BINF 6350 ITSC 8350 Fall 2011 Biotechnology & Genomics Lab Creating DNA libraries

http://webpages.uncc.edu/~jweller2

NGS data production steps

- Produce the fragments to be sequenced, clean up
- Modify fragments for processing, clean up
- Separate the modified fragments *from each other*
 - so they don't compete in the PCR process: emulsion reactors, dispersed on a surface
- Amplify each fragment to a base mass
- Sequence-by-synthesis (flowgrams, PPi with reversible terminators, etc.)
- Analyze

Generation of polony array

Dr. Weller UNCC

Shendure and Ji, Nat Biotech, 2008

NGS libraries

11/21/2011

Dr. Weller UNCC

Shendure and Ji, Nat Biotech, 2008

QC Of input library

- How do you know if the adaptors have ligated to your product?
- You can perform qPCR but you need a control fragment.
 - Titrate the fragment with the other reagents
 - Use SYBR Green as the detection standard.
 - Include a DNA polymerase that is SYBR Green tolerant.
- qPCR will only amplify products with adaptors on both ends
- If you want to check the level of pure adaptor dimers you can do a melt phase as well.

11/21/2011

Dr. Weller UNCC

Biorad.com

Fig. 1.2. Representation of Optical Detection System layout.

SERIES OF 10-FOLD DILUTIONS

Standard curve method

Amplifying the library – Emulsion Reactors

Dr. Weller UNCC

Ion Torrent sequencing chemistry

Emulsion and PCR

• emPCR

emPCR

Enrichment

species can be minimized only through proper dilution. Proper DNA to Ion Sphere" Particle ratio is critical!

Detection and flowgrams

Signal characteristics

Single Well Incorporation Trace

- Fast sequencing A few seconds per incorporation
- High signal to noise Many data points per incorporation trace
- Enables high raw accuracy

Other surface attachment methods

- Fragments are distributed randomly on a surface that is covered with DNA complementary to the adaptor sequences.
- The fragments are attached to the surface and then multiplied by bridge amplification
 - The form small clusters or ssDNA (because they don't diffuse very far).
 - Once the clusters are formed sequencing can begin
 - In Illumina, the nucleotides have reversible terminators and carry fluorescent dyes. After incorporation the spot is imaged, then the terminator is rnatpr is removed so along with the dye, extension can happen.

Illumina

Roche 454 sequencing

- The GS FLX sequencer uses 454 chemistry and technology.
- Adaptors are added. One strand has a bitoin group, so it can be removed, leaving ssDNA behind
- The adaptor allows bead capture.
- A water-oil emulsion makes a microreactor so one target has a bead all to itself, which it colonizes.
- After several million-fold amplification the emulsion is broken.
- The beads are deposited in pico-lieter fiber-optic wells fore sequencing.
- The complementary strand is synthesized by adding the primer anmer and nuclecotides.
- An inorganic phosphate cleavage leads to an enzymatic cascade that releases light.
- •

Figures from Roche Diagnostics.

454 Chemistry (GS FLX)

Dr. Weller UNCC