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ABSTRACT
Motivation: Primer design involves various parameters
such as string-based alignment scores, melting tempera-
ture, primer length and GC content. This entails a design
approach from multicriteria decision making. Values of
some of the criteria are easy to compute while others
require intense calculations.
Results: The reference point method was found to be
tractable for trading-off between deviations from ideal
values of all the criteria. Some criteria computations are
based on dynamic programs with value iteration whose
run time can be bounded by a low-degree polynomial.
For designing standard PCR primers, the scheme offers
in a relative gain in computing speed of up to 50 : 1 over
ad-hoc computational methods. Single PCR primer pairs
have been used as model systems in order to simplify
the quantization of the computational acceleration factors.
The program has been structured so as to facilitate the
analysis of large numbers of primer pairs with minor
modifications. The scheme significantly increases primer
design throughput which in turn facilitates the use of
oligonucleotides in a wide range of applications including:
multiplex PCR and other nucleic acid-based amplification
systems, as well as in zip code targeting, oligonucleotide
microarrays and nucleic acid-based nanoengineering.
Availability: A public version of the software DOPRIMER
is accessible under http://doprimer.interactiva.de
Contact: kaempke@faw.uni-ulm.de

INTRODUCTION
The development of polymerase chain reaction (PCR) has
revolutionized genetic analysis and engineering science.
Other nucleic acid-based amplification techniques have
been subsequently developed including ligase chain
reaction, strand displacement amplification, and the RNA-
based 3SR amplification methods. All these techniques
make use of the ability of short synthetic nucleotides,
also called oligonucleotides to specifically hybridize to
complementary sequences.

The objective of PCR is to amplify a specific DNA
fragment, the target sequence. Primers function in pairs,
the so-called forward primer and the so-called reverse
primer with this distinction being arbitrary from the
computational viewpoint. The primer pairs are chosen
such that they will be extended towards each other to
cover the given target region, see Figure 1 (left). PCR
begins with a high temperature (95 ◦C) denaturation
step converting the double-stranded DNA into single-
stranded DNA, followed by a low temperature step (45–
65 ◦C) during which the primers hybridize and finally
an intermediate temperature step (72 ◦C) for the primer
extension. Typically 25–45 of these cycles are performed.

Formally, primers are considered as strings over the
alphabet � = {A, C, G, T } with the set of all these strings
being �∗. As usual, the first position of a primer is denoted
by 5′ end while the terminating position is denoted 3′ end.
Each primer will be chosen within a window whose length
and location is subject to specification; windows are not
shown in Figure 1 but will be illustrated later. The final
situation of PCR is shown in Figure 1 (right).

Primer assessment extends beyond string matching and
involves criteria including the proximity between primer
melting temperatures, minimization of hybridization ef-
fects between forward and reverse primers, and avoidance
of hybridization of primers with themselves. The latter
two criteria are dealt with by annealing values. The design
complexity increases in so-called multiplex PCR. This in-
volves performing multiple PCR reactions simultaneously
in a single tube. Consequently, this requires that physical
parameters such as cycle number, cycle duration and an-
nealing temperature are identical for all of the PCR reac-
tions. Moreover, the analysis of unintended primer–primer
interactions becomes more intricate.

All primer criteria are real-valued. Typically, no primer
pair is consistently better than all others entailing trade-
offs between the criteria. The ideal point method (Yu,
1989) which is applied here to 12 criteria for PCR
requires establishing ideal values for all the criteria. Actual
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Fig. 1. Target enclosed by pair of primers (left) and ideal terminating situation (right).

differences are then aggregated by weighted sums. The
design of primers is facilitated by constructing candidates
and selecting the best. To reduce the space and hence
the effort of that search, some criteria may be externally
constrained.

Another major aim of these studies was to improve
throughput by increasing the speed at which primer
annealing computations could be performed. Dynamic
programming will keep the overall computation effort
at a tractable level. The use of dynamic programs for
biological sequence alignment dates back to Waterman
(1984). In contrast to ordinary alignment problems, our
scheme addresses alignment as well as primer design
issues.

The paper is organized as follows. The assessment of a
primer pair is presented in the next section. Both an ex-
act solution as well as faster approximating solutions are
presented in the following section. Even faster approxima-
tions result from externally specified bounds on the feasi-
bility of primer candidates. Assessment of a set of primer
pairs for multiplex PCR is presented in the fourth section
and respective search algorithms are given in the fifth sec-
tion. The penultimate section discusses implementation is-
sues both from an algorithmic as well as an empirical per-
spective. And the final section provides some conclusions
and future applications.

|A| denotes the number of elements of a finite set A,
and |p| denotes the length of a string p. O( f (n)) denotes
functions g such that g(n) � C · f (n) for all n and
�( f (n)) denotes functions g such that c1 · f (n) � g(n) �
c2 · f (n) for all n.

ASSESSMENT OF INDIVIDUAL PRIMERS AND
PRIMER PAIRS
Primer design is based on the subsequent criteria including
various annealing values. The annealing values neither
adhere to the frequently propagated edit distance or
Levenshtein metric nor to a generalization thereof (cf.
Apostolico and Galil, 1997). The reason for rejecting the
edit distance in conjunction with primers is that insertions
and deletions will lead to primer infeasibility for PCR
rather than to situations which can be tolerated at some
formal cost.

Melting temperature and GC content
A proper computation of the primer melting temperature
does not appear to exist. A prominent approximation for
the melting point of primer p = (p1, . . . , pn) (cf. Rychlik
and Rhoads, 1989; Borer et al., 1974; Breslauer et al.,
1986; Freier et al., 1986) is the formula

Tm,1(p) = 
H(p)


S(p) + R · ln(
γ
4 )

+ T0 + t,

where R = 1.987 (cal/◦C∗mol) is the molar gas constant,
γ = 50 · 10−9 is the dimensionless (molar) concentration
of the primer in its solution, T0 = −273.15 ◦C, and
t = −21.6 ◦C is an empirical temperature correction.
The value for t may depend upon the ion concentration
and other unknown factors. 
H(p) and 
S(p) are
the enthalpy and entropy of p which are computed
according to the nearest neighbour schemes 
H(p) =∑n−1

i=1 
H(pi , pi+1) and 
S(p) = ∑n−1
i=1 
S(pi , pi+1),

where entropy and enthalpy of a string consisting of two
bases—a duplex—is given as follows (Breslauer et al.,
1986):

Nearest neighbour thermodynamics

(pi , pi+1) 
H(pi , pi+1) 
S(pi , pi+1)

AA or T T 9.1 24.0
AT 8.6 23.9
T A 6.0 16.9

C A or T G 5.8 12.9
GT or AC 6.5 17.3
CT or AG 7.8 20.8
G A or T C 5.6 13.5

CG 11.9 27.8
GC 11.1 26.7

GG or CC 11.0 26.6

All values refer to the energy required to disrupt the
hydrogen bonds of a single base pair of a paired chain.
This is assumed to be influenced by neighbouring bases.
Values refer to the concentration of 1 M = 1 mol NaCl
per l at 25 ◦C, and pH 7. The unit of 
H is kcal/mol,
whereas the unit of 
S is cal/K per mol (1 cal = 4.184 J),
see Breslauer et al. (1986, p. 3748). An example of
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nearest neighbour thermodynamics is p = GG AT with

H(GG AT ) = 
H(GG) + 
H(G A) + 
H(AT ) =
11.0+5.6+8.6 = 25.2 (kcal/mol). There are several other
tables of nearest neighbour thermodynamics available in
the literature. For a detailed discussion see Owczarzy et
al. (1998).

A simple approximation of the melting temperature
in ◦C proposed here is Tm,2(p) = 4 · #G in p +
4 · #C in p + 2 · #A in p + 2 · #T in p. This
formula was empirically derived by determining the
melting temperatures of numerous primers and is valid for
primers whose length lies in the interval 16–28 nucleotides
in length.

The important criterion GC content simply measures
the percentage of G and C of the primer

GC(p) = #G in p + #C in p

|p| · 100.

The motivation for considering this quantity is the pres-
ence of three hydrogen bonds in GC pairs as compared
with only two for AT pairs.

Self annealing and self-end annealing
Each primer is tested for unintended hybridization with
itself by testing for self annealing and for self-end
annealing (Hillier and Green, 1991). There is no ‘self-
begin annealing’ test since extension always occurs at
the 3′ end of a nucleotide sequence. The test for self
annealing also accounts for the primer–dimer effect which
is hybridization of one part of a primer molecule with
another part.

The tests are based on a real-valued function S depend-
ing on string alignments with overlapping regions. Let x =
(x1, . . . , xn) ∈ �∗ and y = (y1, . . . , ym) ∈ �∗. For the
sake of simplicity of formulas, one of the strings, say y, is
assumed to be enlarged at both ends by sufficiently many
improper characters such as the ‘empty’ symbol E /∈ �.
The score of a pair of characters is defined to be

s(xi , y j ) =




2, if {xi , y j } = {A, T }
4, if {xi , y j } = {C, G}
0, else.

Here, {A, T } and {C, G} denote two-element sets. The
character scoring function s is extended to the alignment
value

S(x, y) = max
k=−(n−1),...,m−1

n∑
i=1

s(xi , yi+k).

The intuition is that string x is translated by k positions
relative to the ‘initial’ alignment with x1 corresponding to
y1, x2 corresponding to y2, etc. Each alignment with at

least one overlapping position of x and the proper part
of y is considered. This corresponds to the translations
k = −n + 1, . . . , m − 1. Function S is symmetric, i.e.
S(x, y) = S(y, x).

Function S is now modifed to admit only alignments
such that x1 or ym belongs to the overlapping region.
Also, scoring counts from these characters onwards in
an uninterrupted fashion where the latter means that a
term contributing zero to the sum will stop summation.
Formally, this score is denoted by S′′(x, y). The number
of sums over which the maximum for the restricted
alignment value S′′ is actually taken depends on the se-
quences x and y. Function S′′ is generally not symmetric.
The two restrictions from S to S′′ immediately imply
S′′(x, y) � S(x, y).

Self annealing of a primer p = (p1, . . . , pn) is tested
by aligning p with itself in the opposite direction since
nucleotide chains bond this way if they do at all; the 5′
end of one string is aligned with the 3′ end of the other,
cf. Figure 1. With the reverse string p̃ = (pn, . . . , p1) this
leads to the self annealing score

sa(p) = S( p̃, p).

The reverse of a primer is not to be confused with the
reverse primer of a primer pair. Evidently, a primer of
length n has the 2n − 1 overlapping alignments k =
−(n − 1), . . . , n − 1.

The test for self end annealing considers only those
alignments for which the 3′ end belongs to the overlapping
region. Only subsequences of uninterrupted bonds begin-
ning at the 3′ ends are considered for self-end annealing.
Formally, the self end annealing value of primer p is
defined to be

sea(p) = S′′( p̃, p).

EXAMPLE 1. Let p = G AT T A. Length n = 5 results
in 9 overlapping alignments arranged in the order of
k = −4, . . . , 4. Vertical bars denote a positive score of
a character pair.

5’-GATTA-3’ 5’-GATTA-3’ 5’-GATTA-3’
-> 0 -> 0 -> 0

3’-ATTAG-5’ 3’-ATTAG-5’ 3’-ATTAG-5’

5’-GATTA-3’ 5’-GATTA-3’ 5’-GATTA-3’
|| -> 4 | | -> 4 -> 0

3’-ATTAG-5’ 3’-ATTAG-5’ 3’-ATTAG-5’

5’-GATTA-3’ 5’-GATTA-3’ 5’-GATTA-3’
| | -> 4 || -> 4 -> 0

3’-ATTAG-5’ 3’-ATTAG-5’ 3’-ATTAG-5’

The empty symbol E is omitted throughout. The self
annealing value is sa(G AT T A) = max{0, 0, 0, 4, 4, 0,
4, 4, 0} = 4. The contribution of each alignment to the
maximum is specified above together with the alignments.
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From the five alignments k = 0, . . . , 4 with the 3′ end
lying in the overlap only the two alignments for k = 3 and
k = 4—on the left and center of the bottom row—do not
begin with a zero count. Thus, only these two contribute
to the self-end annealing score. The alignment k = 3
scores 2 and the alignment k = 4 scores 2 + 2 resulting in
sea(G AT T A) = max{2, 4} = 4.

Criteria for primer pairs
Primer pairs are tested for unintended hybridization with
each other. This test again consists of two modes that
are called pair annealing and pair-end annealing. The
modes are similar to the self and self-end annealing tests.
Both primers p = (p1, . . . , pn) and q = (q1, . . . , qm)

are arranged in all overlapping antithetic alignments and
maximum scores are taken. Formally,

pa(p, q) = S( p̃, q).

Pairwise annealing values generalize the self annealing
values in the sense of pa(p, p) = sa(p). The test for end
annealing involves only alignments with at least one of
the 3′ end belonging to the overlapping region and only
subsequences of uninterrupted bonds beginning at one of
the 3′ ends are considered for the pair end annealing value
of p and q,

pea(p, q) = S′′( p̃, q).

Though S′′ is not symmetric, function pea is, i.e.
pea(p, q) = pea(q, p).

EXAMPLE 2. A typical primer pair (p, q) consisting of
a forward primer p and a reverse primer q is given with
individual assessments as follows.

Forward primer

p GGATTGATAATGTAATAGG
|p| 19
GC(p) [in %] 32
Tm,1(p) [in ◦C] 38
sa(p) 12
sea(p) 0

Reverse primer

q CATTATGGGTGGTATGTTGG
|q| 20
GC(q) [in %] 45
Tm,1(q) [in ◦C] 50
sa(q) 20
sea(q) 4

The alternative temperature values are Tm,2(p) = 50 ◦C
and Tm,2(q) = 58 ◦C. The common assessment of the
primer pair is as follows

(p, q) (GGATTGATAATGTAATAGG,CATTATGGGTGGTATGTTGG)

pa(p, q) 16
pea(p, q) 4

Two sample computations are GC(p) = 6
19 · 100 ≈ 32

and

Tm,1(p) = (11.0 + · · · + 7.8 + 11.0)kcal/mol

(26.6 + · · · + 20.8 + 26.6)cal/(◦C · mol) + 1987cal/(◦C · mol) · ln
(

50∗10−9
4

)
− 273, 15 ◦C − 21, 6 ◦C

= 138.8 · kcal/mol

362.4cal/(◦C · mol) + 1987cal/(◦C · mol) · ln
(

50∗10−9
4

)
− 273, 15 ◦C − 21, 6 ◦C = 38 ◦C.

The self annealing value of p is sa(p) = 12 which is
attained by several alignments including the following.

5’-GGATTGATAATGTAATAGG-3’

| | | | | | -> 12

3’-GGATAATGTAATAGTTAGG-5’

The self-end annealing value of p is sea(p) = 0. This is
obvious, because p has a G at both ends and there is no C
in p. The pair annealing value of p and q is pa(p, q) = 16
and the pair-end annealing value is pea(p, q) = 4 which
are attained by the subsequent alignments respectively.

5’-GGATTGATAATGTAATAGG-3’

| |||||| -> 16

3’-GGTTGTATGGTGGGTATTAC-5’

5’-GGATTGATAATGTAATAGG-3’

| -> 4

3’-GGTTGTATGGTGGGTATTAC-5’

In the sequel any of the formulas for melting temperatures
will be used with values being denoted Tm(p), Tm(q),
etc. Other criteria can be taken into consideration like
testing for unintended hybridization within the target area
such that the alignment score of the primer and a target
string is as low as possible. Another criterion is the
number of ‘GC’ substrings in one primer indicating stable
bonding. A third criterion could consist of testing the
primer for ending with ‘GC’ which may be considered
to be favourable.

Aggregation of assessments for ordinary PCR
A primer pair (p, q) is assigned the scoring vector

sc(p, q) = (|p|, |q|, GC(p), GC(q), Tm(p), Tm(q), sa(p),

sa(q), sea(p), sea(q), pa(p, q), pea(p, q))T ∈ R
12.

All primers are designed to have ideal values of length,
GC content, and melting temperature which are specified
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Fig. 2. Ignoring the double string character and the antithetic alignment within DNA.

externally by the designer of the hybridization experiment.
These ideal values are to be specified for forward and
reverse primers. The ideal score vector or reference vector
for the primer pair is

scideal = (length f , lengthr , GC f , GCr , Tm, f ,

Tm,r , 0, 0, 0, 0, 0, 0)T.

All ideal annealing values are set to zero and typ-
ically Tm, f = Tm,r as well as GC f = GCr . The
final assessment of a primer pair (p, q) can be its
deviation from the reference in terms of the l1-distance
|| sc(p, q)−scideal || = ∑12

i=1 | sc(p, q)i −(scideal)i |. Here,
we employ a weighted distance || sc(p, q) − scideal ||κ =∑12

i=1 κi | sc(p, q)i − (scideal)i | with weights given in the
following table.

Deviation from ideal length, length f = lengthr κ1 = κ2 = 0.5
Deviation from ideal GC content, GC f = GCr κ3 = κ4 = 1
Deviation from ideal temperature, Tm, f = Tm,r κ5 = κ6 = 1
Deviation from ideal self annealing value 0 κ7 = κ8 = 0.1
Deviation from ideal self-end annealing value 0 κ9 = κ10 = 0.2
Deviation from ideal pair annealing value 0 κ11 = 0.1
Deviation from ideal pair-end annealing value 0 κ12 = 0.2

Computing the l1-distance or a weighted version thereof
requires O(n2 + m2 + nm) = O((n + m)2) time which
essentially is the O(n2) complexity for computing sa(p)

and sea(p), the O(m2) complexity for computing sa(q)

and sea(q), and the O(nm) complexity for computing
pa(p, q) and pea(p, q).

The space R
12 is not endowed with monotonicity with

respect to the assessment criteria. Though this is true
for the last six coordinates where a smaller alignment
score is preferable to a larger one with all other criteria
being equal, there is no monotonicity in primer length,
GC content, and melting temperature. Thus, the ideal
point cannot be preplaced without another assumption.

PCR PRIMER COMPUTATION
Given two windows w = (w1, . . . , wN ) and v =
(v1, . . . , vM ) the objective is to find substrings

p = (p1, . . . , pn) = (wi , . . . , wi+n−1) and q =
(q1, . . . , qm) = (v j , . . . , v j+m−1) which serve as primers.
Windows are specified externally (see Introduction).
Substrings of windows are required to have at least
length two in order to avoid trivial complications. Though
the windows lie on different strings of the DNA, the
antithetic alignment of both strings can be ignored for
computational purposes, see Figure 2. The sets of all such
substrings of w and v are denoted Sub(w) and Sub(v)

respectively. The PCR primer computation is formalized
as the reference point approximation problem

min
p∈Sub(w), q∈Sub(v)

|| sc(p, q) − scideal ||κ .

This optimization problem is a multicriteria decision prob-
lem with additive value function − || sc(p, q) − scideal ||κ
where a so-called alternative (p, q) with maximum
value is to be chosen, (see Keeney and Raiffa, 1976).
The primer computation problem can be solved in
polynomial time since | Sub(w)| = N (N − 1)/2 and
| Sub(v)| = M(M − 1)/2. Thus, complete enumera-
tion leads to O(N 2 M2) candidate pairs each requiring
O((n + m)2) = O((N + M)2) computational effort.
The latter results from the computation effort for sa(p),
sea(p), sa(q), sea(q), pa(p, q), and pea(p, q) which is
2O(n2) + 2O(m2) + 2O(nm) = O((n + m)2). This
results in an O((N 2 M + M2 N )2) overall computation
bound. More efficient computations are based on dynamic
programming in the form of value iteration.

If a primer pair is rejected due to reasons beyond the
formal criteria, the next best primer pair can be selected.
Thus, either all or some of the highest ranking primer pairs
are sorted in order of weighted distance from the ideal
vector. This will especially matter in the multiplex case.

Dynamic programming requisites
As a preparatory step, S(x+, y) is assumed to be computed
for x+ = (x1, . . . , xn+1), where S(x, y) and suitably
selected intermediate values are supposed to be known.
The latter comprise Sk(x, y) = ∑n

i=1 s(xi , yi+k) for k =
−n + 1, . . . , m − 1. Then

Sk (x+, y) =
{

Sk (x, y) + s(xn+1, yn+1−k ) for k = −n + 1, . . . , m − 1

S−n(x+, y) = s(xn+1, y1) for k = −(n + 1) + 1 = −n.
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Fig. 3. Partial Hasse diagram for all substrings of p with at least two
characters (thin lines) and update elements for p+ (bold line).

Each computation requires effort O(1) so that
S(x+, y) = maxk=−n,...,m−1 Sk(x+, y) can be com-
puted with complexity O(n + m) instead of the O(nm)

complexity of the ad-hoc procedure from Section Melt-
ing temperature and GC content, once the O(n + m)

intermediate values for Sk are stored.
Computing S′′(x+, y) is technically more complicated

than the foregoing argument since an additional character
in one string may lead to a summation which—due to
the ‘uninterruption-condition’—did not appear for the
original strings. However, the structure and complexity of
the computations are similar.

Adding an initial instead of a terminal character to x
and hence extending the other string y can be dealt with
in a similar way. Though computing the alignment values
for primers sa(p) and sea(p) still needs effort O(n2) by
the resulting scheme and though each pair annealing value
pa(p, q) and pea(p, q) still requires effort O(nm), the
computing effort for sets of primer candidates will be
reduced.

Dynamic programming for enumeration
The enumeration of all self annealing values of primers
p ∈ Sub(w) can be organized in a Hasse diagram which
is partially sketched in Figure 3. The self annealing values
of p = w1, . . . , wn and of all its substrings are assumed
to be computed and arranged below that string. Also,
the intermediate values Sk from the previous section are
stored. The two element strings serve for initializing the
computations. The self annealing values are enumerated
by the subsequent procedure.

DYNSA
1. (Initialization). Computation of sa(w1, w2) =

S((w2, w1), (w1, w2)) = max{s(w1, w1), s(w1, w2)

+ s(w2, w1), s(w2, w2)}.

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅
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�
v1 . . . vm

�vm−1vm

✟✟✟❍❍❍� v1v2

� v1 . . . vm

�vm−1vm

Fig. 4. Scheme for update computations for the transition from p to
p+.

2. (Iteration). For n = 2, . . . , N − 1 do

(a) Computation of sa(wn, wn+1) as in the initial-
ization.

(b) For i = 1, . . . , n − 1 do
Computation of sa(wn−i , . . . , wn+1) =
S((wn+1, . . . , wn−i ), (wn−i , . . . , wn+1)) from
values of Sk and update of these values as in
Section Dynamic programming requisites.

The effort to compute the self annealing values of addi-
tional strings (wn, wn+1), (wn−1, wn, wn+1), . . . , (w1,

. . . , wn+1) is O(1) + · · · + O(n) = O(n2) according
to the update scheme, see above. For n = 2, . . . , N this
results in effort O(22) + · · · + O(N 2) = O(N 3) for
the computation of all self annealing values of Sub(w).
This appears to be optimal in the sense of worst case
complexity since the cardinality of Sub(w) already is
�(N 2). Also, the values sea(p) for all p ∈ Sub(w) are
computed in O(N 3) and the values sa(q) and sea(q) for
all q ∈ Sub(v) are computed in O(M3). The procedures
are minor modifications of DYNSA.

The enumeration of all pair annealing values pa(p, q)

for (p, q) ∈ Sub(w) × Sub(v) proceeds by alternation.
Every additional string from Sub(w) is combined with
every string from Sub(v) that has been computed so far
and vice versa. This is sketched for the transition from
p = w1 . . . wn to p+ = w1 . . . wn+1 in Figure 4. In
the subsequent algorithm the Hasse diagrams of string
pairs with previously computed annealing values grow
with almost same size until the smaller window is reached.
Computations proceed then for the remainder of the larger
window.

DYNPA
1. (Initialization). Computation of pa((w1, w2),

(v1, v2)) = max{s(w1, v1), s(w1, v2) + s(w2, v1),

s(w2, v2)}.
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2. (Iteration). For k = 2, . . . , max{N , M} − 1 do

(a) If k � N − 1 then for i = 0, . . . , k − 1 do
Computation of pa((wk−i , . . . , wk+1), q)

∀ q ∈ Sub(v1, . . . , vmin{k,M}).
(b) If k � M − 1 then for i = 0, . . . , k − 1 do

Computation of pa(p, (vk−i , . . . , vk+1)) ∀ p ∈
Sub(w1, . . . , wmin{k+1,N }).

The complexity of the update operations from p to p+ is
n · (m − 1)m/2 O(N + M). All updates for subsequences
of w thus require

∑N
n=2 n(m − 1)m/2 O(N + M) �

(M − 1)M/2 O(N + M)
∑N

n=2 n = O((N + M)N 2 M2).
Symmetry implies the same complexity for the updates
of subsequences from window v. The overall complexity
of enumerating all pair annealing values thus is O((N +
M)N 2 M2) which appears to be optimal since Sub(w) ×
Sub(v) already has cardinality �(N 2 M2). The analog
holds for the enumeration of all pair end annealing values.
Enumerations of these annealing values over these two
windows reduces the order of complexity by one as
compared with the direct approach.

Dynamic programming for approximation
Enumeration for restricted primer lengths. The length of
substrings of w and v are now required to be bounded by
λw � N and λv � M so that the actual lengths of forward
and reverse primers meet the conditions λ f � λw and
λr � λv . The motivations for restricting primer length
are three-fold: (i) to reduce the computational effort; (ii)
increase the fidelity of the PCR reaction; and (iii) lower
synthesis costs.

The primer candidate sets Sub(w, λw) = {p|p ∈
Sub(w), |p| � λw} and Sub(v, λv) have cardinalities
1/2 (2N − λw)(λw − 1) = �((N − λw) λw) and
1/2 (2M − λv)(λv − 1) = �((M − λv) λv) respectively.
These cardinalities are in accordance with the area of a
trapezoid.

The subsequent approximation enumerates the restricted
primer candidate sets. The triangle sketched in Figure 3 is
now cut off at height λw resulting in the trapezoidal subset
of Sub(w) sketched in Figure 5.

DYNSA-APP

1. (Initialization). Computation of sa(w1, w2) =
S((w2, w1), (w1, w2)) = max{s(w1, w1), s(w1, w2)

+s(w2, w1), s(w2, w2)}.
2. (Iteration). For n = 2, . . . , N − 1 do

(a) Computation of sa(wn, wn+1).
(b) For i = 1, . . . , min{n − 1, λw − 2} do

Computation of sa(wn−i , . . . , wn+1) =
S((wn+1, . . . , wn−i ), (wn−i , . . . , wn+1)) from
values of Sk and update of these values as in
Section Dynamic programming requisites.

�
�

�
�

�
� . . . ❅

❅
❅

❅
❅

❅�

w1w2

�w1 . . . wλw � wN−λw+1 . . . wN

�

wN−1wN

Fig. 5. Trapezoidal Hasse diagram of Sub(w, λw).

The complexity of each iteration of step 2 is O(λ2
w)

resulting in an overall complexity O(Nλ2
w) of DYNSA-

APP. This is the complexity of computing the self
annealing values of all �(N ) substrings with exact length
λw by the ad-hoc method. The cut off condition is
algorithmically specified by the minimum condition in the
inner loop.

Self-end annealing values are computed similarly to
DYNSA-APP by a procedure called DYNSEA-APP. Pair
annealing values for (p, q) ∈ Sub(w, λw) × Sub(v, λv)

are computed by the following algorithm.

DYNPA-APP
1. (Initialization). Computation of

pa((w1, w2), (v1, v2)) =
max{s(w1, v1), s(w1, v2) + s(w2, v1), s(w2, v2)}.

2. (Iteration). For k = 2, . . . , max{N , M} − 1 do

(a) If k � N − 1 then for i = 0, . . . , min{k −
1, λw − 2} do
Computation of pa((wk−i , . . . , wk+1), q)

∀ q ∈ Sub(v1, . . . , vmin{k,M}, λv).
(b) If k � M − 1 then for i = 0, . . . , min{k −

1, λv − 2} do
Computation of pa(p, (vk−i , . . . , vk+1)) ∀ p ∈
Sub(w1, . . . , wmin{k+1,N }, λw).

Each of the O(N ) update operations for substrings
of w has a complexity bounded in min{k, λw}(λv −
1)λv/2 O(λv + λw) resulting in

∑N
k=2 min{k, λw}(λv −

1)λv/2 O(λv + λw) = O((λv + λw)λ2
v Nλw). The com-

plexity of DYNPA-APP thus is O((λw + λv)(λ
2
v Nλw +

λ2
w Mλv)) = O((λw + λv)λwλv(λv N + λw M)) =

O(�4(N + M)), where � = max{λw, λv}. Computations
for pair end annealing values are similar.

Approximation for bounded criteria vectors. Lengths of
primers are now specified to lie within some interval
which reasonably encloses the ideal values. The additional
lower bounds give even more control on the design.

Primer candidates are restricted to lie in sets like
Sub(w, λl,1, λu,1) = {p|p ∈ Sub(w), λl,1 � |p| � λu,1}
for λl,1 < λu,1. The size of such a set is �((λu,1−λl,1)N ).
Bounding the primer length can be extended to all criteria.
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For the sake of simplicity all bounds are identical for
forward and reverse primer with the following notation.

λl � |p|, |q| � λu
GCl � GC(p), GC(q) � GCu
Tm,l � Tm(p), Tm(q) � Tm,u

0 � sa(p), sa(q) � sau
0 � sea(p), sea(q) � seau
0 � pa(p, q) � pau
0 � pea(p, q) � peau .

Bounding allows the following algorithmic scheme which
approximates a best pair of primers (cf. Spellman, 1997).

BOUND

1. Computation of the individual feasibility sets
γ (w) = {p ∈ Sub(w)| λl � |p| � λu, GCl �
GC(p) � GCu, Tm,l � Tm(p) � Tm,u, 0 �
sa(p) � sau, 0 � sea(p) � seau} and
δ(v) = {q ∈ Sub(v)| λl � |q| � λu, GCl �
GC(q) � GCu, Tm,l � Tm(q) � Tm,u, 0 �
sa(q) � sau, 0 � sea(q) � seau}.

2. Computation of conjoint feasibility set
ε(w, v) = {(p, q) ∈ γ (w) × δ(v)| 0 � pa(p, q) �
pau, 0 � pea(p, q) � peau}.

3. Computation of best primer pair (p1, q1) =
argmin(p,q)∈ε(w,v)|| sc(p, q) − scideal ||κ .

In case one of the individual feasibility sets is empty,
the bounds on criteria involving a single primer are to
be relaxed. In case the conjoint feasibility set is empty,
bounds on pair annealing or pair end annealing are to be
relaxed. The computationally expensive consideration of
primer pairs is deferred by the last algorithm until step 2,
where primers which violate the individual bounds have
been eliminated. Step 1 can be handled by algorithms
DYNSA-APP and DYNSEA-APP in O((N + M)λ2

u).
Step 2 takes effort O(|γ (w)||δ(v)|λ2

u) if ad-hoc compu-
tations are applied. This is reasonable when the bounds
from step 1 effectively reduce the product set γ (w)× δ(v)

to the conjoint feasibility set from step 2. Moreover,
monotonicity of the pair annealing values pa(p, q) can
be exploited when reducing the product set γ (w) × δ(v)

to the conjoint feasibility set ε(w, v). Step 3 obviously
requires only the effort O(|ε(w, v)|).

MULTIPLEX PRIMER ASSESSMENT
Multiplex PCR is assumed here to operate in a single
wet container, where µ DNA targets are to be amplified
simultaneously. The intervals specified by window pairs
for forward and reverse primers are pairwise disjoint,
(see Figure 6). The windows wi = (wi

1, . . . , w
i
Ni

)

and vi = (vi
1, . . . , v

i
Mi

) may have different lengths.

5′ 3′

3′ 5′

w1

v1

target 1 ...

wµ

vµ

target µ DNA double string

Fig. 6. Multiple target situation.

The task is to find a multiplex primer tuple M =
((p1, q1), . . . , (pµ, qµ)) with pi ∈ Sub(wi ) and qi ∈
Sub(vi ) for i = 1, . . . , µ. The tentative scoring vector of
the multiplex primer tuple is simply defined be the joint
vector of the scores of all primer pairs

sc(M)ten = (sc(p1, q1), . . . , sc(pµ, qµ))T ∈ R
12µ.

The corresponding, tentative ideal scoring vector is
formed of the µ individually ideal scoring vectors
sc1,ideal, . . . , scµ,ideal by

scµ,ten
ideal = (sc1,ideal, . . . , scµ,ideal)

= (length1, f , length1,r , GC1, f , GC1,r , Tm,1, f ,

Tm,1,r , 0, 0, 0, 0, 0, 0, . . . ,

lengthµ, f , lengthµ,r , GCµ, f , GCµ,r ,

Tm,µ, f , Tm,µ,r , 0, 0, 0, 0, 0, 0)T.

Uniform physical conditions of multiplex PCR leads to
choose all ideal temperatures to be equal Tm = Tm,1, f =
Tm,1,r = · · · = Tm,µ, f = Tm,µ,r . Pair annealing and pair
end annealing between all primers from different windows
is only taken into consideration by the final scoring vector

sc(M) = (sc(p1, q1), . . . , sc(pµ, qµ),

pa(p1, p2), pea(p1, p2), pa(p1, p3), pea(p1, p3)

, . . . , pa(pµ−1, pµ), pea(pµ−1, pµ),

pa(p1, q2), pea(p1, q2), pa(p1, q3), pea(p1, q3)

, . . . , pa(pµ−1, qµ), pea(pµ−1, qµ),

pa(p2, q1), pea(p2, q1), pa(p3, q1), pea(p3, q1)

, . . . , pa(pµ, qµ−1), pea(pµ, qµ−1),

pa(q1, q2), pea(q1, q2), pa(q1, q3), pea(q1, q3)

, . . . , pa(qµ−1, qµ), pea(qµ−1, qµ))T

∈ R
12µ+4µ(µ−1) = R

4µ2+8µ.

Symmetry of both pair annealing and pair-end annealing
functions ensures that each primer is assessed in combi-
nation with each other. The corresponding ideal scoring
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vector is obtained by inserting the coordinate 0 for every
additional pair and pair end annealing value

scµ
ideal = (scµ,ten

ideal , 0, . . . , 0)T.

Thus, the formal objective of multiplex PCR can be stated
as:

min
M∈Sub(w1)×Sub(v1)×···×Sub(wµ)×Sub(vµ)

||sc(M) − scµ
ideal||κ,

where || ||κ is the l1-norn in R
4µ2+8µ. Weights for

deviations from ideal values are the same as for ordinary
PCR, see Section Aggregation of assessments for ordinary
PCR. Noteworthy, the weights for pair annealing values of
primers from the same window are identical to those from
different windows. The same applies to pair end annealing
values.

MULTIPLEX COMPUTATIONS
The set of all multiplex primer tuples has cardi-
nality | Sub(w1) × · · · × Sub(vµ)| = N1(N1 −
1)/2 · · · · · Mµ(Mµ − 1)/2 = O((ω4/4)µ) with
ω = max{N1, . . . , Nµ, M1, . . . , Mµ} and hence grows
exponentially in the number of targets, since ω4/4 > 1.
Thus, only approximation rather than complete enumera-
tion is investigated.

All criteria involving only a single primer or primers
from one window are supposed to be bounded as in
Section Approximation for bounded criteria vectors. The
bounds may depend on the window pairs. This allows the
computation all sets ε(w1, v1), . . . , ε(wµ, vµ) indepen-
dently from all others in the first two steps of algorithm
BOUND. All of the primer pair sets are supposed to be
non-void.

The construction of a multiplex primer tuple may then
proceed by sorting all the pair sets in order of increas-
ing distances so that ε(wi , vi ) = {(pi

j , qi
j )| || sc(pi

j , qi
j )−

sci,ideal ||κ ↑ j }. The subscripts refer to primer pairs so that
identical primers showing up in different pairs may receive
different indices. The individual orders of the pair sets pro-
vide a search direction for multiplex tuples. Candidates for
the multiplex tuples are formed iteratively from the cur-
rent best primer tuple M = ((p1

j1
, q1

j1
), . . . , (pµ

jµ
, qµ

jµ
)).

If M is found to be acceptable, then computations termi-
nate. Otherwise, a primer pair (pi

ji
, qi

ji
) is selected to be

replaced by the next pair (pi
ji +1, qi

ji +1) resulting in the

new candidate tuple Mi . The set of all these candidates is
the successor set succ(M). Selection from the successor
set can be based on a variety of criteria such as leading to
a new tuple with minMi || sc(Mi ) − scµ

ideal ||κ .
The procedure terminates unsuccessfully, if M neither

is accepted nor has a successor. Acceptance of M can
be based on the formal muliplex objective or on other

criteria such as satisfaction of bounds on annealing scores
of primers from different windows or on a combination of
all these. Although the procedure outlined here considers
primers as a function of distance to individual ideal
scoring vectors, the overall scores || sc(M) − scµ

ideal ||κ
need not be encountered in a monotone fashion. Thus, the
record is kept separately. This procedure is formally stated
as follows.

MULT

1. Computation of primer pair sets ε(w1, v1)

, . . . , ε(wµ, vµ) by BOUND and sorting each
set according to || sc(pi

j , qi
j ) − sci,ideal ||κ ↑ j .

2. Set M0 = M = ((p1
1, q1

1 ), . . . , (pµ
1 , qµ

1 )), set
acceptance level ε > 0.

3. Repeat until || sc(M)− scµ
ideal ||κ � ε or some other

stopping criterion is met or until succ(M) = ∅:
Computation of all Mi ∈ succ(M), set
M = argminMi || sc(Mi ) − scµ

ideal ||κ . If
|| sc(M) − scµ

ideal ||κ < || sc(M0) − scµ
ideal ||κ ,

then M0 = M.

4. Report of best multiplex tuple M0 found.

Every iteration of step 3 arbitrates between O(µ) tuples
each being evaluated by O(µ2) criteria of computing
complexity O(ω2) if ad-hoc computations are used. This
results in a computation bound of O(ω2µ3) for each
iteration of step 3.

COMPUTATIONAL FINDINGS
Implementation
While the criteria based on melting temperature and GC
content are straightforward from the computational view-
point, the benefit of dynamic programming is elaborated
for computations of self annealing values and self end
annealing values. The dynamic expansions are therefore
tuned so that updating requires only one intermediate step
instead of two, as compared with the original transitions
from S(x, y) to S(x+, y) to S(x+, y+) according to
Section PCR primer computation. Implementational
details and computational results are sketched below.

The update scheme for self annealing values is modified
to

Sk( ˜x+, x+) =




Sk+1(x̃, x),

for k = −1, . . . ,−n
Sk+1(x̃, x) + 2s(xk+1, xn+1),

for k = 0, . . . , n − 2
2s(xk+1, xn+1),

for k = n − 1
s(xk+1, xn+1),

for k = n
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where x = (x1, . . . , xn), x̃ = (xn, . . . , x1), x+ =
(x1, . . . , xn+1), and sa(x+) = maxk=−n,...,n Sk( ˜x+, x+).
A similar update formula applies to sa(x+) where x+ =
(x0, . . . , xn). The computational update scheme for all
self annealing values of primer candidates from a given
string w1, . . . , wN , (cf. Figure 3), thus results in the final
iteration scheme

Sk(wn−i , . . . , wn+1)

=




Sk+1(wn−i+1, . . . , wn+1),

for k = −1, . . . , −(i + 1)

S0(wn−i+1, . . . , wn) + 2s(wn−i , wn+1),

for k = 0
Sk−1(wn−i , . . . , wn),

for k = 1, . . . , i + 1,

where i = 1, . . . , n − 1 in case of unbounded sequences
and i = 1, . . . , λw − 1 in case of bounded primer
lengths. The index n attains values n = 2, . . . , N in
both cases. For i = 0 the three initial values are
explicitly computed as S−1(wn, wn+1) = s(wn, wn),
S0(wn, wn+1) = 2s(wn, wn+1), and S1(wn, wn+1) =
s(wn+1, wn+1). Then

sa(wn−i , . . . , wn+1)= max
k=−(i+1),...,i+1

Sk(wn−i , . . . , wn+1).

Only a single addition needs to be made for each pair of
values i and n.

Implementations of procedures DYNSA and DYNSA-
APP are based on the final iteration scheme. An analogous
scheme applies to the computation of self end annealing
values providing the base for efficient implementations of
DYNSEA and DYNSEA-APP.

Pair annealing values are computed similarly along
so-called central alignments. These allow to express
the scoring value for w = (w1, . . . , wn) and v =
(v1, . . . , vm) by

pa(w, v) = max
k=−(n−1),...,m−1

Sk(w̃, v)

= max
k=−(n−1),...,m−1

S0( ˜w(k), v(k)),

where the substrings w(k) of w and v(k) of v denote the
proper overlay for shift k. The proper overlay is given for
−(n − 1) � k � 0 by

v1 . . . vn+k . . . vm
wn+k . . . w1

or

v1 . . . vm
wn+k . . . wn+k−m+1 . . . w1

so that S0( ˜w(k), v(k)) = S0((wn+k, . . . , w1), (v1, . . . ,
vn+k)) in the first case which is n + k � m
and S0( ˜w(k), v(k)) = S0((wn+k, . . . , wn+k−m+1),
(v1, . . . , vm)) in the second case which is n + k < m. For
0 � k � m − 1 the proper overlays are given by

v1 . . . v1+k . . . vm
wn . . . wn−m+k+1 . . . w1

or

v1 . . . vk+1 . . . vk+n . . . vm
wn . . . w1

This leads to S0( ˜w(k), v(k)) = S0((wn, . . . , wn−m+k+1),
(v1+k, . . . , vm)) in the first case which is k + n > m
and it leads to S0( ˜w(k), v(k)) = S0((wn, . . . , w1),
(vk+1, . . . , vk+n)) in the second case which is k + n � m.
This makes it possible to compute scores for central
alignments efficiently and then compute the annealing
score for each primer pair in time proportional to their
common length. Formally, this results in the following
procedure considering the upper bounds λw and λv on the
lengths of the forward and reverse primers respectively.

DYNPA-APP2

1. Computation of

S0((wi+l−1, . . . , wi ), (v j , . . . , v j+l−1))

= S0((wi+l−1, . . . , wi+1), (v j , . . . , v j+l−2))

+ s(wi , v j+l−1)

for all l = 2, . . . , λ, i = 1, . . . , N − l, and
j = 1, . . . , M − l. The value λ is the maximum
possible length of the central alignments which is
λ = min{λw, λv}.

2. Computation of pair annealing values for each pair
w = (w1, . . . , wn) and v = (v1, . . . , vm) via

pa(w, v) = max
k=−(n−1),...,m−1

Sk(w̃, v)

= max
k=−(n−1),...,m−1

S0( ˜w(k), v(k)).

Step 1 requires O(λN M) time and space. The computa-
tions for each pair in step 2 require time O(n + m) =
O(λv + λw) whenever S0 values can be accessed in O(1).
The complexity of computing all pair annealing values is
then O(| Sub(w)| · | Sub(v)| · (λv + λw)) + O(λN M) =
O(Nλw · Mλv · (λv + λw)) + O(λN M) = O(�3 N M).

The BOUND procedure was implemented in the system
DOPRIMER (Design of oligonucleotide primers) which
makes use of the procedure DYNSA-APP and of the re-
lated procedure DYNSEA-APP. The following environ-
ment was used.
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Table 1. Computation times for self annealing values and self end annealing values.

Primer length λl . . . λu 18 . . . 21 15 . . . 26

Window length N 35 300 1000 35 300 1000
No. of primers | Sub(w, λl , λu)| 66 1126 3926 186 3366 11766

Straightforward computations of sa [in ms] 271 4631 16162 800 15380 53938
computations by DYNSA-APP [in ms] 4 62 209 6 84 292

Relative savings 67.75 74.7 77.3 133.3 183.1 184.7

Straightforward computations of sea [in ms] 27 440 1550 80 1371 4852
computations by DYNSEA-APP [in ms] 4 45 156 4 64 224

Relative savings 6.75 9.7 9.9 20 21.4 21.6

• Pentium 200 MHz, 32 MB,

• Linux 2.0.32 (RedHat 5.0),

• jdk-1.1.5 (JAVA development kid without JIT).

A couple of measures of code optimization such as the use
of data structures allowing fast access under JAVA were
taken but no details are reported here.

Numerical results
Extensive studies were performed with parameters stated
in the subsequent table. The values refer to computations
by procedures DYNSA-APP and DYNSEA-APP. The
entry ‘no. of primers’ denotes the number of all primers
of restricted lengths each within a window of specified
length. Run times are averages over sample sets consisting
of at least one hundred elements. However, variations in
run times turned out to be negligible as could have been
anticipated from the construction of the algorithms in
Table 1.

Comparison of the measured computing times reveals
that the dynamic programming scheme increases the
calculation speed by at least 50 : 1 in the case of the given
annealing values. The gain in computing time for self end
annealing is less but still significant. The relative savings
ratios increase as a function of primer length and window
length. Window lengths of up to 300 and primer lengths
of up to 26 are realistic both for ordinary and multiplex
PCR. Window lengths as large as 1000 are relevant to
hybridization on arrays of oligonucleotides which will be
dealt with elsewhere.

CONCLUSION
Dynamic programming has been applied for calculating
oligonucleotide interactions for PCR primer pairs. The
scheme resulted in a relative gain in computing speed of up
to 50 : 1 on a given data set. The increases which dynamic
programming provides indicates that the full potential of

mathematical calculation tools for this type of calculation
has as yet to be realized.

The ever increasing size of nucleic acid databases com-
bined with the continued development of nucleic acid ar-
rays will require the implementation of ever more rapid
calculation strategies. This approach has obvious impli-
cations for other primer based amplification techniques.
Furthermore, the increased application of nucleic acids for
‘nonbiological’ purposes ranging from the construction of
nanostructures to their use as tags to direct the positioning
of molecules will benefit greatly from these efforts.

The algorithms currently employed require the use of
correction factors in order to obtain Tms which correspond
to empirically determined values. Clearly important fac-
tors which influence the stability of nucleic acids have
yet to be identified. It should be possible to systemati-
cally correlate the calculated Tms of primers with their
empirically determined values to derive better correction
factors and thereby improve the predicative ability of
these algorithms. And finally, the increased throughput
of this scheme will allow the systematic comparison of
the chemical and physical properties of primers providing
important clues essential in the effort to delineate a
complete structure–function map of this important class
of biomolecules.
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