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Abstract - The basic problems in developing parallel 
direct solvers of sparse systems of linear equations are 
discussed in this report.  These problems, including 
the storage schemes of sparse matrices, the running 
environment of the programs, and the parallelization 
of the sequential algorithms, are handled while 
keeping current parallel computer architectures in 
mind.  The behavior of the parallel machines used for 
the underlying problem is also discussed in this report.  
The problem is applied over two different parallel 
environments: the Parallel Virtual Machine (PVM) 
and the nCUBE machine (Hypercube).  Test results 
for both versions are analyzed in terms of the machine 
structure and algorithm design. 

1. Introduction 
Solving large systems of equations in which a 

majority of the coefficients are zero is very important 
in scientific research and engineering computing.  
Systems of equations like these, called sparse systems 
of equations, are often encountered in numerical 
deductions of problems for which analytical solutions 
are very hard to obtain.  Examples of such problems 
include solving partial differential equations by 
numerical methods, multi-dimensional spline 
interpolations and finite element method calculations 
in weather forecasting, computer aided design and 
computer assisted manufacturing, fluid dynamics 
calculations, and simulation of natural behaviors.  
Some problems result in systems of linear equations 
with coefficient matrices of special structures, others 
result in systems of linear equations with coefficient 
matrices of random structures.  It is often inefficient 
and sometimes impossible to solve sparse systems of 
equations by using dense matrix system solvers 
because the memory occupied by the zero elements of 
the matrix is too large to handle.  Solving these 
systems of equations involve more complex 
algorithms and data structures than their dense 
counterparts.   

A system of n linear equations has the 
following form: 
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In matrix notation, this system can be represented by 
Ax b= , 

where A is the n n× matrix of coefficients such that 
A i j ai j[ , ] ,= , 

b is an n × 1 vector 
[ , , , ]b b bn

T
0 1 1� −  

and x is the desired n × 1  solution vector 
[ , , , ]x x xn

T
0 1 1� − . 

The matrix A is considered sparse if a 
computation involving it can utilize the number and 
location of its nonzero elements to reduce the run time 
over the same computation on a dense matrix of the 
same size.   

Although there are many good algorithms and 
programs on sequential computers that can be used to 
solve sparse linear systems, they have limited success 
in solving sparse systems of linear equations on 
parallel computers [1, p.454].  The reasons for this are 
twofold.  The iterative methods for sparse linear 
systems are fast if they converge.  The problem is they 
are sometimes not convergent.  The direct methods, on 
the other hand, are very stable, but they involve a 
large amount of communication among processors on 
distributed-memory parallel computers.  In this report, 
different aspects of implementing parallel algorithms 
of sparse linear systems are discussed.  The storage 
scheme, algorithm, and implementation details of a 
direct method are given.  Finally, the results 
comparing with its dense counterpart and its 
sequential implementation are also given. 
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2. Direct Methods Versus Indirect Methods 

There are two totally different kinds of methods 
for solving systems of linear equations.  They are 
direct methods and indirect methods.  The indirect 
methods or iterative methods are techniques to solve 
systems of equations of the form Ax b=  that generate 
a sequence of approximations to the solution vector x.  
In each iteration, the coefficient matrix A is used to 
perform a matrix-vector multiplication.  The number 
of iterations required to solve a system of equations 
with a desired precision is usually data dependent, 
hence, the number of iterations is not known prior to 
executing the algorithm.  Iterative methods do not 
guarantee a solution for all systems of equations, even 
though the systems are not singular.  This means the 
iterative methods may be divergent when applied to 
certain data.  This was the main reason that direct 
methods were chosen to be used in the implementation 
presented in this report. 

There is another reason why the direct methods 
were used in the implementation here:  the iterative 
methods are sometimes for special purposes.  This 
means that one iterative method may be only suitable 
for solving a special kind of systems of equations, 
such as those resulting from finite element method 
calculations.  For example, the conjugate gradient 
method and the preconditioned conjugate gradient 
algorithm are only suitable for solving large sparse 
systems of linear equations with symmetric positive 
definite matrices [1, pp.433 - 436].  Direct methods 
are useful for solving sparse linear systems because 
they are general and robust.  Although there is 
substantial parallelism inherent in sparse direct 
methods, only limited success has been achieved to 
date in developing efficient general-purpose parallel 
formulations for them.  Developing efficient general-
purpose parallel formations of direct methods for 
unstructured or random sparse matrices is currently an 
active area of research.  Although all of these methods 
are based on Gaussian elimination (for general 
matrices) and Cholesky factorization (for symmetric 
positive definite matrices), their parallel formulations 
can be quite complicated. 

Here, the Gaussian elimination with partial 
pivoting method is implemented on parallel 
computers.  The implementations can be used for 
solving general sparse linear systems. 

3. Parallel Computers Used For Implementation 

Parallel computers have different structures and 
different software environments.  The Parallel Virtual 
Machine (PVM) was chosen as the first kind of 
parallel computing environment for the 

implementation.  The main reason for choosing the 
PVM is that it is a system with multi-architecture 
compatibility.  The PVM is not a specific machine.  
Rather, it is a software environment. PVM permits a 
network of heterogeneous UNIX computers to be used 
as a single large parallel computer.  Thus large 
computational problems can be solved by using the 
aggregate power of many computers.  These machines 
are often the most popular computers now in use, such 
as the SUN SPARCstations, the CRAY 
supercomputers, the 80386/80486 UNIX box, the 
Thinking Machines, the DEC Alpha, and the micro 
VAX.  PVM supplies the functions to automatically 
start up tasks on the virtual machine and allows the 
tasks to communicate and synchronize with each 
other.  Applications, written in C or FORTRAN, can 
be parallelized by using message-passing constructs 
common to most distributed-memory computers.  By 
sending and receiving messages, multiple tasks of an 
application can cooperate to solve a problem in 
parallel.  PVM supports heterogeneity at the 
application, machine, and network level.  So PVM 
allows application tasks to exploit the architecture best 
suited to their solution.  All the data conversion that 
may be required if two computers use different integer 
or floating point representations are handled by PVM. 
Even machines that are interconnected by a variety of 
different networks can be used by PVM.  Programs 
running on PVM do not need to know the details of 
communication.  The library functions used on PVM 
system for different architectures have the same 
syntax.  Because of these, programs written for PVM 
system can be easily ported from one architecture to 
another without modifications.  They can be run 
simultaneously on different machines.  This flexibility 
makes PVM one of the most powerful parallel 
computing environments.  However, the PVM system 
is not perfect.  Because the PVM system mainly uses 
networks to transmit data from machine to machine, 
the performance of the system is largely dependent on 
the performance of the networks.  This is really a 
consequence of its flexibility.  This architecture, as the 
results shown later, limits the performance of the 
parallel implementation of Gaussian elimination 
method [2, p.1 - 5]. 

Another kind of parallel computer used for the 
implementation of algorithms was the nCUBE (a 
hypercube machine).  The nCUBE is a high-
performance parallel computer.  The big advantage of 
the nCUBE over PVM is that the communication 
among processors on the nCUBE is highly efficient.  
nCUBE machines are also distributed-memory 
machines. 
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4. Storage Scheme For Sparse Matrices 

It is customary to store an n n×  dense matrix 
in an n n×  array.  However, if the matrix is sparse, 
storage is wasted because a majority of the elements 
of the matrix are zero and need not be stored 
explicitly.  If the positions and values of all the 
nonzero elements of the matrix are known, then the 
whole matrix is known.  It is a common practice to 
store only the nonzero elements and to keep track of 
their locations in the matrix.  Currently there are many 
storage schemes that can be used to store and 
manipulate sparse matrices [1, pp.409 - 412].  These 
specialized schemes not only save storage but also 
yield computational savings.  Since the locations of 
the nonzero elements in the matrix are known 
explicitly, unnecessary multiplications and additions 
with zero can be avoided.  Each of these schemes is 
developed for specific purposes.  They are suitable for 
different implementations on machines with different 
architectures.  Some data structures are more suitable 
for a parallel implementation than others.  There is no 
single best data structure for storing sparse matrices.  
In the implementation presented here, a special 
storage scheme is used.  This storage scheme is 
characterized by the employment of a group of single 
direction linked lists and a row pointer vector. 

In this scheme, each row of the matrix is 
represented by a single direction linked list.  One 
element of the matrix in a row is represented by a 
node in the linked list.  The node is represented by the 
following data structure using C notation: 
struct row { 
  float elem; 
  int col; 
  struct row * next; 
} 
The field elem of struct row is the value of a 
nonzero matrix entry in the current row, while the 
field col of struct row is the column number of 
this entry.  The field next of struct row is a 
pointer that points to the node representing the next 
nonzero element in the same row.  The field next of 
the last node of this row is set to NULL. 

During initialization and computation, the order 
of the nodes in the linked list is kept so that the col is 
always in ascending order along the direction of the 
linked list.  This order keeps the searching of an 
element with a certain col number fast. 

All the rows in the sparse matrix are bound 
together by a vector of structure pointers.  Each 
element of this vector is a pointer that points to the 
first element of the linked list that represents a row in 
the matrix with its row number equal to the index of 

this element in the vector.  So the type of this vector is 
as follows: 

struct row ** 
in which struct row is defined above.  For the 
example matrix shown in Figure 1, the schematic 
representation of it is shown in Figure 2. 

In the implementation presented later, the 
memory occupied by the vector of pointers is 
allocated at the time the number of equations n (that 
is, the number of rows in the coefficient matrix) is 
known.  The memory is allocated so that the number 
of elements in the vector is exactly n.  Memory 
occupied by the vector will not change after that. 

Note that each row of the sparse matrix of a 
non-singular system of linear equations must have at 
least one nonzero element (otherwise, it would be 
singular), so there should be no element of the above 
vector that has the value NULL during the whole 
computational process.  This means that the above 
storage scheme wastes no memory in the vector for 
non-singular systems of equations.  Also, in the linked 
list representation of rows, sequential search for an 
element is needed due to the sequential property of the 
linked list, and because the storage order of the 
elements is maintained as described above, the time 
needed for accessing an element in a row is O(s/2), 
where s is the number of nonzero elements in the row.  
Memory needed for storing a sparse matrix using the 
above scheme is calculated as: 

N*sizeof (struct row) + n*sizeof (struct row *), where 
N is the number of nonzero elements in the matrix, 
and n is the number of rows in the matrix.  This 
number is always changing during processing, 
because dynamic memory allocation is used to keep 
memory usage the most economical.  In the 
implementation, an element in the matrix is 
considered to be zero if the absolute value of it is less 
than or equal to a preset small positive number (user 
defined).  So in the process of elimination, newly 
produced nonzero elements are added to the matrix, 
while all the newly produced zero elements are 
removed from the matrix. 
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4 0 50 0 0 0 0 0 0 0 0
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0 0 0 0 30 0 0 0 0 0 0
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Figure 1 - A Sparse Matrix 
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Figure 2 - Sparse Matrix Storage Scheme 

5. Basic Algorithms 

A system of equations Ax=b is usually solved 
in two stages.  First, through a series of algebraic 
manipulations, the original system of equations is 
reduced to an upper-triangular system of the form 

u x u x u x y

u x u x y

u x y
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This can be written as Ux=y, where U is a matrix in 
which all subdiagonal entries are zero.  That is U[i,j] = 
0 if i > j, otherwise U[i, j] = ui j, .  U is called an upper-

triangular matrix.  This stage is called factorization.  
In the second stage of solving a system of linear 
equations, the upper-triangular system is solved for 
the variables in reverse order from xn−1  to x0  by a 
procedure known as back-substitution.  The basic 
algorithm used in this implementation is Gaussian 
elimination with partial pivoting.  The sequential 
version of it has several nested loops.  Figure 3 shows 
the Gaussian elimination with partial pivoting 
algorithm used as the basis of parallelization. 
Procedure  
GAUSSIAN_ELIMINATION_W_PARTIAL_PIVOTING(A, b, n) 
 
var 
  marked : array [0 .. n - 1] of boolean; 
  pivot : array [0 .. n - 1] of 0 .. n - 1; 
  i, j, k, picked : integer; 
  tmp, tmp1 : real; 
 
begin 
  for i: = 0 to n - 1 do 
  begin 
 
    { pivoting operations } 
    tmp1 := 0; 
    for j := 0 to n - 1 do 
    begin 
      if ((not marked[j]) and (ABS(A[j, i]) >  
        tmp1)) then 
      begin 
        tmp1 := ABS(A[j, i]); 
        picked := j; 
      endif; 

    endfor; 
    tmp1 := A[picked, i]; 
    marked[picked] := true; 
    pivot[picked] := i; 
 
    { elimination operations } 
    for j := 0 to n - 1 do 
    begin 
      if (not marked[j]) then 
        begin 
        tmp := A[j, i] / tmp1; 
        b[j] := b[j] - b[picked] * tmp; 
        for k := i + 1 to n - 1 do 
        begin 
          A[j, k] := A[j, k] - A[picked, k] * tmp; 
        endfor; 
      endif; 
    endfor; 
  endfor; 
  for i := 0 to n - 1 do 
  begin 
    if (not marked[i]) then 
    begin 
      pivot[i] = n - 1; 
    endif; 
  endfor; 
end GAUSSIAN_ELIMINATION_W_PARTIAL_PIVOTING 

Figure 3 - Sequential Algorithm of Gaussian 
Elimination with Partial Pivoting 

 

After the full matrix A has been reduced to an 
upper-triangular matrix U, the back-substitution 
operation is conducted to determine the vector x.  The 
sequential back-substitution algorithm for solving the 
upper-triangular system of equations Ux = y is shown 
in Figure 4. 
procedure BACK_SUBSTITUTION (U, y, pivot, n) 
 
var 
  i, j, row : integer; 
 
begin 
  for i := n - 1 downto 1 do 
  begin 
    for row := 0 to n - 1 do 
    begin 
      if (pivot[row] = i) then 
      begin 
        exit for; 
      endif; 
    endfor; 
 
    { solution for i'th variable } 
    y[row] := y[row] / U[row, i]; 
 
    { back-substitute } 
    for j := 0 to n - 1 do 
    begin 
      if (pivot[j] < i) then 
      begin 
        y[j] := y[j] - y[row] * U[j, i]; 
      endif; 
    endfor; 
  endfor; 
  for row := 0 to n - 1 do 
  begin 
    if (pivot[row] = 0) then 
    begin 
      exit for; 
    endif; 
  endfor; 
  y[row] := y[row] / U[row, 0]; 
end BACK_SUBSTITUTION. 

Figure 4 - Back-substitution Algorithm 
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The Gaussian elimination and back-substitution 
algorithms were originally designed for solving dense 
matrix systems of equations.  In order to save 
execution time, unnecessary memory movements are 
avoided by using the array pivot and marked in the 
algorithm.  Rather than assigning zero to the 
eliminated elements in matrix A, the algorithm simply 
leaves them unchanged because they are not used in 
the following steps.   All the unnecessary assignments 
to elements of matrix A are avoided in this way.  For 
sparse matrix systems of equations, the algorithm 
should be modified so that the storage occupied by 
newly produced zero elements of matrix A be released 
to save memory.  Sparse systems of equations often 
have very large sparse matrices, so the above 
modification is necessary. 

6. Parallelization of The Algorithms 

6.1 General Criteria And Data Partitioning 

6.1.1 Ordering of The System of Equations 
The characteristics of the machines used in the 

implementation should be considered when 
parallelizing the above algorithms.  Four steps are 
considered in the parallization of the above 
algorithms.  They are ordering, symbolic factorization, 
numerical factorization, and solving a triangular 
system.  Some parts of these steps may be omitted 
when considering the implementation of the 
algorithms on specific machines.  Ordering is an 
important phase of solving a sparse linear system 
because it determines the overall efficiency of the 
remaining steps.  The aim of it is to rearrange the rows 
of the original coefficient matrix so that the permuted 
matrix leads to a faster and more stable solution.  The 
numerical stability of the solution is increased by 
ensuring that the diagonal elements or pivots are large 
compared to the remaining elements of their 
respective rows.  This is already included in the 
sequential algorithm and needs to be parallelized.  The 
ordering criteria for obtaining a faster parallel solution 
are very complex.  This process needs large amount of 
changing positions of rows in the matrix, so for 
distributed-memory machines such as PVM, this 
could use a large proportion of the whole computation 
time.  The benefits resulting from ordering will be 
fully surpassed by the waste of time in 
communication, because data transmission in PVM 
system is crucial to the overall performance of the 
implementation.  Considering this factor, the 
implementations presented here only emphasize the 
enhancement of the numerical stability of the solution 
and contain a partial pivoting process.  A large amount 

of communication is avoided by eliminating a full 
ordering process. 
6.1.2 Data Partitioning And Factorization of The 
System of Equations 

Due to the availability of very fast serial 
algorithms and the high data-distribution cost involved 
in parallelizing them, implementations of parallel 
symbolic factorization on message-passing computer 
(distributed-memory machines) tend to be inefficient.  
Moreover, symbolic factorization is often performed 
once and then several systems with the same sparsity 
pattern are solved, amortizing the cost of symbolic 
factorization over all the systems [1, p.458].  On the 
other hand, the programs presented here are used to 
solve systems of equations that usually have no 
relation with each other.  So the benefits of using 
symbolic factorization in these programs are not 
obvious.  Because of this, the symbolic factorization 
to the system was not conducted in the programs. 

In order to conduct numerical factorization in 
parallel, the coefficient matrix needs to be mapped 
onto all the processors.  This involves partitioning the 
matrix into small blocks so that each block can be 
assigned to a specific processor.  It is important to 
choose an appropriate data-mapping scheme for 
distributed-memory machines.  For the PVM and 
nCUBE machines, it is best to use the block-striped 
partitioning of the matrix because this can reduce the 
communication costs.  In this partitioning scheme, the 
matrix is divided into groups of complete rows, and 
each processor is assigned one such group.  Each 
group contains contiguous rows.  For example, a 
matrix with 16 rows can be divided into four groups 
and each group is assigned to one of four processors.  
This is shown in Figure 5.  
 
              0....................................................................... 
P0          1....................................................................... 
              2....................................................................... 
              3....................................................................... 
              4....................................................................... 
P1          5....................................................................... 
              6....................................................................... 
              7....................................................................... 
              8....................................................................... 
P2         9........................................................................ 
             10...................................................................... 
             11...................................................................... 
             12...................................................................... 
P3         13..................................................................... 
             14...................................................................... 
             15...................................................................... 

Figure 5 - Block Striping Partitioning of a 16 x 16 
Matrix on 4 processors 
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The partition is made so that the difference 
between the number of rows contained in any two 
groups is at most one.  This distributes the data evenly 
to all the processors.   

Apart from the coefficient matrix, the right-
hand side vector of the system of equations is also 
partitioned by the same partitioning scheme.  Each 
processor has its own array pivot and array 
marked.  In addition to the processors that contain 
the data, a separate processor is used as the master 
node that controls the whole computational process.   
6.2 Parallelizing The Algorithms 
6.2.1 Parallelizing The Pivoting Process 
The pivoting process is somewhat complicated when 
trying to run in parallel.  First, each processor or node 
searches for the row that has the maximum absolute 
element value in the current column.  This element is 
called the local pivot.  The local pivot together with 
the ID of the node that  contains it is then sent to the 
master node. The master node collects all the local 
pivots and the corresponding node IDs and compares 
the local pivots.  The pivot with the largest absolute 
value (which is the TRUE pivot) is then found, and 
the ID of the node that has this pivot is broadcast to all 
the slave nodes.  Each node then compares the 
received ID with its own, and the one that has the 
pivot row broadcasts the entire pivot row to other 
slave nodes. 

In both the PVM implementation and the 
nCUBE implementation, each slave node searches 
their local pivot in parallel.  In the PVM 
implementation, the master node collects the local 
pivots sequentially.  On the nCUBE, however, the 
special structure of the machine is considered so that 
the pivoting is conducted in a faster way.  This will be 
discussed later in this report.  The sequential part 
limits the speedup of the PVM implementation.   
6.2.2 Parallelizing The Elimination Process 

The parallel elimination process is relatively 
simple compared to the pivoting process.  It is also 
more efficient.  All the nodes eliminate their own part 
of data simultaneously using the pivot row received.  
Because there is no swapping of rows in the pivoting 
and elimination process, the order of the rows has 
been random from the beginning.  The pivoting and 
elimination loads are evenly distributed to all 
processors.   

Combining the above two parts, the parallel 
pivoting and elimination processes are shown in 
Figure 6. 

Each processor finds
its local pivot

Each local pivot is
sent to master node

Master node collects
all local pivots and
finds the one with

the largest absolute value

Master node broadcasts
the ID of the node

that contains the pivot row

The node that has the pivot row
broadcasts the row to other nodes.

Other nodes get the pivot row.

Each node uses the pivot row
to eliminate its own part of data

 

Figure 6 - Parallel Pivoting and Elimination 
Processes 

 
6.2.3 Parallelizing The Back-substitution Process 

Back-substitution is done in parallel, too.  The 
back-substitution process begins from the last 
variable.  The order is controlled by the master node.  
Because the order of the rows in the matrix is random, 
each processor needs to search for the current variable 
simultaneously.  The node that has found the current 
variable broadcasts it to all the other nodes.  The next 
step is to back-substitute the variable simultaneously 
by all the processors.  This process repeats until all the 
variables are found.  The parallel back-substitution 
process is shown in Figure 7. 
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Begin from the
last variable

Each node searches its part of data
for the current variable

The node that contains
the solution of the current

variable broadcasts the value of
 the variable to other nodes.

All the other nodes receive
the solution of that variable

All the nodes back-substitute
the value of the variable.

The above process repeats until solutions
of all the variables are found.

 

Figure 7 - Parallel Back-substitution Process 

 
6.2.4 Parallelizing The Input And Output Processes 

It is natural to consider parallelizing the input 
and output processes because they are usually time 
consuming.  However, from an analysis of the time 
used in each part, it was found that the input and 
output processes only used a very small fraction of 
time of the whole process.  Considering this and the 
sequential characteristics of the input and output files, 
the input process was only parallelized to a minor 
degree, and the output process was done sequentially. 

7. Implementation of Algorithms on PVM and 
nCUBE 

7.1 Implementation on The PVM System 

The PVM version of the direct solver of 
systems of linear equations has two separate modules, 
called the master module and the slave module.  The 
master module is run on the master processor and the 
slave module is run on the slave processors.  The 

master module is responsible for reading command 
line parameters that include the number of processors, 
the input file name, and the output file name.  It is also 
responsible for launching the slave module on each 
slave processor.  This is done by calling the PVM 
routine pvm_spawn().  The master module 
distributes the work load evenly to the slave 
processors.  The most important work the master 
module does is to help finding the pivot rows in the 
elimination process.  Functions pvm_initsend(), 
pvm_pkint(), pvm_pkfloat(), 
pvm_mcast(),  and pvm_send()are used to send 
messages to other processors.  Functions 
pvm_recv(),  pvm_upkint(), and 
pvm_upkfloat()are used to receive messages 
from other processors.  The master module is also 
responsible for collecting the final results and writing 
them to the output file. 

The slave module first reads the corresponding 
part of data from the input file according to their 
processor ID and then conducts the elimination and 
back-substitution.  Finally, the solutions are sent to the 
master processor at the request of the master 
processor. 

7.2 Implementation on The nCUBE System 

Implementation on the nCUBE system is quite 
similar to the implementation on the PVM system.  
However, there is no separate master processor in this 
implementation.  The first node is used as the master 
processor.  In the pivoting process, the master 
processor collects the local pivot by using a binary 
message passing scheme.  This scheme greatly 
reduces the steps needed for pivoting, especially when 
large numbers of processors are used.  In each step of 
this scheme, message passing is conducted 
simultaneously between several pairs of processors 
which are direct neighbors to each other.  That is, the 
Hamming distance between the two processors is one.  
Due to the characteristics of the hypercube 
architecture, passing messages from one node to its 
direct neighbor is faster than passing messages 
between nodes that are not direct neighbors.  This 
scheme is best described by an example.  Suppose 
eight processors are used in the computation.  They 
are numbered 0 through 7.  Processor 0 is the master 
processor.  The message passing process contains 
three steps. They are shown in Figure 8. 
Step 1:  7->6, 5->4, 3->2, 1->0 

Step 2:     6---->4,    2---->0 

Step 3:           4---------->0 

Figure 8 - A Binary Message Passing Scheme on 
nCUBE 
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7.3 Program Interface 

7.3.1 Command Line Parameters 
The PVM version of the program is launched in 

the following way (suppose the master program has 
the name “gpmaster”): 

gpmaster <# of processors> <input file name> 
<output file name> 

The nCUBE version of the program is launched by the 
xnc utility as follows (suppose the name of the 
program is “gs”): 

xnc -d <dimension of subcube> gs <input file 
name> <output file name> 

7.3.2 Input And Output File Format 
The formats of the input and output file for 

both the PVM version and the nCUBE version are the 
same.  The input file format is as follows.  The first 
number in the file is the number of equations.  
Following that are the nonzero elements of the 
coefficient matrix and the right-hand side of the 
equations.  Each nonzero element of the matrix is 
represented by a triple of numbers: the row number of 
this element, the column number of this element, and 
the element itself.  The right-hand side of each 
equation is represented by the following triple of 
numbers: the row number, -1, and the value itself.  
These triples can be in any order in the input file.  For 
example, a system with coefficient matrix A shown in 
Figure 1 and right-hand side 
b T= −[ . , . , . , . , . , . ]30 2 0 4 0 10 2 514  can be represented by the 
following file: 
6 
0 0 1.0 
0 3 2.0 
0 5 3.0 
0 -1 3.0 
1 0 4.0 
1 1 5.0 
1 -1 -2.0 
2 1 6.0 
2 5 8.0 
2 -1 4.0 
3 0 9.0 
3 4 10.0 
3 5 11.0 
3 -1 1.0 
4 1 2.0 
4 4 14.0 
4 -1 2.5 
5 2 3.0 
5 -1 1.4 

The output file format is quite simple. It is shown 
below (the ellipses and n are replaced by proper 
numbers in real files): 

x[0] = ... 
x[1] = ... 
... 
x[n-1] = ... 

8. Results  

The programs were run to solve systems of 
equations resulted from practical problems.  The 
systems of equations generated in the process of 
solving partial differential equations by using bivariate 
cubic spline functions [3, p.9 and 5, p.213] were used 
in the testing.  These systems of equations are typical 
sparse systems.  In addition to these equations, other 
systems of equations generated by a special program 
were also tested. 

The PVM version was tested on SUN 
SPARCStations.  For a system of 100 equations, the 
result is shown in Table 1.  The number of processors 
and the corresponding execution time is listed in the 
table.  In this case no speedup was achieved in the 
testing.  A system of 600 equations was also used for 
testing.  The result is shown in Table 2.  There is little 
speedup in this case.  In both cases, the execution time 
increases rapidly as the number of processors 
increases. 

Table 1 - Result of PVM Version Running For a 
System of 100 Equations 

Number of Processors Execution Time (Seconds) 
1 6 
2 9 
3 11 
4 13 
5 17 
6 16 
7 16 
8 20 
9 25 

10 28 
The nCUBE version was tested on the 

SUNCUBE machine at Texas A&M University.  In 
this case, the corresponding program for dense matrix 
systems was also tested.  The results of both sparse 
solver and dense solver are shown in Table 3. 

Table 2 - Result of the PVM Version Running For 
a System of 600 Equations 

Number of Processors Execution Time (Seconds) 
1 71 
2 54 
3 63 
4 74 
5 96 
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Table 3 - Result of the nCUBE Version Running For a System of 100 Equations 

Dimension of Subcube Execution Time (Sparse) 
(nano-seconds) 

Execution Time (Dense) 
(nano-seconds) 

0 1233520 3721190 
1 1415780 3218430 
2 1562920 3269990 
3 2090550 3722900 
4 6680630 8838780 
5 10048100 17154800 

 
 

9. Discussion of the Results  

The results showed that for small systems of 
equations, it is hard to get any speedup when running 
these programs.  This is because the communication 
cost for small systems is very high.  That is why there 
is no speedup in most of the cases tested.  From 
Table 3 it is seen that the sparse system solver is 
more efficient than the dense solver for sparse 
systems of equations.  This is an expected result.  
From the results shown in Table 1 and Table 2, it is 
obvious that the performance of the program is 
improved for larger sparse systems.  It can be 
inferred that the programs will show apparent 
speedup for larger systems, such as systems of 
thousands of equations.  Due to the limit of disk 
quota in the machines used for testing, larger systems 
of equations could not be tested because the input file 
would be very large to be saved on the disk. 

10. Conclusion  

Direct solvers for sparse systems of equations 
are very useful in scientific research and engineering.  
The results of the research showed that the 
algorithms for solving sparse systems of equations on 
distributed-memory machines are sometimes 
inefficient because of the high communication cost 
involved.  To improve the performance of the 
algorithms and the programs, more efficient ordering 
and elimination algorithm suitable for distributed-
memory machines needs to be developed.   Other 
kinds of machines, such as multi-processors, can also 
be considered in the implementation.  Of course the 
characteristics of this kind of machines should be 
examined when making new algorithms. 
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