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ABSTRACT

To predict a parallel algorithm’s behavior without running on a multiprocessor, it is desirable to try the
algorithm on a simulator. Most existing parallel system simulators assume a particular architecture or
simulate algorithms at a machine instruction level. This paper describes a simple but elegant parallel
processing simulator environment which could represent a general class of multiple instruction stream -
multiple data stream (MIMD) architecture. The performance of a class of asynchronous parallel algo-
rithms is examined, and as an example, an arc consistency algorithm is considered in detail. Simulation
results are compared with actual measurements taken from runs on Sequent Balance and Symmetry com-
puters. The closeness of the results indicate that, for a small number of processors, our simple simulator
is adequate in accurately simulating the behavior of a generic multiprocessor.

Keywords: Arc Consistency, Asynchronous Algorithm, Constraint Network, Multiprocessor, Simula-
tion, Speedup, Utilization, Work Ratio.

INTRODUCTION

Most of the existing work on parallel algorithms has been devoted to synchronous algorithms, wherein
a strict synchronism between successive steps of a parallel computation is observed, and processing of
subtasks is done in lockstep [1]. In this work, we study a class of algorithms for multiprocessors called
asynchronous parallel algorithms [6]. These algorithms allow some degree of asynchronism between
various steps or successive iterations. Whenever any processor needs a value of a global variable, it reads
the most currently available value and continues execution using that information. The main objectives
of this paper is to check if the steps of such algorithms can be efficiently programmed on many different
types of multiprocessors, and to verify this by comparing simulation results with actual runs.

Parallel computers can be classified according to the instruction stream sequence, the data stream se-
quence, and the memory architecture. Stream classification includes Single Instruction stream - Multiple
Data stream (SIMD) computers and Multiple Instruction stream - Multiple Data stream (MIMD) com-
puters. The three possible memory architectures include shared memory, distributed memory, and hybrid
memory.
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Our goal is to examine the algorithm, not instruction by instruction, but by a relatively large and
identifiable amount of work. It may be noted that an asynchronous algorithms in general can only be
run on the MIMD class of multiprocessors and not on SIMD multiprocessors.

We considered many experimental parallel processing simulators [2, 4, 7] and several commercial sim-
ulators [4, 10] and observed that either they were too complex, they simulated one specific computer
architecture, or they simulated the problem at a machine instruction level.

To examine the affect of running asynchronous parallel algorithms, we decided to develop our own simple
yet elegant simulator. We initially defined three specific goals:

1. The simulation should be able to represent any MIMD multiprocessor architecture.

2. The simulation should be capable of representing the memory operations of either shared, dis-
tributed, or hybrid memory architecture.

3. The simulation should be able to measure an identifiable amount of work performed by an algorithm.

We are able to meet all three goals. With one simulator we can represent any MIMD computer archi-
tecture, can represent communications overhead of a distributed memory computer, can examine the
work performed by each processor of the simulation, and collect data for overall algorithm performance
evaluation. We compared these simulation results with measurements taken on shared memory Sequent
Balance and Sequent Symmetry computers. Results indicate that the speedup and processor utilization
from the simulation are fairly close to that of the actual runs for a small number of processors.

This paper is organized as follows. Section 2 defines the requirements for achieving the goals of simulating
both shared and distributed memory MIMD machines. Section 3 presents a Static Parallel Arc Consis-
tency algorithm as an example of an asynchronous parallel algorithm. Section 4 describes the serial and
parallel algorithm for the simulator and the Sequent computers. Section 5 outlines measurement metrics
and includes results of both simulation and actual results. Finally, our conclusions are given in Section

6.

PARALLEL PROCESSING SIMULATION REQUIREMENTS

The first goal of our simulation project is to consider the operations performed by the processors and not
the underlying interconnections between processors, which implies that the communication time is the
same for each source—destination processor pair. This assumption is similar to the Intel iPSC/2, where
message passing time is virtually identical [3]. We are concerned, though, with the communications
overhead time associated with each message.

The second goal is to have a capability of simulating a shared, distributed, or hybrid memory architecture.
We can differentiate between shared and distributed memory by employing a message passing scheme to
provide variable updates on each processor needing the variable values.

The third goal is that the simulation measure a large and identifiable amount of work performed by
our algorithm. One step of our algorithm, therefore, represents many computer instructions, such as
a consistency check in an arc consistency algorithm. In fact, a consistency check is a very convenient
measure to accurately compare all arc consistency algorithms (serial and parallel).

To implement a generic parallel system simulator on a uniprocessor and to meet our goals, we employ a
“time-shared” scheme. In this scheme, during a time slice one processor performs one consistency check.
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The time interval where all the processors are given one time slice is called a cycle, and after each cycle
the memory is updated. A given processor, however, may have no work to perform during a time slice
and could remain idle.

During each processor’s time slice, the following operations are performed (refer to Figure 1):

Step 1 The previous-state information (i.e. counting values or loop variables) is read from the simula-
tor’s memory. In an actual multiprocessing application, this information is not stored in memory,
but is located in the various processors’ registers.

Step 2 From the previous-state information, the next identifiable amount of work is defined (in our
example, this work is one consistency check).

Step 3 The work consisting of reading a “multiprocessor’s memory” and, if needed, writing a change
to the “multiprocessor’s memory” is performed. This change is actually stored in a temporary
memory location.

Step 4 The current state information is stored into the simulator’s memory. Again, this step would be
necessary in a simulated model and not in a true multiprocessor system.

The algorithm stops when all processors are idle. This can be determined in a shared memory computer
by using a single variable to indicate the number of active processors. In a distributed memory computer,
one processor or the host computer can hold this variable.

The operation of reading the multiprocessor memory is not dependent on memory architecture. The
operation of writing to a multiprocessor’s memory is dependent of the memory organization. Two
different types of variables have been defined and implemented. The first type of variable can be updated
only by one processor. The second type of variable is readable and writable by all the processors, but
only one processor at a time is given the write access.

In a shared memory multiprocessor, when a specific processor wants to use a variable, it locks the
desired memory location and prevents other processors from using it. The processor then unlocks it
once the update is complete. This is known as a “test-and-set” operation [1]. In a distributed memory
multiprocessor, one of the processors is assigned the global variable and handles the “test-and-set”
operations requested by other processors.

We examine a class of asynchronous parallel algorithms [6]. Although asynchronous parallel algorithms
are typically executed on shared memory computers, we have modified these algorithms for distributed
memory environment as well. To allow these algorithms to run efficiently, we assume that each processor
works with a subset of the problem data. If one processor changes a global variable, it sends the new value
to all the processors requiring that variable. Special counting “test-and-set” variables are maintained by
one Processor.

ARC CONSISTENCY AS AN EXAMPLE OF ASYNCHRONOUS PARALLEL
ALGORITHMS

Constraint satisfaction is a branch of Artificial Intelligence where one must find values for a group of
variables, or parameters. Mackworth [8] describes constraint satisfaction problems as “those in which one
has a set of variables, each to be instantiated in an associated domain, and a set of Boolean constraints
limiting the set of allowed values for specified subsets of the variables.”
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We examine a class of constraint satisfaction pre-processing algorithms called arc consistency algorithms.
These algorithms remove values from variable domains which can never participate in a solution to the
constraint satisfaction problem. To represent these tasks in mathematical form, we need to define some
terms:

o A wvariable, v;, also called a parameter, is a unit which is assigned a meaning, or value.
o A finite domain, D;, is a list of possible values that variable v; can be given.

o A walue, I;_, also called a label, is a specific assignment given to variable v; from a list of possible
items, that is, l;, € D;.

e A binary constraint, Rfj, is a relation by which if a value [;, from domain D; is assigned to variable
v;, and value [; from domain D; is assigned to variable v;, then the constraint R?j is true if the
relation is satisfied, that is (1;,,1;,) € RE;.

The arc arc(t,j) is arc consistent if, for each value in v;, there is at least one value in v; that satisfies
the constraint of the arc. Arcs can be made consistent by performing the operation:

Vii,, D — D; U{ly,1(3L,)(1;, € D;) AR} (L, 15,)} (1)

Arc consistency algorithms typically do not find a single assignment set for a constraint problem. There-
fore, a constraint satisfaction algorithm, like backtracking [5], must be used after satisfying arc consistency
to search for a specific assignment set.

A constraint network is a graphical representation of a specific constraint satisfaction problem. Figure 2
shows an example of a four variable constraint network. The circles represent the finite domain variables
of the problem, and the boxes represent the constraints between the variables. Here the variable domains
are single letters, and the constraints are letter pairs which satisfy an assignment of the two variables.
An arc is a directed edge from one variable to another variable. A consistency check is a comparison
of a possible value of one variable with the possible value of another variable. If we look at Figure 2,
one consistency check includes assigning the value A to Variable 1 and the value D to Variable 2 and
checking to see if this pair of values satisfies Constraint 1. The network in Figure 2 has only one set of
assignments which satisfy the constraints: Variable 1 is assigned A, Variable 2 is assigned F, Variable 3
is assigned H, and Variable 4 is assigned J.

Mackworth’s [8] Arc Consistency #1 sequential algorithm (AC-1) is a simple algorithm to ensure arc
consistency. Every arc of the constraint graph is checked. The AC-1 algorithm uses the Revise subroutine,
which examines an arc by choosing a variable value and checking if the variable connected by the arc has
at least one value which is consistent with the value for this variable. This is done for each value in the
first variable’s domain. If a value is removed from a variable’s domain, a change bit is set with a logical
“1” and AC-1 rechecks each of it’s arcs at least one more time. AC-1 will continue to recheck it’s arcs
until no more values are removed.

The worst case complexity of AC-1 is reported [9] as O(a®ne) consistency checks, where n is the number
of variables, e is the number of edges, and «a is the size of the variable domains of a constraint graph.
If we examine the constraint network of Figure 2, the sequential AC-1 algorithm makes 58 consistency
checks while finding a single solution assignment. For our work we embrace this complexity measure as
an important parameter, and we established our time slice to encompass a single consistency check for
each processor.
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The Static Parallel Arc Consistency algorithm (SPAC), is a modification of AC-1. The major difference is
that the procedure ends only when all processors have verified local arc consistency. Once each processor
has verified local arc consistency, it accesses a “test-and-set” counting variable. If the variable indicates
that at least one other processor is still executing, the processor becomes idle. A processor restarts when
a processor connected by a constraint deletes a value of a variable from the domain of the idle processor.
A restarted processor tries to ensure arc consistency again. SPAC uses a procedure called Static Parallel
Revise Boolean function (Sprevise), which is similar to Mackworth’s Revise function. Another difference
is that the procedure stops if a domain of a variable is empty, as no solution could ever be found.

The worst case time complexity of the SPAC algorithms is O(a®en/p) consistency checks, where p is the
number of processors. The worst case processing complexity of work performed is n times the the time
complexity, or O(a’ne). On the average, the actual work performed is quite less. If we examine the
constraint network in Figure 2, the parallel SPAC algorithm makes 55 consistency checks in 15 cycles.

Our parallel algorithm (Figure 3) relies on a static distribution of work [1]. We can assign one or more
constraint variables to each processor. With one constraint variable per processor the distribution of
work is not necessarily equitable. If we assign several constraint variables to each processor, we ensure
that the number of arcs per processor is approximately equal.

We randomly generated several different constraint networks and ran both the sequential and parallel
algorithms. Since arc consistency is a pre-processing algorithm for constraint satisfaction search al-
gorithms, we find all possible solution assignments to the network. To ensure comparison of similar
processes, we have created networks with only one solution set.

MACHINE IMPLEMENTATION

Our simulator is implemented in C language on an IBM-compatible 80386 personal computer using the
memory construct and the simulator structure mentioned earlier for both the sequential and parallel
versions. Time sharing allows us to examine consistency checks and ensures that each processor is
working with the same set of data. We can examine operations and assess the efficiency of the algorithm’s
operations.

We implemented in C the SPAC algorithm on the Sequent Balance and Symmetry shared memory
multiprocessors (also called tightly-coupled MIMD computers). The Balance B8 computer has ten 32-bit
processors, 8-Kbytes of cache memory per processor, and 8-Mbytes of shared memory. The Symmetry
S81 has twenty eight 32-bit processors, 64-Kbytes of cache memory per processor, and 32-Mbytes of
shared memory.

We programmed the Sequent computers such that one processor reads the data file and loads the shared
memory with the constraint information. The one processor then starts the remaining processors. Each
processor was assigned a set of variables to check. The same variable assignments are used with the
simulation and Sequent trials. Work is partitioned equitably to processors based on the total possible
consistency checks required for each variable. Once the processors complete the work, the first processor
reads the shared memory and records the results.

All constraint variables, values, and relations are stored in shared memory, and each processor’s counting
variables are stored in private memory. The constraint relations are never updated, and hence, this data
can be copied into a processor’s cache with no coherency problems.

The variable domain values which are read by many processors but written by one, the counting variable
active_procs, the flag no_solution, and the change bits are implemented as test-and-set variables. Only
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one processor at a time is allowed to access each variable and this is achieved by employing special “lock”
and “unlock” operators provided by the Sequent C library.

SIMULATION AND RUNTIME PERFORMANCE RESULTS

From the performance point of view, we limit our measurements to three algorithmic parameters:
speedup, utilization, and ratio of work performed.

By the common definition of speedup [1]:

time(sequential algorithm)

speedup = 2
P P time(parallel algorithm) (2)
We interpret “time” as the number of consistency checks for the sequential algorithm and time slice cycles
for the parallel algorithm. For the parallel algorithm, we found that one of the processors is never idle,
so the number of cycles is equal to the maximum number of consistency checks performed by any of the

processors. For example, the speedup of the constraint network shown in Figure 2 using the simulator is

58/15 = 3.9.

Utilization is defined as the total number of consistency checks of the parallel algorithm divided by the
total number of time slices available on the multiprocessor. For example, the utilization of the constraint
graph shown in Figure 2 using the simulator is 55/60 = 91.7%.

The work ratio is the number of consistency checks performed by the parallel algorithm divided by the
number of consistency checks performed by the serial algorithm. For example, the work ratio of the
constraint graph shown in Figure 2 using the simulator is 55/58 = 0.95.

The results of our measurements suggest that our parallel algorithm shows great promise, and the sim-
ulator reports results very close to the trials of the Sequent computers for a small number of processors.
We selected networks where the AC-1 and SPAC algorithms remove all but one value from each variable
(which represents the one and only solution to our constraint problem). Each point in our figures repre-
sent the average value of ten trial networks. These figures show the data for constraint networks with a
consistency check success rate of 15% in the network of medium connectivity.

Comparisons of consistency checks for the serial AC-1 and the SPAC algorithms on the simulator and
actual multiprocessors is shown in Figure 4.

Simulation of these networks on a four-processor computer predicts speedup of between 80 and 94%
of possible speedup, and actual computer execution indicate speedup within 4 to 6% of the simulated
speedup (Figure 5). Simulation of a ten-processor computer predicts a speedup of between 68 and 82%
of possible speedup, but actual runs show that the prediction is off by 9 to 12%. Utilization and work
ratio figures display similar trends.

Simulation of 20-processor computers, however, do not closely match actual multiprocessor runs. We
believe this is because of the difficulty to simulate simultaneous memory accesses on a shared memory
multicomputer. Obviously we will need to make some adjustments to our simulator to compensate for
simultaneous accesses.
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CONCLUSIONS

We are pleased with our generic parallel algorithm simulation environment and we can test several other
parallel algorithms. We believe that this conceptual simulation is a good way to examine the performance
of parallel algorithms before implementing them on a parallel computer. We have demonstrated that
the simulator closely represents the work performed on a small number of processing nodes of actual
multiprocessors. The asynchronous nature of the algorithm indicates good promise for its future use in
many applications.
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