REPSA: Making DNA Binding Specificity Simple

Michael Van Dyke, PhD Western Carolina University Cullowhee, NC

Paul Hardenbol, Ph.D.

- 1989, B.S., Microbiology, UT-Austin
- 1996, Ph.D., Biomedical Sciences, UT-Houston
- 1996–9, Postdoctoral Fellow, Stanford U. Sch. Med.
- 1999–01, Director of Mass Spectrometry facility, Stanford
- 2002–5, Chief Technology Officer, Parallele BioScience
- 2006–8, V/P, Parallele BioScience Div., Affymetrix
- 2009–, Senior Scientist, Pacific Biosciences

DNA is a Heterogeneous Target

- Many ligands recognize specific DNA sequences/structures
- Important to understand ligand-DNA interaction specificity

A Footprinting Primer

	123	
	ruur	1
т		*ACGTGAAGCTT
т	-	*ACGTGAAGCT
С	-	*ACGTGAAGC
G	-	*ACGTGAAG
A		*ACGTGAA
A		*ACGTGA
G		*ACGTG
т		*ACGT
G		*ACG
C		*AC
A		*A

- Singly end-labeled probe
- "Single-hit" chemical modification or enzymatic digestion
- Population of different length labeled DNAs
- Separate by high resolution gel electrophoresis
- Footprint = "gap" in otherwise uniform pattern

• Singly end-labeled probe

- "Single-hit" chemical modification or enzymatic digestion
- Population of different length labeled DNAs
- Separate by high resolution gel electrophoresis
- Footprint = "gap" in otherwise uniform pattern

DNA Sites: A Number of Combinations

- Different ligands interact with different lengths of DNA
 - Small molecule (distamycin)
 - protein (TBP)

- DNA (triplex)

- 8 base pairs 19 base pairs

5 base pairs

- The number of all possible sequence combinations (P) for a given length of DNA (n), P = 4ⁿ/2
 - $-4^{5/2} = 512; 4^{8/2} = 32,768; 4^{19/2} = 137$ billion
- Typically, only 100-200 base pairs can be examined per footprinting experiment

A Combinatorial Primer

• Start with a (large) population of different possibilities

- Devise a scheme that allows selection of a subpopulation that has desired properties
- Use amplification methods to increase selected population to useable amounts
- Repeat process until a uniform subset with desired properties is obtained

CASTing: A Conventional Combinatorial Method

- Binding

 Solution, optimal conditions
- Selection
 - Altered properties of ligand-DNA complex (e.g., electrophoretic mobility, hydrophobicity) and/or affinity methods
 - Requires physical separation of complexes
- Amplification
 - PCR

- restriction endonuclease
- Enzymatic inhibition, not

Type IIS Restriction Enzymes

- Type IIS restriction endonucleases have cleavage sites located at a fixed distance from their recognition site (1 - 20 nt)
- Recognition sites are typically nonpalindromic and 4 - 7 bp long
- Cleavage occurs without sequence specificity

REPSA Selection Template

- · Central region composed of randomized sequence
- Type IIS recognition sites located in defined flanks; their cleavage sites positioned within the randomized center
- Additional restriction endonuclease sites for subcloning
- Sufficient length flanks for PCR amplification

• What is the consensus duplex target for a given TFO?

- PCR: 94 °C/1 min, 50 °C/3 min; 6 or 9 cycles
- REPSA: 11 Bsg I selections

Identification of an Emergent Population

- Emergent population = one that is cleavage resistant
- Evident directly (REPA) or indirectly (PCR amplification)
- Should be liganddependent

Identification of an Emergent Population

- Emergent population
 = one that is cleavage resistant
- Evident directly (REPA) or indirectly (PCR amplification)
- Should be liganddependent

Identification of an Emergent Population

- Emergent population = one that is cleavage resistant
- Evident directly (REPA) or indirectly (PCR amplification)
- Should be liganddependent

REPA Analysis of Selected Clones

- Three types of Bsg I cleavage products observed:
 - (G36) ODN 1-dependent cleavage inhibition
 - (E5) ODN 1independent pattern
 - (E7) complex, ODN 1
 - independent pattern

REPA Analysis of Selected Clones

- Three types of *Bsg* I cleavage products observed:
 - (G36) ODN 1-dependent cleavage inhibition
 - (E5) ODN 1independent pattern
 - (E7) complex, ODN 1-
 - independent pattern

REPA Analysis of Selected Clones

- Three types of Bsg I cleavage products observed:
 - (G36) ODN 1-dependent cleavage inhibition
 - (E5) ODN 1independent pattern
 - (E7) complex, ODN 1independent pattern

REPA Analysis of Selected Clones

- Three types of *Bsg* I cleavage products observed:
 - (G36) ODN 1-dependent cleavage inhibition
 - (E5) ODN 1independent pattern
 - (E7) complex, ODN 1independent pattern

Pur

5 North Contraction of the second sec

Purine-Motif Triplex Consensus Structure

• Limitation for achieving high sequence specificity in complex genomes

Unknown *B. sphaericus* Protein-DNA Binding Sequences

Inverted Repeat	G	G	A									A
85			A				A					A
37			A	A	A							A
13			A	A		A	A					A
Α												
Consensus			A						G	т		A

- ODN 1-independent pattern
 - Consensus is 5-6 bp on either edge of randomized cassette
 - Inverted repeat = classic dimeric protein binding site
- Binding site for unknown B. sphaericus protein?

Triplex REPSA: Conclusions

- Recognition between 13 bases on a G/T-rich oligonucleotide 3' end and the duplex DNA were sufficient for purine-motif triplex formation
- The base triplets G:GC and T:AT are preferred; G:AT is the least inhibitory of the mismatches
- The preferred binding site for *Bsg* I is 5' -AGTGCAGT-3'
- There exists a *B. sphaericus* protein in commercial *Bsg* I preparations that binds the palindromic consensus sequence 5'-TGGGANNNNNNNTCCCA-3'

Modifications: cleavage, crosslink, chemical

- interferes with
- requires at least one intact strand

Molecular Function of the E. coli SImA Protein

- 198-aa protein, contains putative N-terminal helix-turn-helix and Cterminal coiled-coil motifs. Dimeric DNA-binding protein?
- · Genetically demonstrates a synthetic lethal phenotype with defective Min system strains
- Min involved in spatially controlling E. coli cytokinesis, specifically preventing Z-ring formation at cell poles; SImA & nucleoid exclusion?

SImA/REPSA Experimental

Selection template: ST2-18

- Binding rxn: 10 mM Tris-Cl (7.9), 50 mM Na⁺, 10 mM Mg²⁺, 1 mM DTT, 40 µM SImA, 10 nM ST2-18; 30 min @ 30 °C
- Cleavage rxn: 0.5 U Fok I or Bpm I, 10 min @ 37 C
- PCR: 94 °C/1 min, 50 °C/3 min, 72 °C/1 min; 6 cycles
- REPSA: 6 Fok I and 1 Bpm I selections

SImA/REPSA: Emergent Population & Analysis

- Observed emergent population by convergence in DNA sequencing
- Subcloned obtained 43 unique sequences
- Sequence analysis by Multiple Expectation Maximum for Motif Elicitation [MEME] (Bailev et al., 2006)
- 23/43 sequences contain sites with high homology to a consensus 12-bp palidromic sequence (SBS) 5'-GTGAGTACTCAC-3'
- Importance of each nucleotide in SBS determined systematically using point mutants and fluorescence polarization

SImA-DNA binding in vivo

• Putative SImA binding sites on the *E. coli* chromosome were identified by Find Individual Motif Occurrences [FIMO] (Grant *et al.*, 2011)

SImA-DNA binding in vivo

- Putative SImA binding sites on the *E. coli* chromosome were identified by Find Individual Motif Occurrences [FIMO] (Grant *et al.*, 2011)
- Actual SIMA binding sites *in vivo* determined by ChIP-Seq and Motif Alignment & Search Tool [MAST] (Bailey & Gribskov, 1998). 50/52 contain consensus SBS!

SImA-DNA binding *in vivo*

- Putative SImA binding sites on the *E. coli* chromosome were identified by Find Individual Motif Occurrences [FIMO] (Grant *et al.*, 2011)
- Actual SImA binding sites *in vivo* determined by ChIP-Seq and Motif Alignment & Search Tool [MAST] (Bailey & Gribskov, 1998). 50/52 contain consensus SBS!
- SImA-binding sites did not map to the *E. coli* Ter macrodomain – consistent with a role in chromosome segregation & cell division

SImA-DNA Complexes In Vivo

• Representative sites verified individually

SImA: Biological Function

 SImA binds the Z-ring-forming protein FtsZ, as determined by Fluorescence Polarization [FP] and Small-Angle X-ray Scattering [SAXS] analysis. Can simultaneously bind DNA!

SImA: Biological Function

- SImA binds the Z-ring-forming protein FtsZ, as determined by Fluorescence Polarization [FP] and Small-Angle X-ray Scattering [SAXS] analysis. Can simultaneously bind DNA!
- SIMA alters FtsZ polymerization (*parallel* > antiparallel), prevents formation of Z-rings

SImA/DNA/FtsZ Complexes

helices

- SImA binds to non-Ter sequences - SImA causes local formation of unproductive FtsZ assemblies

- Functional FtsZ polymerization only occurs at end of replication over Ter macrodomain; leads to Z-ring formation and septation after chromosomes have segregated into daughter cells

SImA: Biological Function

• SImA binds the Z-ring-forming protein FtsZ, as determined by Fluorescence Polarization [FP] and Small-Angle X-ray Scattering [SAXS] analysis. Can simultaneously bind DNA! SImA alters FtsZ polymerization (parallel > antiparallel),

prevents formation of Z-rings

Leads to a model of SImA biological function

SImA: Biological Function

• SImA required for nucleoid exclusion during cytokinesis

SImA/REPSA Conclusions

- REPSA was successful in identifying the preferred binding sites of relatively little-known HLH protein SImA Note: other methods were unsuccessful
- Consensus site and genome analysis led to hypothesis in nucleoid exclusion and cytokinesis
- Consensus sequence essential for subsequent demonstration of biochemical effects for SImA-DNA on FtsZ polymerization.
- Sequence & structure yielded mechanism for SImA biological function

REPSA Conclusions

- REPSA can identify the consensus DNA binding sites of nucleic acids, proteins and small molecule drugs
- Advantages of REPSA over other combinatorial methods:
 - Mild selection conditions
 - Mixed ligands
 - Uncharacterized ligands
 - Noncovalent and covalent ligands
 - Control over both DNA and ligand concentrations
 - Only combinatorial method that works for drugs
- Future: REPSA for identification and characterization
 of unknown DNA-binding proteins

Acknowledgements

Paul Hardenbol (*Sr. Scientist, Pacific Biosciences*) Jo C. Wang (*Retired*) Jing Shen (*Asst. Prof., UTMB*) Gulshan Sunavala (*Asst. Prof., LSU-HSC*) Xiaohong Yang (*Housewife*) Vashisht Gopal Yennu Nanda (Instructor, UTMDACC) Nam Tonthat (PhD student, Duke)

Robert A. Welch Foundation, American Cancer Society NIH & US Army CDMRP BCRP