shown in Table 3.

Table 2 - Result of the PVM Version Running For
a System of 600 Equations

Number of Processors Execution Time (Seconds)
1 71
2 54
3 63
4 74
5 96

 9

Table 3 - Result of the nCUBE Version Running For a System of 100 Equations

Dimension of Subcube Execution Time (Sparse)
(nano-seconds)

Execution Time (Dense)
(nano-seconds)

0 1233520 3721190
1 1415780 3218430
2 1562920 3269990
3 2090550 3722900
4 6680630 8838780
5 10048100 17154800

9. Discussion of the Results

The results showed that for small systems of
equations, it is hard to get any speedup when running
these programs. This is because the communication
cost for small systems is very high. That is why there
is no speedup in most of the cases tested. From
Table 3 it is seen that the sparse system solver is
more efficient than the dense solver for sparse
systems of equations. This is an expected result.
From the results shown in Table 1 and Table 2, it is
obvious that the performance of the program is
improved for larger sparse systems. It can be
inferred that the programs will show apparent
speedup for larger systems, such as systems of
thousands of equations. Due to the limit of disk
quota in the machines used for testing, larger systems
of equations could not be tested because the input file
would be very large to be saved on the disk.

10. Conclusion

Direct solvers for sparse systems of equations
are very useful in scientific research and engineering.
The results of the research showed that the
algorithms for solving sparse systems of equations on
distributed-memory machines are sometimes
inefficient because of the high communication cost
involved. To improve the performance of the
algorithms and the programs, more efficient ordering
and elimination algorithm suitable for distributed-
memory machines needs to be developed. Other
kinds of machines, such as multi-processors, can also
be considered in the implementation. Of course the
characteristics of this kind of machines should be
examined when making new algorithms.

References

[1] Kumar, Vipin, Ananth Grama, Anshul Gupta,
and George Karypis, Introduction to Parallel
Computing: Design and Analysis of Algorithms,
Benjamin/Cummings: Redwood City, CA, 1994.

[2] Geist, Al, Adam Beguelin, Jack Dongarra,
Weicheng Jiang, Robert Manchek, Vaidy
Sunderam, PVM 3 User’s Guide and Reference
Manual, Oak Ridge National Laboratory, Oak
Ridge, Tennessee, 1993

[3] nCUBE Corp., nCUBE 2 Programmer’s Guide,
1994

[4] Texas A&M University Super-computer Center,
Parallel Computing Orientation Guide, College
Station, Texas, 1993

[5] Xiong, Z. X. and X. Y. Li, The Application of
Bivariate Cubic Spline, Approximation,
Optimization and Computing: Theory and
Applications, Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands, 1990

[6] Matarese, Joe, nCUBE Manual Page Form,
Earth Resources Lab, MIT, Cambridge, MA,
1994

