
Special Topics:
Simple Robots and

Microprocessors

ECE 292
Lecture Notes 3

Reading: Chapter 7,Supplemental

ECE 292 - Notes - Controlling a Parallel Port
Controller

2

Quiz 3

1. Your Name
2. How many pins of the parallel port do we use on our
parallel port controller and what do they do?
3. Can diodes allow current to flow in either direction?
4. What does a pull down resistor do?

ECE 292 - Notes - Controlling a Parallel Port
Controller

3

Today’s Topics

•Examine the parallel port controller schematic
•Examples of parallel port input - hardware
•Addressing the parallel port
•An example of BASIC code
•Addressing the parallel port - Windows
•An example of C code
•Pulse width modulation -
saving current using
computer control
•Input code examples

ECE 292 - Notes - Controlling a Parallel Port
Controller

4

The New Board you Made

•Data register bits 0
through 7, address
0x378
•Includes the added
input on the parallel
port
•Pin 13 is read at bit
bit 28 of the control
register of the parallel
port
•Control register port
address 0x37A

13

ECE 292 - Notes - Controlling a Parallel Port
Controller

5

Addressing the Parallel Port

•Historically, one would address input/output ports
“nearly directly,” with a specific address (from 0 to x7FF)
•Data Register = port 0x378 of the PC
•In Basic, "OUT &H378" sends an 8-bit value to the
printer port. The data sent is hexadecimal:

OUT &H378, &H0F (binary 00001111)

•Control Register = port 0x37A - it’s 32 bits wide
•In Basic, "IN &H37A" reads an 8-bit value from the
printer port. The data sent is hexadecimal:

STUFF=IN &H37A

ECE 292 - Notes - Controlling a Parallel Port
Controller

6

REM Program to make Stiquito walk with a tripod gait. This

REM assumes that the upper nibble controls one tripod, and the

REM lower nibble controls the other. We allow the nitinol to

REM rest after it is activated.

REM "OUT &H378" sends an 8-bit value to the printer port. The

REM data sent is hexadecimal.

DELAY = 14000

10 OUT &H378, &HF0 : REM &HF0 is binary 11110000

FOR x = 1 TO DELAY : NEXT x

OUT &H378, 0

FOR x = 1 TO DELAY : NEXT x

OUT &H378, &H0F : REM &H0F is binary 00001111

FOR x = 1 TO DELAY : NEXT x

OUT &H378, 0

FOR x = 1 TO DELAY : NEXT x

ECE 292 - Notes - Controlling a Parallel Port
Controller

7

Some More Code

Oh, to end when a key is pressed:
REM If a key on the keyboard was pressed

REM then end. Otherwise, blink some more!

a$ = INKEY$

IF a$ = "" THEN GOTO 10

END

In C? We’ll investigate this. There is no standard way to
do this, it depends on the compiler.

ECE 292 - Notes - Controlling a Parallel Port
Controller

8

Using the Parallel Port - Windows

•With Windows, you may not have to address ports at
such a low level. This is the case with Windows
NT/2000.
•First, you have to link in some code (a windows
executable model is a “dll” - filename.dll)
•Next, you need to ensure you have some libraries
available (dlportio.h, led.h, windows.h)
•We have created a file, led.c, which will handle how to
access the ports directly. He have given you a “high
level” interface.
•You will need to compile some modules, and link them
together. This is done with a makefile (see the website)

ECE 292 - Notes - Controlling a Parallel Port
Controller

9

So how do we Program the Parallel Port?

•We have an Application Programming Interface (API)
called DLPORTIO (DriverLINX Port I/O)

•Functions are described in dlportio.h
•Use DlPortReadPortXXXX(PORT_ADDR) to read
information
•Use DLPortWritePortXXXX(PORT_ADDR) to write
information
•Three versions of each:

• UCHAR = unsigned char = byte = 8 bits
• USHORT = unsigned short = 16 bits
• ULONG = unsigned long = 32 bits

ECE 292 - Notes - Controlling a Parallel Port
Controller

10

The Software Architecture of our System

LED
Interface

led_on
led_off

Button
Interface

is_button_down

Your Program

main

DLPORTIO
DlPortReadPortUchar
DlPortReadPortUshort
DlPortReadPortUlong
DlPortWritePortUchar
DlPortWritePortUshort
DlPortWritePortUlong

led.h
led.c

button.h
button.c

dlportio.h
dlportio.lib

ECE 292 - Notes - Controlling a Parallel Port
Controller

11

Recap of C

Some skills - building a byte with several bits set:
#define LED_D1_M 0x01

#define LED_D2_M 0x02

#define LED_D3_M 0x04

#define LED_D4_M 0x08

#define LED_D5_M 0x10

#define LED_D6_M 0x20

#define LED_D7_M 0x40

#define LED_D8_M 0x80

unsigned char sendbyte;

sendbyte=LED_D5_M | LED_D6_M | LED_D7_M | LED_D8_M;

sendbyte is now 0xF0, or binary 11110000

ECE 292 - Notes - Controlling a Parallel Port
Controller

12

Some more C

To end when a key is pressed:
/* If a key on the keyboard was pressed

then end. Otherwise, blink some more! */

In C? We’ll investigate this.

Need some sleep?
Sleep(1000); /* sleep for 1000 ms */

ECE 292 - Notes - Controlling a Parallel Port
Controller

13

Data register format:

Writing the LED’s Through the Parallel Port

Bit 7 6 5 4 3 2 1 0
x378 D8 D7 D6 D5 D4 D3 D2 D1
Read/Write W W W W W W W W

Bit 7..0 - D8 - D1: LED On/Off Control
These bits control the LED’s at locations D8 - D1 on the
board. A value of ‘1’ will turn on an LED. A value of ‘0’ will
turn off an LED.

ECE 292 - Notes - Controlling a Parallel Port
Controller

14

Control register format:

Reading the LED’s Through the Parallel Port

Bit 7 6 5 4 3 2 1 0
0x37C D8 D7 D6 D5 D4 D3 D2 D1
Read/Write R R R R R R R R

Bit 7..0 - D8 - D1: LED State
These bits indicate the state of the LED’s at locations D8 -
D1 on the board. A value of ‘1’ means the LED is on. A
value of ‘0’ means the LED is off.

ECE 292 - Notes - Controlling a Parallel Port
Controller

15

#include <windows.h>

#include "led.h"

int main(void)

{

/* Turn on LED's D5 - D8 for 1 second */

led_on(LED_D5_M | LED_D6_M | LED_D7_M | LED_D8_M);

Sleep(1000);

/* Turn off LED's D5 - D8 for 1 second */

led_off(LED_D5_M | LED_D6_M | LED_D7_M | LED_D8_M);

Sleep(1000);

return 1;

} /* end - main() */

Using the LED Functions - led.c

ECE 292 - Notes - Controlling a Parallel Port
Controller

16

Control register format:

Reading the Button Through the Parallel Port

Bit 7 6 5 4 3 2 1 0
x37D - - - B0 - - - -
Read/Write R R R R R R R R

Bit 4 - B0: Button State
This bit indicates the state of the button. A value of ‘1’
means the button is being pressed. A value of ‘0’ means
the button is not being pressed.

ECE 292 - Notes - Controlling a Parallel Port
Controller

17

Input on the Parallel Port - C

The call to read from the Parallel Port:
DlPortReadPortUchar(PORT_ADDR) (in dlportio.h)

How do you check a specific bit?
if ((DlPortReadPortUchar(PORT_ADDR) &
MASK) == MASK)

{

/* The bit(s) are set */

}

ECE 292 - Notes - Controlling a Parallel Port
Controller

18

Motivation for Pulse Width Modulation

•We have a need to limit the amount of current that
Stiquito uses (save battery life, run “cooler”)

percent of length that actuator contracts

apparent current

ECE 292 - Notes - Controlling a Parallel Port
Controller

19

Implementing Pulse Width Modulation

current pulses

OUT or WRITE statements that generate current pulses (note variable delay)

•All this means is that you should not keep the LEDs (or
nitinol wires) “ON” for the entire time. Turn them off
every so often.
•The exact amount of time depends on how you built
Stiquito (every robot is different).

ECE 292 - Notes - Controlling a Parallel Port
Controller

20

A code snippet for PWM - BASIC
REM High frequency pulses initially contract actuators

FOR a = 1 TO 20

OUT &H378, &HF0 : REM &HF0 is binary 11110000

FOR x = 1 TO 100 : NEXT x

OUT &H378, 0

FOR x = 1 TO 100 : NEXT x

NEXT a

REM Low frequency pulses maintain actuator contraction

FOR a = 1 TO 80

OUT &H378, &HF0 : REM &HF0 is binary 11110000

FOR x = 1 TO 100 : NEXT x

OUT &H378, 0

FOR x = 1 TO 800 : NEXT x

NEXT a

ECE 292 - Notes - Controlling a Parallel Port
Controller

21

A code snippet for PWM - C

/* A PWM code fragment for one LED */

For(i==0;i<5;i++){ /* loop for about 200 ms */

led_on(LED_D8_M);

Sleep(20);

led_off(LED_D8_M);

Sleep(20);

}

For(i==0;i<8;i++){ /* loop for about 800 ms */

led_on(LED_D8_M);

Sleep(20);

led_off(LED_D8_M);

Sleep(80);

}

ECE 292 - Notes - Controlling a Parallel Port
Controller

22

What’s next?

•Next week we will examine controlling the Stiquito robot,
and creating the “best gait”
•You can prepare by building your Stiquito tether (to
connect to the Parallel Port Controller)
•You will use the code you create for lab 3 to help make
Stiquito walk efficiently

ECE 292 - Notes - Controlling a Parallel Port
Controller

23

Lab 3

•Monday’s Lab #3 - Use your parallel port controller,
write software to do the following:

• Flash each LED, one at a time, for one second, continuously,
until a key is pressed. Start at bit 0, progress to bit 7.

• Flash four LEDs (one nibble) for one second, then all off for one
second, then flash the other four LEDs (other nibble) for one
second, then all off for one second. Repeat until a keystroke is
pressed.

• Repeat the previous flashing, but this time, use pulse width
modulation. During the first 0.2 seconds of the 1.0 second on
time, turn the LEDs on for 20 ms, then off for 20 ms. During the
remaining 0.8 seconds of on time, turn the LED on for 20 ms,
then off for 80 ms.

• Implement the function is_button_down() in button.c. It reads
the parallel port control register. The function returns TRUE if
the button is being pressed, FALSE otherwise.

ECE 292 - Notes - Controlling a Parallel Port
Controller

24

Lab 3 - more

• Use the is_button_down() function to determine the state of the
button. Print “on” to the screen if the function returns TRUE.

•Hint: Over the weekend, read Chapter 7 again carefully.
Use information from the Chapter and from this lecture to
write your code.
•ALSO make some measurements on lab equipment. I
will set up two lab stations for measuring such things as
current, voltage, resistance, and frequency.

