BINF 6350 ITSC 8350 Fall 2011 Biotechnology & Genomics Lab Content 3

http://webpages.uncc.edu/~jweller2

Topics

- The Scientific Method
- Experimental Design
 - For genomics

The scientific method formalizes a process of knowledge discovery.

- Observe
- Develop a testable hypothesis
- Predict measurable outcomes
- Develop experiments to carry out tests
- Modify the hypothesis.
- Repeat until there are no discrepancies.

You have determined the conditions under which accurate predictions of outcomes will occur.

What really happens.....

9/14/2011

The obligatory reminder about what scientists mean by *laws* and *theories*.

- A Law tells you *what* happens: two objects having mass will accelerate towards one another.
 - A mathematically expressed relationship.
- A Theory tells you *why* it happens, the mechanism.
 - a framework for explaining a class of observations.
 - modifies over time as the range of applicable conditions is refined

Law of Universal Gravitation

Every object in the Universe attracts every other object with a force directed along the line of centers for the two objects that is proportional to the product of their masses and inversely proportional to the square of the separation between the two objects.

$$F_g = G \frac{m_1 m_2}{r^2} \qquad \bigoplus_{m_1} \frac{r}{m_2} \bigoplus_{m_2}$$

 F_g is the gravitational force $m_1 \& m_2$ are the masses of the two objects r is the separation between the objects G is the universal gravitational constant Experiments should *answer* a question, although they usually lead to more questions.

- Rigorous design and welldefined limits. Constraints:
 - Expense
 - Consequences of poor design?

- Common Questions
 - Boundaries: region where parameters influence the effect
 - Confidence level {in the observed effect} over some context.
 - Effective population: phenotype for subset of population that responds.
 - Interactions among factors

Improper sampling strategies and unexpected interactions frequently undermine conclusions.

- The Phen Fen debacle example
 - Sampling
 - Original study: 121 patients
 - Final application: 6 million
- Interaction: cocktail of 2 drugs: fenfluramine and phentermine
 - Each is safe alone and had been used for 10 years
 - Together a much larger proportion (from 0.0001% to 1%) developed damaged aortic valves.

Mechanisms of drug interactions and clearance explained the outcomes.

- Mode of Action
 - Epinephrine-like structures can cause hypertension (2%; not seen in animal models).
 - They increase serotonergic activity, including pulmonary vasoconstriction and vascular lesions.
 - Lungs clear most of serotonin, but these drugs inhibit that process.
 - As seen in point 2, high levels of blood serotonin cause pulmonary lesions.

Gene duplication is one mechanism for evolving the function of essential genes.

- Complicating factors:
 - Duplicated genes have varying levels of sequence similarity
 - Triggers for genes may be more significant than the sequences
 - Functional groups may have a very different context
- Sampling: genetic studies have to take into account the natural allelic diversity of an organism, and interactions between genes and between genes and the environment.
 - Control for genotype by using back-crossed lines.
 - Control for genotype by sampling a large number of lines
 - Control the environment so all lines experience the same conditions.
- So controls for biological variance
 - Minimize extraneous factors
 - Restrict range of variables of interest
 - Repeat treatments enough times to properly sample the distribution

Controlled crosses in plants

- Near isogenic lines
- Recombinant inbred population (RIL)
- P, F1, F2, etc.
- How is this different from natural genetic variation?
- Phaseolus and Glycine flower color genetics

A common pathway controls seed coat color in Glycine max and Phaseolus sp.

- What do we mean by a pathway?
 - It uses the same starting material and chemicals
 - It has the same number of enzymes, and they operate on small molecules (chemical reactants) in the same order.

P. vulgaris Common bean

Seed Coat Color Genes (P. vulgaris)

- T totally colored seeds no effect on flower color
- t white flower and required for partially colored seed coats (epistatic to V for violet flower)
- P basic color gene required to express pigment
 - P w/o color gene is colorless
- p white seed coat and flower
- p^{mic} white microphyle stripe on seed; violet flowers with no pattern
- p^{hbw} stippled seed coat; violet flowers with lower <u>half of the banner petal white</u>
- p^{stp} stippled seed coat; white flowers with violet banner tip and pale violet periphery on wing petals

Fig. 1. Ventral view of the common bean seed coat pattern, white micropyle stripe, expressed by p^{mic} .

Seed Coat Color Genes (P. vulgaris)

- C, D, J color genes expressed in presence of P
- G, B, V, Rk modifying genes (intensifying effect)
- B interacts with nearly all combinations of genes for seed coat color; regulates the production of precursors of anthocyanins in seed coat color pathway
- V (T P B) expressed bishops violet flower and black seed coat
- v (T P B) white flower mineral brown seed coat
- v^{lae} (T P) gives pink flowers and rose stem
- V^{wf -} derived from *P. coccineus* with the properties of V, but pleiotropic effect of white flower color, no effect on black seeds
- Wb (T P B) derived from *P. coccineus*, white banner petal and wings of pale violet

P. coccineus Painted Lady

Seed Coat Color Genes (P. coccineus)

- Painted Lady bicolor flowers with a vermilion banner petal and pure white winges
- Sal salmon red flower (required for vermilion)
- Am probably required for vermilion
- Two colored flowers
 - Darker standard than wings (Painted Lady)
 - White banner type (Wb)
- Proposed inheritance of Painted Lady flowers
 - *bic* recessive trait (bicolorata)
- What was their original hypothesis?
 - Test of *bic* is actually an allele of *Wb*

			Seed coat and
Code	Genetic stock	PI number	flower description
P ₁	5-593	608674	Black seed, purple flower
P ₂	v BC ₃ 5-593	608679	Mineral brown seed, white flower
P ₃	$V^{\rm wf}$ BC ₃ 5-593	608710	Black seed, white flower
P ₄	<i>wb</i> BC ₃ 5-593	635121	Black seed, white banner petal
P ₅	$t Z Fib BC_3 5-593^z$	608701	Expansa with <i>fibula</i> arcs seed, white flower
P ₆	$p^{\rm mic}$ BC ₃ 5-593	608709	Black seed with white micropyle stripe, purple flower

Table 1. Genetic tester stocks in common bean used in this investigation with Plant Introduction (PI) accession numbers and phenotype description.

^zThis stock expresses the partly colored pattern expansa with fibula arcs, where *Fib* changes self-colored to expansa and suppresses color in the corona zone.

- 5-593
 - Homozygous dominant for all color determing loci
 - T P [C r] Z J G B V Rk Asp
 - Black seed coats
 - J Asp
 - Bishop violet flowers

				Segregat			
				Black seed,	Brown seed, ^y		
	Progenies	Parental	phenotype	purple flower	bicolor flower ^x		
Generation	(no.) ^z	Seed	Flower	Bic/- (no. observed)	bic/bic (no. observed)	χ ² (3:1)	Р
F ₂	1	Black	Purple	55	13	1.255	0.26
F ₃	6	Black	Purple	158			
F ₃	17	Black	Purple	309	104	0.007	0.93
F ₃	12	Brown ^y	Bicolor ^x		254		

Table 2. Segregation in common bean for bicolor flower color pattern and seed coat color in the F_2 and F_3 (from 35 randomly selected F_2 parents) from the cross of bicolor flower selection line 33 (*bic V*) × purple flower 5-593 (*Bic V*).

²For the data 6, 17, and 12, χ^2 (1:2:1) = 2.086, *P* = 0.35.

^yThis brown color is darker and more olive than mineral brown, which is expressed by *P C J G B v*, and this seed coat color was never reported previously.

*Bicolor flowers have purple (bishops violet) banner petal and white wings (see Fig. 3).

Test cross ^z	Phenotyp	ic segregation classes wi	th genetic hypothesis (no. observed)	Ratio tested	χ^2	Р
$\begin{array}{c} P_1 \times 179c\\ (Bic \times bic) \end{array}$	Black seed, purple flower <i>Bic/-</i> (342)	Brown seed, bicolor flower bic/bic (98)			3:1	1.746	0.19
$179c \times P_2$ (bic × v)	Black seed, purple flower Bic/- V/- (184)	Brown seed, bicolor flower bic/bic V/- (96)	M.B. seed, ^y white flower $-/- \nu/\nu$ (96)		9:3:4	12.842	0.002
$179c \times P_3$ (bic $\times V^{wf}$) [expected]	Black seed, purple flower <i>Bic/- V/-</i> (127) [102.375]	Black seed, white flower <i>Bic</i> /- V ^{wf} /V ^{wf} (23) [34.125]	Brown seed, bicolor flower bic/bic V/- (27) [34.125]	Brown seed, white flower bic/bic V ^{wf} /V ^{wf} (5) [11.375]	9:3:3:1 ^x	14.611	0.002
$P_4 \times 179c$ (wb × bic)	Black seed, purple flower <i>Bic/- Wb/-</i> (191)	Black seed, white banner Bic/- wb/wb (53)	Brown seed, bicolor flower bic/bic Wb/- (59)	Brown seed, white flower bic/bic wb/wb (27)	9:3:3:1	3.533	0.32
$\begin{array}{c} P_5 \times 179 c\\ (t \times bic) \end{array}$	Black seed, purple flower <i>Bic/- T/-</i> (164)	Black seed, white flower <i>Bic/- t/t</i> (70)	Brown seed, bicolor flower bic/bic T/- (40)	Brown seed, white flower <i>bic/bic t/t</i> (20)	9:3:3:1 ^w	8.319	0.04
$179c \times P_6$ (bic × p^{mic})	Black seed, purple flower <i>Bic/- P/-</i> (172)	Black seed with white micropyle stripe, purple flower <i>Bic</i> /- p ^{mic} /p ^{mic} (51)	Brown seed, bicolor flower bic/bic P/- (60)	Brown seed with white micropyle stripe, bicolor flower bic/bic p ^{mic} /p ^{mic} (13)	9:3:3:1	2.547	0.47
$\begin{array}{c} \mathbf{P}_4 \times \mathbf{P}_5\\ (wb \times t) \end{array}$	Black seed, purple flower <i>Wb/- T/-</i> (74)	Black seed, white banner wb/wb T/- (26)	Expansa seed, ^v white flower wb/wb t/t (32)		9:3:4	0.094	0.95
$\begin{array}{c} \mathbb{P}_4 \times \mathbb{P}_6 \\ (wb \times p^{\mathrm{mic}}) \end{array}$	Black seed, purple flower <i>Wb/– P/–</i> (72)	Black seed with white micropyle stripe, purple flower <i>Wb/-</i> p ^{mic} /p ^{mic} (33)	Black seed, white banner wb/wb P/- (30)	Black seed with white micropyle stripe, white banner wb/wb p ^{mic} /p ^{mic} (8)	9:3:3:1	2.790	0.43

Table 3. A third backcross of the bicolor (tentatively *bic*) stock 179c to 5-593, allelism test crosses between the *bic* flower stock 179c and five genetic testers, and two additional test crosses between *wb* BC₃ 5-593 and two genetic testers in common bean.

^zThe genetic tester stocks referenced by P with subscript numbers are listed in Table 1.

^yM.B. = mineral brown seed coat color with genotype TP CJ GB v.

^xFor the test cross $P_3 \times 179c$, the orthogonal contrasts are as follows: $\chi^2_{Bic} = 5.341$, P = 0.021, $\chi^2_V = 8.974$, P = 0.005; $\chi^2_L = 0.296$, P = 0.59. ^wFor the test cross $P_5 \times 179c$, the orthogonal contrasts are: $\chi^2_T = 4.939$, P = 0.03; $\chi^2_{Bic} = 3.306$, P = 0.07; $\chi^2_L = 0.074$, P = 0.79. ^vExpansa = expansa with fibula arcs (Fig. 2).

Flower and seed color in soybean

- T, W1, I, R O control seed coat color
- W1, W3, W4, Wm, Wp control flower color
- T, Td control pubescence color
- T = flavonoid 3'-hydroxylase (presumably)
- W1 = flavonoid 3'5'-hydroxylase (presumably)
 Pleiotropic effect on flower and hypocotyl color
- W3 & W4 epistatic under W1 genotype
 - W3W4 dark purple
 - W3w4 dilute purple (purple throat)
 - w3W4 purple
 - W3w4 near-white
- W4 encode DFR?
- I = chalcone synthase

Analysis of Flavonoids in Flower Petals of Soybean Near-isogenic Lines for Flower and Pubescence Color Genes

Table 1

Soybean NILs for flower or pubescence color genes used in this study

Line name	Line designation	Flower color	Pubescence color	Donor	Genotype
Clark	-	Purple	Tawny	-	W1W1 w3w3 W4W4 WmWm TT TdTd
Clark-w1	L63-2373	White	Tawny	т139	w1w1 w3w3 W4W4 WmWm TT TdTd
Clark-w4	L68-1774	Near- white	Tawny	Laredo	W1W1 w3w3 w4w4 WmWm TT TdTd
Clark-W3w4	L70-4422	Dilute purple	Tawny	Laredo	W1W1 W3W3 w4w4 WmWm TT TdTd
Clark-t	L67-483	Purple	Gray	Higan	W1W1 w3w3 W4W4 WmWm tt TdTd
Clark-td	L66-260	Purple	Near-gray	PI 91.160	W1W1 w3w3 W4W4 WmWm TT tdtd
Harosoy	-	Purple	Gray	-	W1W1 w3w3 W4W4 WmWm tt TdTd
Harosoy- <i>wm</i>	T235	Magenta	Gray	-	W1W1 w3w3 W4W4 wmwm tt TdTd
Harosoy-T	L66-707	Purple	Tawny	Clark	W1W1 w3w3 W4W4 WmWm TT TdTd

HPLC chromatogram of anthocyanins (A), flavonols (B), and dihydroflavonol (C) extracted from flower petals of Clark.

© The American Genetic Association. 2007. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org.

journal of **HEREDITY**

9/14/2011

Weller UNCC

Weller UNCC

1. "A New Gene, *bic, with Pleiotropic Effects* (with *T P V*) for Bicolor Flowers and Dark Olive Brown Seed Coat in Common Bean" Mark J. Bassett, Phillip N. Miklas, Amer. Soc. Hort. Sci. 132(3):352-356.2007.

2. "Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology", Brenda Winkel-Shirley, Plant Phys 2001. 126: 485-493

3. "Flower color variation: A model for the experimental study of evolution", Michael T. Clegg and Mary L. Durbin, PNAS 97(13) 7016-7023 (2000).

Image: GRIN database http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl