

Small RNA purification, adaptor ligation, cDNA preparation, and barcoding

Pooled and sequenced in an Illumina 1G machine

WORKFLOW DURING THE B3 CAMP

MAKING SOLUTIONS FROM STOCKS

B3 Summer Science Camp at Olympic High School

LAB WORKFLOW OVERVIEW

- Collect Samples (June 12 ${ }^{\text {th }}$)
- Extract DNA from the samples (June $17^{\text {th }}$)
- Break open the cells (contents will mix)
- Use chemistry to extract nucleic acid from other cell contents and prevent degradation
- Use biochemistry and chemistry to degrade the RNA and then concentrate the DNA
- Test the DNA for quality (June $18^{\text {th }}$ and June $22^{\text {nd }}$)
- How long are the pieces?
- How much do we have?
- How pure is it?
- Carry out two types of enzymatic reactions (June $23^{\text {rd }}$)
- PCR for chloroplast segment, and agarose gel
- Restriction Endonuclease (RE)digestion and size selection
- Construct a sequencing library with the RE material (June 24-25 ${ }^{\text {th }}$)
- Size select
- Add small DNA 'adaptors' (with barcodes to tell apart) using DNA ligase
- Carry out more PCR
- Clean up the product to remove unwanted or unused components
- Test the library and quantify it (June $26^{\text {th }}$)
- Verify the average length and concentration
- Make the proper dilutions and pool the samples
- Sequence the pooled libraries (June $26^{\text {th }}$)

EXTRACT DNA

- Extract DNA from the samples (June $17^{\text {th }}$)
- Break open the cells (contents will mix)
- Use chemistry to extract nucleic acid from other cell contents and prevent degradation
- Use biochemistry and chemistry to degrade the RNA and then concentrate the DNA

QUALITY TESTING DNA

- Test the DNA for quality (June $18^{\text {th }}$ and June $22^{\text {nd }}$)
- How long are the pieces?
- How much do we have? How pure is it?

PCR, RESTRICTION DIGESTION, LIGATION

- Carry out two types of enzymatic reactions (June $23^{\text {rd }}$)
- PCR for chloroplast segment, and agarose gel
- Restriction Endonuclease (RE)digestion and size selection

SEQUENCING LIBRARY CONSTRUCTION

- Construct a sequencing library with the RE material (June 24-25 th $)$
- Size select with magnetic beads
- Add small DNA 'adaptors' (with barcodes to tell apart) using DNA ligase
- Use beads to clean up the product

SEQUENCING LIBRARY QUALITY TESTS

- Test the library and quantify it (June $26^{\text {th }}$)
- Verify the average length and concentration
- Make the proper dilutions and pool the samples

SEQUENCING THE LIBRARY

- Sequence the pooled libraries (June $26^{\text {th }}$)

Illumina MiSeq

(A)

(B)

LAB WORKFLOW - TODAY

- Can you make solutions from stocks?
- Can you use microbalances properly?
- Do you know how to use micropipetters?

LAB WORKFLOW - TODAY

- Can you make solutions from stocks?
- Do you understand what different types of stocks are?

LAB STOCKS - ‘FOLD’ STOCKS

-What is a 10 X stock? How do you use it?

10-times more concentrated than standard use.

Take 1 part of the stock and add 9 parts of the other components.

If you are only adding water and you want 100 ml (0.1L) of 1X TAE buffer

$$
\begin{aligned}
& \mathrm{C} 1 \mathrm{~V} 1=\mathrm{C} 2 \mathrm{~V} 2 \\
& (1 \mathrm{X}) 100 \mathrm{ml}=(10 \mathrm{X}) ? \mathrm{ml} \\
& {[(1 \mathrm{X}) 100 \mathrm{ml} / 10 \mathrm{X}]=10 \mathrm{ml}}
\end{aligned}
$$

For the rest of the solution: subtract 10 from $100 \rightarrow$ 90 ml of $\mathrm{H}_{2} \mathrm{O}$ if that is the only other component. Result will be 100 ml of 1X TAE buffer.

LAB STOCKS - ‘MOLAR’ STOCKS

-What is a 1.0 Molar stock?

Contains 1 mole of Tris molecules for every liter for solvent (Water in this case).

1 mole is Avogadro's number: $6.023 * 10^{23}$.
Tris has a mass of $157.56 \mathrm{gm} / \mathrm{mol}$ so weigh out 157.56 grams, bring up to 1 L with H 2 O (adjust the pH also).

If I want $100 \mathrm{ml}(0.1 \mathrm{~L})$ of a 50 mM solution $(0.05 \mathrm{M})$, use the formula

$$
\begin{aligned}
& \mathrm{C} 1 \mathrm{~V} 1=\mathrm{C} 2 \mathrm{~V} 2 \\
& (0.05 \mathrm{M}) 0.1 \mathrm{~L}=(1 \mathrm{M}) \mathrm{XL} \\
& {[(0.05 \mathrm{M}) 0.1 \mathrm{~L} / 1 \mathrm{M}]=0.005 \mathrm{~L} \text { or } 5 \mathrm{ml}}
\end{aligned}
$$

So I will use 5 ml of the stock and bring it to 100 ml with the other components, which might be just water (so add 95 ml) or several other things.

LAB STOCKS - ‘MASS PER VOLUME’ STOCKS

- What is a Mass/Volume stock?

Contains 50 milligrams of the protein lysozyme $(0.05 \mathrm{gm})$ per 1 ml (0.001L) of solution.

This does not tell you what the solution contains - for proteins it is most likely some buffer like Tris at pH that stabilizes the enzyme, in water, and it might have some salt like Ca^{++}in it, and a small amount of glycerol (5\% is common).

If I am making a 100 microliter $\left(0.1 \mathrm{ml}\right.$ or $\left.100^{*} 10^{-6} \mathrm{~L}=10^{-4} \mathrm{~L}\right)$ solution and I want it to have $1 \mathrm{mg} / \mathrm{ml}$ of lysozyme.

$$
\begin{aligned}
& \mathrm{C} 1 \mathrm{~V} 1=\mathrm{C} 2 \mathrm{~V} 2 \\
& 1 \mathrm{mg} / \mathrm{ml}(0.1 \mathrm{ml})=50 \mathrm{mg} / \mathrm{ml}(\mathrm{Xml}) \\
& {[1 \mathrm{mg} / \mathrm{ml}(0.1 \mathrm{ml}) / 50 \mathrm{mg} / \mathrm{ml}]=0.002 \mathrm{ml} \text { or } 2 \mathrm{ul}}
\end{aligned}
$$

So I will use 2 ul of the stock and bring it to 100 ul with the other components to end up with $1 \mathrm{mg} / \mathrm{ml}$ of the lysozyme.

LAB STOCKS - ‘PERCENT’ STOCKS

What is a Percent stock?

Contains 10 grams of the chemical SDS (sodium dodecyl sulfate, a detergent) per 100 ml of solution (in this case the solvent is water you have to read the chemical information sheet to know that).

Note: In molecular biology, when the main solvent (that dissolves or otherwise carries the other compounds) is not named it is assumed to be water.

If I am making a 100 microliter $\left(0.1 \mathrm{ml}\right.$ or $\left.100^{*} 10^{-6} \mathrm{~L}=10^{-4} \mathrm{~L}\right)$ solution and I want it to have a final concentration of $0.1 \% \mathrm{SDS}$:

$$
\begin{aligned}
& \mathrm{C} 1 \mathrm{~V} 1=\mathrm{C} 2 \mathrm{~V} 2 \\
& 1 \%(0.1 \mathrm{ml})=10 \%(\mathrm{Xml}) \\
& {[1 \%(0.1 \mathrm{ml}) / 10 \%]=0.010 \mathrm{ml} \text { or } 10 \mathrm{ul}}
\end{aligned}
$$

So I will use 10 ul of the stock and bring it to 100 ul with the other components to end up with 1% SDS.

LAB STOCKS - ‘UNIT’ STOCKS

-What is a Unit/Volume stock?

Contains 10grams of the chemical SDS (sodium dodecyl sulfate, a detergent) per 100 ml of solution (in this case the solvent is water you have to read the chemical information sheet to know that).

Note: In molecular biology, when the main solvent (that dissolves or otherwise carries the other compounds) is not named it is assumed to be water.

If I am making a 100 microliter $\left(0.1 \mathrm{ml}\right.$ or $\left.100^{*} 10^{-6} \mathrm{~L}=10^{-4} \mathrm{~L}\right)$ solution and I want it to have a final concentration of 0.1% SDS:

$$
\begin{aligned}
& \mathrm{C} 1 \mathrm{~V} 1=\mathrm{C} 2 \mathrm{~V} 2 \\
& 1 \%(0.1 \mathrm{ml})=10 \%(\mathrm{Xml}) \\
& {[1 \%(0.1 \mathrm{ml}) / 10 \%]=0.010 \mathrm{ml} \text { or } 10 \mathrm{ul}}
\end{aligned}
$$

So I will use 10 ul of the stock and bring it to 100 ul with the other components to end up with 1% SDS.

LAB STOCKS - USING CORRECTLY

- Many protocols ask you to combine concentrated stocks with some of each kind listed above.
- The Using Lab Stocks Handout has examples of doing the calculations for a couple of the types of molecular biology protocols we will be using.

