BINF 6350 ITSC 8350 Fall 2011 Biotechnology & Genomics Lab Creating DNA libraries

http://webpages.uncc.edu/~jweller2

Library Quantification

 Examine some of the fragments from our qPCR experiment

Lane 1: Amresco DNA ladder Lane 2: Kapa 153-bp standard Lane 3: Library 1 – mean ~250 Lane 4: Library 2 – mean ~250 Lane 5: Library 3 – mean ~250 Lane 6: Library 4 – mean ~300 Lane 7: Library 5 – mean ~300 Lane 8: Library 6 – mean ~300

4ul of each sample, 2% gel, 50V for 3 hours in 1X TBE

Real-time results

Grouping are Standard #2: A2, B2, C2 Standard #6: A6, B6, C6 Neg ctrl: D1, E1, F1

Why is Row 1 so far off? Inspect plate

Leaving out the row A, D: Standard #2: B2, C2 Standard #6: B6, C6 NegCtrl: E1, E2 Library 3 dil: F1, F2

11/23/2011

qPCR check

If all three points are used, the slope is -3.06 and the intercept is 29.75.

Melt curves

11/23/2011

Multiple population?

Can I correlate Ct to gel band intensity? (I combined wells so not reliable in this case)

Analyzing the qPCR data

Melt Curve Analysis Spreadsheet Data for SYBR-490

Well	Well Identifier Peak Descriptor	Peak ID	Melt Temp	Beg. Temp	End Temp
B2		B2.1	84.0 🗲	78.5	94.0
		B2.2	75.0 ←	74.5	78.0
		B2.3	73.5	66.0	74.0
B3		B3.1	85.0	77.5	90.5
		B3.2	75.5	73.5	76.5
		B3.3	72.0	70.5	73.0
		B3.4	68.5	64.0	70.0
11/23/2011		Dr. Weller l	JNCC		

PCR Quantification Spreadsheet Data for SYBR-490

Well	Identifier	Ct	Setpoint
Well B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 C02 C03 C04 C05	Identifier	Ct 9.24 12.15 15.08 17.54 20.38 7.43 11.56 5.48 16.84 11.30 13.43 8.86 11.99 15.09 17.85	Setpoint
C06 C07		21.95 8.14	
C08 C09 C10 C11 C12		11.58 5.30 16.98 10.91 13.52	

Standard Curve Spreadsheet Data for SYBR-490	Units: copy number
--	--------------------

	Туре	Identifier	Rep	Ct	Log SQ	SQ	SQ Mean	SQ SD	Ct Mean	Ct SD
B02	Standard	l	2	9.24	6.699	5.00E+06	5.00E+06	0.00E+00	9.05	2.69E-01
B03	Standard		3	12.15	5.699	5.00E+05	5.00E+05	0.00E+00	12.07	1.15E-01
B04	Standard		4	15.08	4.699	5.00E+04	5.00E+04	0.00E+00	15.08	7.76E-03

-	
B05	Standard
B06	Standard
B07	Unknown
B08	Unknown
B09	Unknown
B10	Unknown
B11	Unknown
Bio	Unknown
B12	Unknown
C02	Standard
C03	Standard
C04	Standard
C05	Standard
C06	Standard
C07	Unknown
C08	Unknown
C09	Unknown
C10	Unknown
C11	Unknown
511	UTIKITOWIT
C12	Unknown
F02	Unknown
200	Unimerio
F02	UNKNOWN

5 6 1 2 3 4 5 6 2	17.54 20.38 7.43 11.56 5.48 16.84 11.30 13.43 8.86	3.699 2.699 7.242 5.856 7.893 4.087 5.944 5.229 6.699	5.00E+03 5.00E+02 1.74E+07 7.18E+05 7.82E+07 1.22E+04 8.80E+05 1.70E+05 5.00E+06	5.00E+03 5.00E+02 1.38E+07 7.12E+05 8.41E+07 1.16E+04 1.03E+06 1.64E+05	0.00E+0017.69 0.00E+0021.16 5.22E+067.78 9.01E+0311.57 8.29E+065.39 8.82E+0216.91 2.17E+0511.10 7.71E+031347 0.00E+00205	2.22E-01 1.11E+00 5.04E-01 1.64E-02 1.28E-01 9.87E-02 2.74E-01 6.09E-02 2.69E 01
3	11.99	5 699	5 00E+05	5.00E+05	0.00E+0012.07	1 15E-01
4	15.09	4.699	5.00E+04	5.00E+04	0.00 0 + 0 15.08	7.76E-03
5	17.85	3.699	5.00E+03	5.00E+03	0.00E+0017.69	2.22E-01
6	21.95	2.699	5.00E+02	5.00E+02	0.00 = +0.21.16	1.11E+00
1	8.14	7.003	1.01E+07	1.38E+07	5/22E+067.78	5.04E-01
2	11.58	5.848	7.05E+05	7.12E+05	9.01E+0 <mark>811.57</mark>	1.64E-02
3	5.30	7.954	9.00E+07	8.41E+07	8.29E+065.39	1.28E-01
4	16.98	4.040	1.10E+04	1.16E+04	8.82E+0216.91	9.87E-02
5	10.91	6.074	1.19E+06	1.03E+0/6	2.17E+0511.10	2.74E-01
6	13.52	5.200	1.59E+05	1.64 F/ 05	7.71E+0 <mark>8</mark> 13.47	6.09E-02
7	11.78	5.784	6.08E+05	0.10 ±+00	2.93E+0011.44	4.77E-01
7	11.10	6.010	1.02E+06	8 16E+05	2.93E+0511.44	4.77E-01

E01	29.87
E02	11.78
F01	30.14
F02	11.10

About 3 cycles apart

Modifying the Concentration

- Confirm the reaction efficiency to be between 90-110% (our is 112-116%, which is not bad considering how many people were pipetting and the loss of Row A).
- Our library dilution factors were 1:500. The average fragment lengths also need to be incorporated.

Library	Ct	Unmod Molecules	Avg fragment (from Gel)	Efficiency Factor*	Dil factor	Converted Conc (Unmod*EF * DF)
(1)	7.78	1.38E7	250	0.61	500	4.21E+09
(2)	11.57	7.12E5	250	0.61	500	2.17E+08
(3)	5.39	8.41E7	250	0.61	None	5.13E+07
(4)	16.91	1.16E4	300	0.51	500	2.96E+06
(5)	11.10	1.03E6	300	0.51	500	2.63E+08
(6)	13.47	1.64E5	300	0.51	500	4.18E+07

* From length comparison with 153bp standard fragment.

Target dilutions

- The Ion Torrent protocol for emPCR requires that you make a solution that has 1.56 *10⁷ molecules per ul (this changes with the specific chip and target length so don't take this as an eternal verity.
- The calculations for making 500ul follow

Library	Stock Conc (in Molecules per ul)	ul stock for 7.78*10 ⁹	Volume buffer	
1	4.21E+09	1.8484	498.1516	
2	2.17E+08	35.8261	464.1739	
3	5.13E+07	151.6540	348.3460	
4	2.96E+06	2630.1555	-2130.1555	Note: don't use
5	2.63E+08	29.6212	470.3788	
6	4.18E+07	186.0354	313.9646	

Setting up emulsion PCR

- Set up the emulsions by
 - IKA Turrax and then dispensing to the plate
 - The solution is very viscous it is hard to deliver the same volume repeatedly
 - OneTouch streams solutions together into the plate
 - Materials are resistant?
 - The plates may leak (a recent warning)
 - Decontamination/cross-contamination issues?

Bead work : Library representations

11/23/2011

Covalently attached

CATCCCTGCGTGTCTCCGACTCAG

CGACTC

The Ratio of dyes gives an estimate of total A primers (synthesized on the ISP) to the number of trP1 primers, which can only have a complement if a target has been added. Ratio of \star to \circ .

Or Cy5 to FAM, in the case of our reagents.

Quantitative?

Only if you could accurately pipette beads or could calibrate amount of A primer per bead very accurately.

To which primer do you think the biotin is attached, A' or trP1?

A-f-trP1

Qubit Fluorometer

- Note that this is a fluorometer – calibration standards are required for interpretation of signal (RFUs).
- Data is stored on the USB in Touchscreen .csv format so you can transfer the output to a modeling environment.

Lid flips up and tube sits in here

Signal and Ionograms A-f-trP1 ATGCCGATATCCTCAGATTCCTAGTACCTTAGAG Flow 1: add G A-f-trP1 Flow 2: add C Flow 3: add A Flow 4: add T Nucleotide incorporation cυ Wash Buffer Wash Nucleotide Buffe Flow 800 600 vouage 400 200 2000 4000 6000 8000 10000 11/23/2011 Dr. Weller UNCC Time (ms)

Engineering notes

- Measurement frequency is asymmetric
 - More frequent in the rise portion (every 4ms) and less frequent in the decay
 - You could adjust flow times and sampling intervals to optimize accuracy.
- Background signal random fluctuations in sensors from ambient solution
 - Wells are different distances from the inlets/outlets
 - Flows vary in type
 - Empty wells are used to estimate background (can be iterative)
- Foreground subtract the background – you have to pick the time interval
 - For homopolymers there is a (very short) delay

Nucleotide incorporation

Nice discussion of signal processing and Grand Challenges at http://biolektures.wordpress.com/2011/ 08/28/

Read normalization

- We go from ion → voltage → ionogram → base call/number
- The test fragment (spiked in) is used to normalize the signal
 - The key sequence is used to initiate the process.

Registration: the key is TACG. Every sequence has this. The first 7 flows are in the order: T,A,C,G,T,A,C. That is values for flows 1,4 and 6 are for 1-nt incorporation and values for flows 0,2,3,5 should mimic background. (why is G not mentioned here?) After subtracting the background, divide each flow value by its 1-mer signal

(assuming a linear relationship)

11/23/2011

Sources of sequencing errors

- Chemical reactions (even catalyzed reactions) do not go to 100% completion.
- Enzymes have a rate of progression.
- Nucleotides flow across the surface (uneven, different distances).
 - Incorporation of a nt is a probabilistic event.
- What happens if I have a homopolymer string?
 - The [H+] is ~ double
 - Rate of release is fast
 - Persistence of H+ is large (solution is not buffered)
- What happens if I did not QUITE wash away all of the previous nucleotide?

Incomplete Extension

- If the sequence is AATTCGGG
 - There are 8 bases
 - It would only require 4 positive flows to process through them
- Incomplete extension in the context of incorporation events

Test fragment A requires 72 incorporations, but has an error spike at the 59th step (p = 0.012)

Advanced phase problems also exist

- Washing is also incomplete, scavenged nucleotides will extend the sequence but won't be correctly accounted.
 - Response patterns may vary (non-synchronicity).
 - A delayed phase is a kind of echo, something that already happened. Advanced phase Is more complicated to model so iterative passes through the data are performed.

Phase correction

- Model the probability events, for a flow (n)
- Determine the normalized signal incorporation value y_n
- You know the nucleotide that corresponds to a given flow
- You have the ideal signal (a) for the flow of that nucleotide (there are always empty wells to provide the background response, and test fragments that are spiked in to provide a known response)
- There is some probability of incomplete extension (p).
- The value of p give the fraction of strands that are inphase, from which the subpopulations that are out of phase (w_{n-4}, w_{n-8}...) can be determined.
- $u_n = (y_n w_{n-4} a_{n-4} w_{n-8} a_{n-8} w_{n-12} a_{n-12})/w_n$

11/23/2011

Signal Decay

- Signal decays over time
 - Polymerase degrades, sensors overload, etc.
 - On the PGM the decay has been modeled at 0.05% decay per flow step
- The phase solver (CAFIE) compensates for the slippage since chemistry is not perfect