
Session 3D2

QtorQ~aTM 6 $ Q Q ~ Family Simulators in
Susan A. Mengel and James M. Conrad

INTRODUCTION

Implementations of microprocessors are becoming
more and more complex and difficult to understand for
the student beginning to learn how to design computer
hardware and to program in assembly language. Cer-
tainly, simple microprocessors exist and may be used
to ease student learning toward more complex micro-
processor designs. Still, microprocessors are tiny black
boxes that cannot be fully explored without the aid of
a computer that could magnify its inner workings.

In like manner, the design of computer hardware is be-
coming more and more complex. For example, digital
circuit design involves a high level of detail and work to
make sure all of the pins on a chip are connected cor-
rectly and the connections do not interfere with each
other (crosstalk).

To help the student understand microprocessors, the
student can write and run assembly language prc-
grams, and view the microprocessor’s registers along
with external memory through the use of a debugger.
The student can get a clear idea of how the micro-
processor goes about executing a program, but cannot
view the inner detail of executing each instruction.

To help the student understand digital circuit design,
computer-aided design packages have been developed
at varying levels of sophistication. The student, how-
ever, must deal with a large amount of detail before
he/she may have the cognitive grasp of how to do the
digital circuit design.

The assernbler’s debugger cannot help the student with
digital circuit design and the circuit board design pack-
age cannot help the student learn assembly. What is
needed is a package to allow the student to design a dig-
ital circuit with less detail, such as allowing the student
l>o connect chips on a board without worrying about pin
outs and chip location problems. To enable the student
to understand the chips or microprocessors he/she has
connected, the package can show the student how pro-
gram instructions are executed and what happens on
the circuit upon execution. The simulator, further, can
show levels of detail of the microprocessor’s inner work-
ings to provide the student with a higher or lower level
view of how the microprocessor works.

In order to facilitate the student’s understanding about
microprocessors and digital circuit design, a graphical
user interface should be employed to help the student
visualize how microprocessors work and how they may
be connected together to form a simple or even a so-
phisticated computer. A visual interface can lend con-
creteness to lessons on microprocessors and digital cir-

cuit design.

Currently, the Computer Systems Engineering De-
partment offers a course where a digital circuit is
designed with the Motorola 68000 microprocessor
(CSEG/ELEG 4983 Computer Hardware Design). In
order to enhance the laboratory exercises for the stu-
dents and to allow them to experiment with more than
one microprocessor, a simulator is under development
which will allow the student to choose among the mi-
croprocessors in the 68000 family (giving the student
the opportunity to increase the level of complexity in
the microprocessor) and to place them into digital cir-
cuit designs. The student can get an idea of what
he/she wants before using the computer aided design
package to complete the design of the circuit.

DEBUGGERS

As mentioned before, debuggers will not allow a stu-
dent to see how a microprocessor interacts with other
chips on a digital circuit when a rogram is being ex-
ecuted. The features a debuggerp2, 91, however, may
have for assembly language debugging include: set-
ting a process’ starting point; setting breakpoints; ex-
amining variables; starting, restarting, and stopping a
process; stepping through code; printing memory and
registers; and displaying the source code. The debug-
ger may even have a graphical user interface where the
source code that is being executed is displayed, the reg-
isters are displayed, and the stack and data portions of
memory are shown. On the other hand, a debugger, in
general, will not allow the source code to be changed
nor all portions of memory to be modified even if mod-
ification of the CPU registers might be allowed.

DIGITAL CIRCUIT DESIGN PACKAGES

Several digital circuit design packages are available for
Computer Aided Design/Computer Aided Engineer-
ing. These packages provide the capability to spec-
ify, design, and simulate a digital design, even down
to the electrical characteristics of signal wires placed
near each other on a printed circuit board. Very often
these packages provide considerably more function and
require more detail than is desired in an undergraduate
course. For example, a course in computer organiza-
tion and design may be concerned with the design and
simulation of a circuit, but not concerned about place-
ment and routing of components on a printed circuit
board. In fact, often the instructor is more concerned
with the “logical” connections of the design than the
physical point-to-point connections.

As an example, suppose one wants to design a com-
puter architecture with a 68000 CPU, 32 Kbytes

I
€
E
€

1994 Frontiers in Education Conference

106

c
1 I

$7 I

Fig. 1. Detail of a Motorola 68000 and ROM.
of memory, and a single serial communication chip
(like the ACIA 6850 chip). Using a package like
PowerviewTM [7] from ViewLogicTkf, one would need
to design memory and 1/0 device 'decode logic, then
connect the correct control, address, and data pins to
each other as shown in Figure 1. Often all that is de-
sired is to identify the memory map of the devices and
to see how they interact with each other based on the
device characteristics.

MOTOROLA SIMULATOR D:ESIGN

A search of the Internet was made in order to find a
suitable Motorola simulator. A couple of bug-ridden
68000 simulators were found which were not useful for
expansion to the more complex 68000 family chips.
Fortunately, due to one of the autlhor's former affili-
ation with North Carolina State University, a 68000
simulator, named 68KSIM[6], with an X Windows user
interface[5] was obtained. The simulator ran on a
DECTM workstation, but was easily modified to run
on a SUN workstation. It also was used by students in
a large introductory course so it had been tested well.

Upon examination of 68KSIM, it became apparent that
errors existed in the code and that the user interface
could be improved. The code, however, once corrected
could be used as a basis for expansion.

Expansion of the simulation consisted of several steps:
adding addressing modes and registers, implement-
ing simulation memory and breakpoints, adding addi-
tional instructions and their routing, adding exception
processing, and performing testing ,and verification of
code. A more complete description of how the 68040
portion of the simulator has been implemented may be
found in [3].

Interface Design

The user interface for the 68040 is designed to allow
the student control over the execution of an assembly

language program. The buttons on the interface are as
follows:

0 File: The user may load an assembly language pro-
gram in S-record format, save the current state of
the simulation, or exit the simulator.

0 Run: The user may run the assembly language
program.

0 Stop: The user may stop the simulator to view the
contents of memory or the registers.

0 Step: The user may step through the assembly
language program one instruction at a time and
examine the contents of the registers or memory.

0 Exception: The user may set exception flags or
schedule interrupts. To schedule interrupts, the
user fills in a pop-up window of 16 interrupts with
priority levels and program address locations. For
example, when an interrupt with a level above zero
is specified, that interrupt will be scheduled to oc-
cur when the program counter reaches the associ-
ated address.

Memory: The user may specify the size of memory
in Kbytes or fill a block of memory with a specified
value.

0 Breakpoint: The user may set up to 16 break-
points through a pop-up window.

0 Clear: The user may clear the contents of all reg-
isters.

The main window of the interface has five control areas:

1.

2.

3.

4.

5.

The registers of the Motorola 68040 microproces-
sor: the A0 through A7 address, the DO through
D7 data, the User Stack Pointer (USP), and Sta-
tus (SR) registers.

Sixteen registers that are used in supervisor mode.

The Program Counter and Cycle Counter regis-
ters.

Memory - A 22x16 display of bytes with 22 ad-
dress fields and the following buttons: page up
or down one memory page (352 bytes), move up
or down one memory line (16 bytes), immediately
display the first memory window (starting at ad-
dress zero), immediately display the last memory
window, and immediately display a user specified
starting address.

The instruction cache lines (currently under devel-
opment).

The main window, popup windows, buttons, menus,
and text fields in the interface were designed us-
ing OpenWindowsTM Developer's Guide[8] and imple-
mented with XViewTM[4].

I
E
E
E

1994 Frontiers in Education Conference

107

1000
1006
1 OOA
l O O E
1014
1018
lOlA
l 0 l C
lOlE
1024
1026
102A
102c
102E
1032
1034

LOOP

M0VE.W #$AA,$1120
M0VE.W #$05,DO
M0VE.W $04 D1
M0VE.L &l03'4,D2
M0VE.W D0,$1100
SUB1 #1 DO
BNE L O b P

;VARIOUS MOVE OPERATIONS

:LOOPING EXAMPLE

BKPT #O
MOVE16 (AO),(10C4) .L
I,SR

;SAMPLE EXCEPTION HANDLER

;EXCEPTION VECTOR TABLE BEGINS

io44 0000102E ;VECTOR 4: ILLEGAL INSTRUCTION

Fin. 2. Example Assembly Code Fragment.

a I, U U H 'I n 1 a Y c * 43 U x
FE 41 1 m m m m M 1 7 TI I I L! n n n
s 33 II m m IO II m CO a x w n n w
w 91 n 00 m w w m m a x w m m m
w 0) 0) m m m m m m U x w 81 0, m
w n m w m m m LO a c x n m m w
n na m m w m w m CI a x n m m n
w n m m m m m a n a x w m m m

w 9) n m w w w m m a x a m 0, *I

w oa 0) m w m m CO CO U x w m m m
n m m m w m m m n U x w m n m
a 92 n I m w w n a x w m OJ o)

w &Y m m c+ - w a U a x w m OY m
w 01 a m m m m m m U I w e, n m
w 01 01 m M w m m a U x IJ m m I
w m m w ~ m ~ ~ o a x w m m m
n 01 m m m m m m m a x w m m m
a 09 a m m m m n LL (I x n 63 m m

a 01 a> W W (D m <b (0 a X W W 03 w

w 0) 01 m I m m 0 m a x w m 0 m

Fig. 3. Assembly Code Fragment Loaded.

Examde Session

The example session is designed to show the reader of
this paper how the user would interact with the 68040
interface. The program in Figure 2 which is an as-
sembly language code fragment will be loaded into the
simulator and executed. This program's only use is to
show some of the features of the simulator.

The assembly code fragment is loaded into memory
starting at address lOOOh as shown in Figure 3. The
program counter has been changed manually to point
to address 1000h. Now the user has the option of step-
ping through the program one instruction at a time
(STEP button) or simply running the program (RUN
button).

In Figure 4, the user has used the STEP button to
step through the program down to one iteration of the
loop located from address 1014h to 101Ah. The last
instruction executed is the BNE LOOP so the program
counter now points to 1014h which is at the beginning
of the LOOP. At this point, the user selects the RUN
button to allow the simulator to execute the program
until the simulation halts.

The simulation halts at the BKPT instruction. A nc-
tification box pops up and the user has the option of

Fig. 4. Simulator After One Iteration of the Loop.

Fig. 5. BKPT Encountered

continuing or halting the program execution. At this
point, halt is chosen and register A0 is modified manu-
ally to lOOOh so that the MOVE16 instruction does not
cause an error since it uses register AO. Figure 5 shows
the resulting simulation screen. The user may now use
the STEP or RUN button to execute the program.

The MOVE16 instruction executes next where A0 has

I
E
E
E

S 1994 Frontiers in Education Conference

108

Fig. 6. Turning On Exception Handling.

I I

Fig. 7. ILLEGAL Instruction Exception Handler.

a value which causes the first 16 bytes of the program to
be copied to address 10C4h. Then the LSR instruction
is encountered causing an exception. Even though a
notice is popped up telling the user of the exception,
the exception is ignored since exception handling is not
enabled through the EXCEPTION menu at this time.
The user can enable exception handling as shown in
Figure 6 by turning off Ignore Exceptions.

After the MOVEC instruction whiclh initializes the ex-
ception vector base register, the ILLEGAL instruction
is encountered forcing an illegal instruction exception
to occur. The user is given a notification of the ex-
ception and the option of continuing or halting. If the
program continues to execute, it will look at the ad-
dress associated with vector 4 in the exception vector
table. The simulator will jump to the address in that
table entry and execute the excepiion handler. The
address located in vector 4 is 102Eh where a small ex-
ception handler is located. Figure 7 shows the program
counter pointing to address 102Eh. Figure 8 shows the
four word stack frame placed upon the interrupt stack
located at address F7F8h at the top of the screen.

Fig. 9. Final Screen.
Finally, the RTE from the exception routine is exe-
cuted. Then, the final instruction executes which is
another BKPT. Now, the user halts the program. The
results are shown in Figure 9.

COMPUTER HARDWARE SIMULATOR

The computer hardware simulator is under design and
will incorporate a bus architecture where the student
will be able to pick and choose which components to
connect to the bus. A small representation of the en-
tire computer designed by the student may be given
on the interface where different components are high-
lighted that are communicating during the execution
of an assembly language program. The student will be
able to enlarge a component if desired to see what it is
doing.

From the above description, the computer hardware
simulator will require:

Additional chip simulators for interrupt con-
trollers, serial ports, parallel ports, and disk con-
trollers

I
D
E

': 1094 Frontiers in Education Conference E

109

0 A design iuicrface to allow the student to con-
struct a tligital circuit including address decode
logic (based on boolean equations), memory map-
ping of I/O, and timing specifications

0 An extension to the Motorola simulator to allow
an interface to the computer hardware simulator

FUTURE WORK

The Motorola 68000 family of microprocessors was chc-
sen in support of course material and research be-
ing conducted at the University of Arkansas in mul-
tichip modules[l]. Even though it would be good to
include other microprocessors, the simulator may be-
come larger than desired for efficient operation. In-
stead it might be better to incorporate a “generic” mi-
croprocessor where the student can place his/her own
desired functionality into the microprocessor to enable
the student to learn how to design microprocessors.
The components of the generic microprocessor might
represent the best and the worst of current micropro-
cessors. A generic microprocessor simulator might be
easier to maintain than trying to keep up with a family
of microprocessors.

Along with the generic microprocessor, the student
might be given the capability to design an assembly
language specifically for the microprocessor. The stu-
dent could choose from a menu of general assembly lan-
guage instructions or design his/her own instructions.

ACKNOWLEDGEMENTS

[3] Trey Grubbs, Bill Herring, Richard Tan, and Su-
san Mengel. “Motorola 68040 Microprocessor Sim-
ulation for the SUN WorkstationTM.” Applied
Computang 1994, Proceedangs of the 1994 Sym-
posium on AppIaed Computang, ACM Press, New
York, NY, 1994, pp. 25-30.

[4] Dan Heller. XVzew Programming Manual Volume
Seven. Sebastopol, CA: O’Reilly and Associates,
Inc., 1990.

[5] Jay Lloyd. 68KSIM Simulataon Interface. North
Carolina State University, 1990 (for more
information, contact Dr. James Conrad at
jmc3Qengr.uark.edu).

[6] Tan Phan. 68KSIM. North Carolina State Uni-
versity, 1989 (for more information, contact Dr.
James Conrad at jmc3Qengr.uark.edu).

[?I Powemaew. Viewlogic Systems, Inc., 293 Boston
Post Road West, Marlboro, MA 01752-4615.

[8] Openwindows Developer’s Guide 3.0 User’s
Guide. Mountain View, CA: Sun Microsystem,
1991.

191 Turbo Debugger 3.0 for Windows. Scotts Valley,
CA: Borland International, 1991.

* * * * *

Susan A: Meneel
Susan A. Mengel rgeived her Ph.D. in Computer Sci-
ence from T~~~ A&M University in 1990. She joined
the Computer System Engineering Department at the
University of Arkansas in Fayetteville in 1991 as an
Assistant Professor. She became an Adjunct Assistant

The following individuals helped in the implementa-
tion of the 68040 simulator: Trey Grubbs, Bill Her-
ring, Richard Tan, David Andrews, Carl Bowling, and
Ronald Goforth.

Motorola is a registered trademark of Motorola, Inc.
X Window System is a product of the Massachusetts
Institute of Technology. Sun Workstation is a regis-
tered trademark of Sun Microsystems, Inc. XView
and Openwindows are trademarks of Sun Microsys-
tems, Inc. DEC is a trademark of Digital Equipment
Corporation. Powerview and Viewlogic are registered
trademarks of Viewlogic Systems, Inc.

NOTE: A copy of this paper with larger fig-
ures may be obtained via anonymous ftp from:
engr.engr.uark.edu,/user/sam/fieQ4-msim.ps.Z.

REFERENCES

El] David L. Andrews, James M. Conrad, Leonard
Schaper, Susan Mengel, and Daniel J . Berleant.
“Design of a High Speed MIMD Distributed P r e
cessor Node Using MCM Technology.” Proceed-
angs of the 1993 International Electronics Pack-
agzng Conference, International Electronics Pack-
aging Society, Wheaton, IL, pp. 132-139.

[2] Debugging Tools. Mountain View, CA: Sun Mi-
crosystems, 1988.

Professor in the Electrical Engineering bepartment at
UAF in 1993. She has worked in the areas of stu-
dent modeling with intelligent tutoring systems and
neural networks. Other research interests include user
modeling and computer-assisted instruction. She has
consulted in the areas of neural networks and expert
systems. She has served on the Steering Committee
of the Artificial Intelligence in Education Society. She
may be reached via the internet at sam@engr.uark.edu.

James M. Conrad
James M. Conrad received his B.S. Degree in Com-
puter Science from the University of Illinois-Urbana/
Champaign in 1984. He received his M.S. and Ph.D.
in Computer Engineering from North Carolina State
University in 1987 and 1992, respectively. He worked
for IBM from 1984 to 1990, and is currently an As-
sistant Professor in the Computer Systems En ineer-
ing Department at the University of Arkansas femail:
jmc3Qengr.uark.edu). His research interests include
computer architecture, parallel programming, and en-
gineering education. He is a member of the ACM,
Eta Kappa Nu, IEEE, IEEE Computing Society, and
AAAI.

I
€
€
€

1994 Frontiers in Education Conference

110

mailto:sam@engr.uark.edu

