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Abstract

Constraint satisfaction problems (CSPs) are ubiquitous in artificial intelligence; versions
arise in areas such as visiont designt Boolean satisfiability, cryptarithmetic, and database
retrieval. Most researchers have solved CSPs on sequential computers; relatively few have
addressed the use of parallel computer§ for these problems. Among those who have in-
vestigated parallel approaches, several authors have solved CSPs using parallel tree search
algorithms, while others have pre-processed constraint networks using parallel consistency
algorithms. No one, however, has measured the specific work performed by the individual
processorg using arc consistency techniques to pre-process a constraint network. In this paper
we introduce two Static Parallel Arc Consistency algorithms (SPAC-1 and SPAC-2), which
ensure arc consistency of a finite dothain binary constraint network, and which are designed
for any general-purpose parallel processing computer. Through simulation, we measure work
performed by each processor and compare it with work performed by existing sequential and
parallel algorithms. Results show that our parallel arc consistency algorithm can be usel to
pre-process a constraint network with good speedup and utilization.

1 Tntroduction

Ylackworth [11] describes Constraint Satisfaction Problems (CSPs) as “those in which one has a
set of variables each to be instantiated in an associated domain and a set of Boolean constraints
limiting the set of allowed values for speci ed subsets of th8 variables . enerally, straightfor-
warl backtracking algorithms are inade uate for solving a large constraint network because they
exhibit an excessive amount of thrashing. mne approach tb avoiding thrashing (but not the only
one [9, 6, 8]) is to pre-process the problem by eliminating variable assignments which can never
result in a solution. his can b8 done by using consistency algorithms to pre-process a network
of constraints befor8 the treB search. Igorithms have been described to achieve node, arc, and
path consistency [1141 |.

Ithough much ha¥ bee@ said about solving CSP8 on se uential computers, relatively lit-
tle has bee® done on solving these problem§ on parallel processing computers- n fact, some
researchers [10, 19] contend that constraint satisfaction algorithms are inherently se uential,
and that using parallel processing computers cannof signi cantly improv& the worst case per-
formance-  thers, however, believe that a era e casg execution time can be reduced through
parallelism. Several authors have solved CSPs using parallel tree search algorithms similar to
forward-checking [16, 15] or depth- rst search with back umping [5, 2]. Still others have pre-
processed constraint networks using parallel consistency algorithms [17, 7].

Nq one, however, has measured the speci ¢ work performed by the individual processors
using arc consistency techni ues to pre-process a constraint networkt n this paper we introduce
two new Static Parallel rc Consistency algorithms designed for any general-purpose parallel
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processing computer and, through simulation, measure work performed by each processor. Re-
sults show that our parallel arc consistencyg algorithm cag be used to pre-proces§ a constraint
network with good results.

2 Aonsist nc G orit S

e examine one class of algorithms for pre-processing constraint satisfaction problemsy called
consistency algorithms [11].  hese algorithms remove from variable domains values which could
never participate in a solution of th& constraint satisfaction problem.

o describe consistency algorithms, we refer to th8 network model of a CSP. e work with
binary constraints, where the constraint between variables and represents an edge, and each
edge consists of two directed arcs (, )and (,).

n arc (1, )is ar consistent if, for each value in the domain D; or , there is at least one
value in D; that satis es th& constraint of th& arc. rcs can be made consistent by performing
the operation D; — D; U {l;,|(31;,)(I;, € D;) A R%(li,,1;,)} fof every speci ¢ assignment [;,
given td variable v; from a domain D; of possible items, where R%j is a binary constraint relation
containing tuples of values satisfying th& constraint.

n this paper, we measure the size of a problem as follows the total number of variables
in a problem is denoted by n; the number of edges (half the number of arcs) of a problem is
e; the size of eachh domain is . e will analyzB several algorithms below using thes8 measures
to count consistency checks. consistency check is a comparison of g possible value of one
variable wityy the possible value of anothef variable. his measurement is used in Mackworth
and Freuder’s paper on consistency algorithm performance[12]. e address are consistency
only of constraint networks with nit8 domain variables and binary constraints. Ithough each
algorith@ will ensure node consistency, we do not analyze node consistency algorithms. Similarly,
path consistency is beyond our scope here.

Each variable is attached by constraints to the sam& number of variables. q particular we
discuss the parallel arc consistency algorithm P C-1 developed by Samal [18]. n turn, both
Samal’s algorithm and our own make reference to ylackworth’s se uential arc consistency algo-
rithms [11]; se uential algorithms such as §lackworth’s must in general be modi ed to operate
efficiently on a parallel computer. e will not address other se uential ot parallel arc consistency
algorithms in this paper. n addition, u [7] has developed several arf consistency algorithms
(which he calls Discret8 Relaxation Igorithms) but these, unlike ours, re uir8 special-purpose
hardware.

2.1 Existing Parallel Arc Consistency Algorithms

Nadel [14] has suggested that C-1 appropriately modi ed would b& a good parallel algorithm.
Samal [18] presented several parallel versions of se uential arc consistency algorithms. Samal
assumes his model computer has an in nit8 number of processors available, and that the com-
puter implements a shared memory scheme. Samal concluded that C-1, which he implemented
on a small shared memory parallel processor, would also perform very well on larger parallel
processors. Samal’s algorithmg use g parallel version of §lackworth’s Revise, called Previse,
shown in Figure 1. n Previse, all consistency checks of 3 single arc are executed concurrently. f
th& domain size of each variable of an arc is up to , then up to ? checks are made in one time
unit. herefore, up to ? processors are needed and take O(1) time. herefore, computational
complexity is O( 2), thg samBas C-lor C- .
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boo o s ( (,))
begin
h nge =F LSE;
||for each I;, =1to do
begin
suppo t[l;,] = F LSE;
|[for each I;, =1to do
if R%(li,,1;,) then suppo t[l;,] = RUE;
if (=suppo t[l;,] ) then
begin
D; = D; —{li, };
h nge = RUE;
end
end
return( h nge);
end

Figure 1 Samal’s Parallel rc Consistency Igorithm Previse

he parallel version of §lackworth’s C-1is Parallel rc Consistency algorithm #1 (P C-1).
P C-1 (Figur 2) 1st ensures node consistency in parallel (PNC()). hen, each of the 2e arcs
of the problem can be checked concurrently. Previse executes up to 2 consistency checks, so
each iteration of the P C-1 loop re uires O( 2e) processors. f only ond value is removed from
each variable each loop, up to n loops are executed- he total time complexity is therefore

O(n ), but th8 computational complexity is O( >ne).

po d AC-1()
begin
PNC();
h nge = RUE;
while ( A nge) do

begin
h nge = F LSE;
||for each (1, )do
h nge = Previse( (, ))V h nge;
end

end

Figur8 2 Samal’s Parallel rc Consistency Igorithm P C-1

3 Static 3 ara dGrc Aonsist nc

0 algorithm which dynamically assigns tasks would best balance the workload of a parallel
processing computer, but the task assignment and recombination overheads may overwhelm
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any bene ts of load balancing [1].  stati€ approach is desirable only if work can be assigned
e uitably. e have therefor developed a static parallel version of C-1.

ur parallel arc consistency algorithms differ from Samal’s P C-1 algorithm in that each
processor works with one variable and th& constraints which contain the variable. For example,
processor will work with values [;, of variable »; and all constraints connected to .

.1  tatic Parallel Arc Consistency Algorithm 1

h& Static Parallel rc Consistency #1 algorithm (SP C-1) and Static Parallel Revise Boolean
function #1 (Sprevise-1) are listed in Figure and Figure 4 respectively.

po d AC-1- O ()

begin
PNC();
h nge = RUE; no_solut on = F LSE
while( h nge A =no_solut on) do

begin
h nge = F LSE;
|[for variable v;, h nge= h ngen SP C-1-N DE( );
end
end
po d AC-1- O ()
begin
for each directed v;  v; do
h nge = h ngeA Sprevise-1( (, ));
return( h nge);
end

Figurd ost and Node Components of Static Parallelt rc Consistency lgorithm #1

SP C-1 has two components, the host algorithh and the node algorithmt he host algorithm
executes in onlg one processor and assigns worl§j to other processors. he host maintains the
chan e bit and determines if the arc needs te be recheckedq he host component of SP C-1
starts the node component. Each node of the computer executes the node component. Each
node works with one constraint network variable and the arcs which emanate from that variable.

SP C-1 is similar to §lackworth’s C-¢ algorithm, but there are two differences. First,
SP C-1 stops if the domain of a variable is empty, as no solution could ever b8 found. gq this
cas8 the global ag no_sol tion is set by Sprevise-1 to “on, and the arc consistency algorithm
will halt because nd solution could ever be found. Second, SP C-1ends only when  processors
have veri ed local arc consistency. mnce each processor has veri ed local arc consistency of the
variable it was assigned, it will wait for the host to check consistency of the entire network. fany
processor has set the chan e bit tq “on, all processors will again ensure local arc consistency.

he Sprevise-1 function is similar to §lackworth’s Revise function with one difference. he
function will set a global ag no_sol tion if it nds a variable’s domain is empty. his variable
no_sol tionis used by the SP C-1- S algorithm.
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boo o p s -1( (, )
begin
for each [;, € D; and (—suppo t)
begin
suppo t = F LSE;
for each I;, € D; while (-suppo t)
if R?j(lizyljy) then suppo t = RUE;
if (-suppo t) then
begin
D; = Di —{li, };
if D; = ¢ then no_solut on = RUE;
h nge = RUE;
end
end
return( h nge);
end

Figure 4 Static Parallel Revise Function Sprevise-1

.2 tatic Parallel Arc Consistency Algorithm 2

SP C-1 operates in thgq same manner as C-b and P C-1, i® that all arcs are checked if a

value has been removed from a variable’s domainA herefore, SP C-§ still suffers from the

inefficiencies of the other algorithms. tq better exploit the potentially distributed nature of

C-1 and reduce th& amount of unnecessary processing, we have developed another parallel arc
consistency algorithm, SP C-2.

he SP C-2 algorithm is different in two ways from SP C-1. First, each variable (node)

has its owq chan e bit and SP C-2 running on processor wilt only set te “on a chan e bit of

all processors  where (,- )€ ,the set of edges. herefore, processor does not cause
processor  tq perform wor§j when the results of processor v dq not depend on the results of
processor . his operation is performed by the Sprevise-2 function. he second difference is the

introduction of an acti e_ rocs variable. his variabl® counter is used by each SP C-2 nod2 to
signify that the node is starting and stopping local arc consistency.  hen a processor starts its
local arc consistency, it will increment the counter.  hen it completes local arc consistency, it
will decrement the counter.  hefi each node processot running SP C-2-N DE observes that the
acti e_ rocs variable is zero, it will end execution of SP C-2-N DE. he Sprevise-2 function is
similar to the Sprevise-1 function, but there are two differences betweeq the algorithms. First,
in C-1 and SP C-1, thg chan e bit is modi ed by the mai@® arc consistency algorithmg n
the SP C-8 algorithm, the chan e bit§ are actually modi ed by Sprevise-2.  his means that
i SP C-2 processors are noti ed earlief of variable value changes than if only the main arc
consistency algorithm modi ed the chan e bit. Second, if a value is deleted from a variable’s
domain, the chan e ags of o the processors that use that variable are set to “on by
Sprevise-2.

ith the SP C-2 algorithm changes are “localized, so only processors which have, an arc
connected to a changing variable are informed of the change. his differs froe the classic C-1,
Samal’s P C-1, and the SP C-1 algorithms. n the SP C-§ algorithm, all processors with a
variable connected by a constraint tq the changed variable will recheck of its arcs.  his
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selective rechecking still prevents processors from checking their arcs, even if no changes to
any connected variables are made. Processors which have veri ed local arc consistency, therefore,
can immediately start useful processing when they are provided new variable domain data.

Ad antages and isad antages o PAC 1 and PAC 2

mong the advantages of SP C-1 and SP C-2 over Samal’s P C-1 are that SP C-1 and SP C-
2 (i) are static and not as ne-grained a§ P C-1 and Previse; (ii) are easily distributed; (iii)
are based on monotoni€ changes to data (hence a “one-write-many-read memory system can
be used); and (iv) can b8 applied to & distributed memory parallel computer architecture, while
Samal’s P C-1 algorithm s run on a shared memory computer. t th8 same time, SP C-1
and SP C-2 have de ciencies, speci cally they (i) have worst case time complexity of O( Ze); (ii)
are not fault tolerant; and (iii) become less efficient toward th& end of the consistency process.

race es lts

s a rst test of th8 performance of SP C-1 and SP C-2, w8 traced their executiog alongside
that of P C-1 and the se uential C-§ on a simplg network of four variables, four binary
constraints, and domaig size everywhere three. n comparing the various algorithms we make
several assumptions. First, we count only consistency checks, not speci ¢ steps in the algorithm.
Second, the algorithm runs on any ¥ §ID parallet processing computer but does not take into
account different memory access times of different computer architectures. hird, the deletion
of a value from a variable’s domaiq is available to all processor§ at the beginning of the next
consistency check. Fourth, a “clock cycle is considered th8 tim8 to make a consistency check,
delet® a value, and update all chan e bits, in that order.

1 AC s s s AC-1

By the end of the 15th clock cycles SP C-T removed all inconsistent values. By the end of the
1 th cycle, SP C-2 removed all inconsistent values. n the se uential version of C-1, only two
of twelve inconsistent values were removed. De ning speedup as the uotient of se uential time
and parallel timeg and de ning “time as the numbel of consistency checks for the se uential
algorithm and the number of time slicB cycles for the parallel algorithm, SP C-1 speedup is 58
cycles/18 cycles = .2, and SP C-2 speedup is 58 cycles/15 cycles = .9. De ning utilization
as the number of useful time slices divided by the product of total tim® slices and the number
of processors, SP C-1 utilization is 6 /72 = 87.5% while SP C-2 utilization is 55/60 = 91.7%.
Finally, we de ne the work ratio as the uotient of parallel checks and se uential checks? he
work ratiq is a measure of how many total consistency checks are performed executing the
parallel algorithm compared to the serial algorithm. his parameter shows the extra work, or
super uous computatiog overhead [1]3 performed by the parallel algorithm. Fof examples the
work ratio of the SP C-1 algorithth is 6 /58 = 1.09, and the work ratio of the SP C-2 algorithm
is 55/58 = 0.95. he gure is rarely below 1.0; our results in the next section show the ratio is
typically above 1.25.

2 AC s s s AC-1

Figure 3 compares the P C-1 algorithin running on 72 processors with the SP C-1 and SP C-2
algorithms running on four processors. lthough th8 P C-1 algorithm completes much uicker
thag SP C-1, SP C-2, or C-1, computer utilization is poor.
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P C-1 SpP C-1 SP C-2
(72 procs.) | (4 procs.) | (4 procs.)
Cycles 4 18 15
Cons. Checks 110 6 55
ork Ratio 1.90 1.09 0.95
Utilization 8.2% 87.5% 91.7%
ctual Speedup 14.5 2 9
Possible Speedup 72 4 4
% of Possible Speedup 20.1% 80.0% 97.5%

Figure 5 Comparison of P C-1 with SP C-T and SP C-2.

n fact, to fully implement P C-1, one would need 9000 processors t8 ensure arc consistency
bviously,
td work on large constraint networks, a wa¥ must be found t& distribute work to a much smaller
number of processors, similar to the way SP C-T and SP C-2 distribute work.

Samal implemented what he called his P C-1 algorithm8 o® a shared memory computer
with only 16 processors. e attempted to balancd th& workloads by statically assigning arcs of
the constraint problem to processors.
al the beginning of hi§ computation. Fach processof worked with several variable§ and their

of a fully connected 10 variabl8 constraint network with a domain size of 10 values.

e assigned the same numbef of arcs to eacly processor
variable domains, and several arcs. is implementation, therefore, was actually different than
his proposed algorithm.

Samat only measured the total start-to-stop execution time of his arc consistency algorithm
on a shared memory parallel processing computer. hat Samal did not do is measure the
number of consistency checks of his algorithms.

4 Sir u ation su ts

s a second and more extensive comparative test of SP C-1 and SP C-2, a simulator has been
developed | , 4] tq examine the work performed by these algorithms on a parallel processing
computer?” Results reported ig this section were obtained by executing the C-1 algorithin on
g se uential computer, executing the SP C-1 algorithm on our parallel processing simulator,
executing the SP C-2 algorithm on our parallel processing simulator, and counting consistency
checks o the same set of constraint networks. hile gathering the experimental data, ten
random constraint networks were rug for each of eighteen (sig variable  three) solution con-

gurations. Each constraint satisfaction networg (180 networks in all) was executed using the

C-7 algorithm, the SP C-1 algorithm, and the SP C-2 algorithm.

hg results of our measurements suggest that our parallel algorithm is uitq promising.
Figures 6 and 7 show the speedup of our SP C-1 and SP C-2 algorithms over C-1. Simulation
of our constraint networks indicate speedup between 51 and 66@ of theoretically possible speedup
for SP C-1 and between 5 and 72% of possible speedup for SP C-2. he utilization of SP C-
T and SP (-2 is also uite high; we never observed utilization below 70% for SP C-T and 85%
for SP C-2. e observed that the total amount of work performed by our SP C-1 is 28 to 79%
higher than C-T and the total amount of work performed by our SP C-2 is 26 to 88% higher
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Figurd 6 Speedug of SP C-1 over C-1

than C-1.

5 A onc usions

e have reviewed several arc consistency algorithms for se uential and parallel processing com-
puters. e introduced two parallel ar? consistency algorithms, SP C-1 and SP C-2. e have
described the SP O algorithms and provided examples of the operations of the algorithms. e
hav8 simulated th& algorithms in a parallel processing environment and compared their perfor-
mances with that of §lackworth’s C-1 algorithm. SP C-1 achieved speedup of 51 to 66% of
possible speedup over the C-1 algorithm and SP C-2 achieved speedup of 5 to 72% of possible
speedug over th& C-1 algorithm.

Some of our future work includes the development of a SP € algorithm based oh §lackworth’s

C- algorithm, simulation of our algorithms o distributed memory machines, and making
actual computation trials on a variety of parallel processors, including both local-memory and
shared-memory architectures.
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