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Abstract

In this paper we introduce the alloy model, which is a variant of
Derrida’s random energy model (REM). The alloy model assumes that
energy levels are independent and identically distributed (iid) random
variables, whose distribution is a mixture of two distribution from the
same location-scale family. These families are assumed to have either
Weibull or Gumbel tails. Particular attention is paid to the case of nor-
mal distributions. For these we get more explicit results, which show
that, for certain choices of the parameters, we can have two phase
transitions, one first order and one second order.
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1 Introduction

The random energy model (REM) introduced by Derrida in [8] and [9] is one
of the most famous mathematical models for a disordered system. Mono-
graphic reviews and many references are given in [5] and [15]. Some of the
most important results about this model are related to phase transitions of
the free energy in the thermodynamic limit. We recall that a phase transi-
tion is a point at which the function mapping the inverse temperature into
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the free energy is not infinitely differentiable. The order of a given phase
transition is the smallest integer n ≥ 0 such that the nth derivative of the
function at this point does not exist. It is well-known that, for REM, the
free energy in the thermodynamic limit has exactly one phase transition and
it is of the second order. In this paper we introduce the alloy model, which
generalizes REM by using mixtures. We find that, under certain conditions,
the free energy may have two phase transitions, one first order and one sec-
ond order. While, under other conditions, there may be no phase transition
at all.

Recall that, in Derrida’s random energy model, the partition function is
given by

Sn(β) =

benc∑
i=1

eβ
√
nXi ,

where β > 0, X1, X2, . . . are independent and identically distributed (iid)
standard normal N(0, 1) random variables, and b·c is the floor function. The
parameter β is sometimes called the “inverse temperature” and is given by
β = 1/(kBT ), where T is the temperature and kB is the Boltzmann constant.
The random variables

√
nXi correspond to the (random) energy levels, and

the value benc corresponds to the number of configurations. It is more com-
mon to let the number of configurations be 2n, since this corresponds to the
case where we have n particles and each can have either a positive or a neg-
ative spin. However, we make the slight modification of using benc, because
it has little effect on the underlying mathematics, but simplifies the formulas
significantly.

The quantity

Zn(β) =
lnSn(β)

n

is called the free energy. Some of the most important results about REM
are related to phase transitions of the free energy in the thermodynamical
limit, i.e. as n→∞. In particular, we have

Zn(β)
p→ Z(β)

where p→ refers to convergence in probability and

Z(β) =

{
1 + β2/2 if β ≤ βc√

2β if β ≥ βc
(1)

with βc =
√

2. It is important to note that Z is a continuous and differen-
tiable function of β. However, it does not have a second derivative at β = βc.
Thus Z has a second order phase transition at β = βc. This result was first
suggested by [9] and then rigorously proved in [10] and [17]. In addition,
limit theorems for the partition function were studied in [6]. Further, limit
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theorems for the partition function, when the random variables are no longer
assumed to be Gaussian, but have Weibull or Gumbel tails, were studied in
[1], [2], and [4].

In this paper we introduce the alloy model, which is a generalization of
REM based on mixtures. Specifically, let X1, X2, . . .

iid∼ N(0, 1), fix σ > 0,
η ∈ R, p ∈ (0, 1), and let Y1,n, Y2,n,. . . ,Ybenc,n be iid random variables such
that for each n = 1, 2, . . .

Yi,n =

{ √
nXi with probability p√
nσXi + nη with probability (1− p) .

In this case, the partition function and the free energy are given, respectively,
by

S̃n(β) =

benc∑
i=1

eβYi,n and Z̃n(β) =
ln S̃n(β)

n
.

We study limit theorems of the free energy and find that, for certain choices
of σ and η, we may have two phase transitions, one first order and one
second order. Further, we consider not only the Gaussian case, but allow
for a variety of distributions with Weibull or Gumbel tails. Interestingly, we
find that there is no phase transition in the case of Gumbel tails. We leave
the study of limit theorems of the partition function for future work, but
note that, in the Gaussian case, such limit theorems were considered in [16].

The rest of the paper is organized as follows. In Section 2, we review basic
facts about the class of regularly varying functions, which are important
for discussing our models. In Section 3, we introduce the alloy model for
distributions with Weibull tails, and study the behavior of the free energy.
In Section 4, we extend these results to models with Gumbel tails. In Section
5, we give detailed results for the case of Gaussian distributions. Proofs are
postponed to the Appendix.

2 Regularly Varying Functions

In this section we review basic facts about regularly varying functions. Recall
that, for ρ ∈ R, a measurable function f : (0,∞) 7→ [0,∞) is said to be
regularly varying with index ρ if

lim
s→∞

f(xs)

f(s)
= xρ for every x > 0.

In this case we write f ∈ Rρ. Let f←(x) = inf{y > 0 : f(y) > x} be the
generalized inverse of f . By Theorem 1.5.12 in [3], if ρ > 0 then f← ∈ R1/ρ

and

f(f←(x)) ∼ f←(f(x)) ∼ x as x→∞. (2)
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It is well-known that every f ∈ Rρ can be represented as

f(x) = c(x) exp

{∫ x

a

ρ+ ε(u)

u
du

}
for x ≥ a,

where a > 0, and c and ε are measurable functions satisfying c(x) → c ∈
(0,∞) and ε(x)→ 0 as x→∞. This is the so-called Karamata representa-
tion, see [3]. A function f ∈ Rρ is said to be normalized regularly varying if
we can take c(x) = c for all x > 0. Thus, its Karamata representation is of
the form

f(x) = c exp

{∫ x

a

ρ+ ε(u)

u
du

}
for x ≥ a,

where c ∈ (0,∞). In this case we write f ∈ NRρ. Clearly such functions
are continuous. Further, if ρ > 0 then, for large enough u, ρ + ε(u) > 0,
which means that f is eventually strictly increasing. Thus, if f ∈ NRρ and
ρ > 0, then f is invertible for large enough x, and we write f−1 instead of
f←. This means that there is an X > 0 such that if x > X then

f(f−1(x)) = f−1(f(x)) = x. (3)

This is a much stronger condition than (2). The following result characterizes
normalized regularly varying functions, see [3].

Lemma 1. A function f ∈ Rρ is normalized regularly varying if and only if
it is differentiable almost everywhere and

lim
x→∞

xf ′(x)

f(x)
= ρ.

3 Distributions with Weibull Tails

Let F be a cumulative distribution function (cdf) and let X ∼ F . Through-
out, we assume that

E
[
etX
]
<∞ for all t > 0. (4)

Let
H(t) = ln E

[
etX
]

= ln

∫
R
etxdF (x), for t > 0

and
h(x) = − lnP (X > x) = − ln (1− F (x)) , for x > 0.

In this section we consider distributions with some of the heaviest tails,
that satisfy (4). These are distributions with Weibull tails. Later, in Section
4, we consider distributions with Gumbel tails, which are lighter.
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3.1 Definition

We say that a distribution has Weibull tails if it satisfies:

Assumption W. Fix ρ′ > 1, a > 0, and assume that h ∈ NRρ′ with

h(x) ∼ axρ′ as x→∞.

Remark 1. Lemma 3.3 in [2] implies that, when Assumption W holds,

H(t) ∼ γtρ as t→∞, (5)

where γ > 0 is a constant depending only on a and ρ′ and

ρ =
ρ′

ρ′ − 1
∈ (1,∞).

Most of our results will be given in terms of the parameters γ and ρ. Note
that we can get ρ′ back from ρ by taking ρ′ = ρ

ρ−1 .

Representative examples of distributions that satisfy Assumption W are
Weibull distributions, which have cdfs of the form

F (x) =

{
1− e−axρ

′
if x ≥ 0

0 otherwise
.

Another important example is the standard normal distribution. The fact
that it satisfies Assumption W is verified by the following.

Lemma 2. For the standard normal distribution, N(0, 1), h ∈ NR2 and

h(x) ∼ .5x2 as x→∞.

Further, in this case, H(t) = .5t2.

Proof. The proof is given in Appendix A.

3.2 Randomized REM

Let F be a cdf, which satisfies Assumption W, and let X1, X2, . . .
iid∼ F . Let

R : [0,∞) 7→ N be a function such that there is a constant λ > 0 with

lim
t→∞

R(t)e−λγt = 1. (6)

For β > 0, set

Ut(β) =

R(t)∑
i=1

et
1/ρβXi .
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This is the partition function and R(t) is the number of configurations.
Limit theorems for Ut are given in [1] and [2]. We consider a more gen-
eral situations, where the number of terms in the sum, i.e. the number of
configurations, is also random. We call this situation randomized REM.
Understanding randomized REM is important for studying the alloy model.

Let {Mt : t ≥ 0} be a collection of N-valued random variables inde-
pendent of the sequence {Xn}. We allow the distributions of the Mt’s to be
point-masses, thus deterministic functions are a special case of this situation.
For β > 0 set

St(β) =

Mt∑
i=1

et
1/ρβXi ,

and assume that
Mt

R(t)

p→ c ∈ (0,∞) as t→∞,

where R satisfies (6). Limit theorems for St(β) are given in Appendix A.
Here, we concern ourselves with the free energy, which is given by

Zt(β) =
lnSt(β)

t
.

Theorem 1. Let β∗ = ( λ
ρ−1)1/ρ. If λ ∈ (0,∞) then

lnSt(β)

t

p→ G(β),

where

G(β) =

{
γλ+ γβρ if β ≤ β∗
γρββρ−1∗ if β ≥ β∗

.

Note that the value of c does not affect this result.

Proof. This follows immediately from Proposition 5, which is given in Ap-
pendix A.

Remark 2. By Lemma 2, Theorem 1 applies to the standard normal distri-
bution. In particular, Derrida’s REM, as described in Section 1, corresponds
to the case, where ρ = 2, γ = .5, and Mt = R(t) = betc. In this case λ = 2
and G(β) reduces to (1).

Remark 3. The proof of Theorem 1 follows from Proposition 5, which is it-
self proved using the limit theorems for the partition function given in [1] and
[2]. A different approach to proving such results is given in the PhD thesis
[13], where a related result is proved using techniques from large deviations.
While the assumptions in the thesis are quite different, [13] shows that they
hold for certain distributions with Weibull tails. We thank the anonymous
referee for bringing our attention to [13].
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We can, immediately, extend Theorem 1 to location-scale families as
follows.

Corollary 1. Fix η ∈ R, σ > 0, and define

S
(η,σ)
t (β) =

Mt∑
i=1

eβt
1/ρ(σXi+ηt1−1/ρ) = St(βσ)eβηt.

In this case

lnS
(η,σ)
t (β)

t
= βη +

lnSt(βσ)

t

p→ βη +Gρ(βσ).

3.3 The Alloy Model

Let F be a cdf, which satisfies Assumption W. Fix p ∈ (0, 1), η ∈ R, and
σ > 0. For t > 0, let F (t)

p be the cdf given by

F (t)
p (x) = pF (x) + (1− p)F

(
x− ηt1−1/ρ

σ

)
.

Thus Fp is the mixture of two distributions from the same location-scale
family. We call this the alloy model for distributions with Weibull tails.

Let R : [0,∞) 7→ N and assume that there is a constant λ > 0 satisfying
(6). Fix t > 0, let X(t)

1 , X
(t)
2 , . . .

iid∼ F
(t)
p , and define

S̃t(β) =

R(t)∑
i=1

et
1/ρβX

(t)
i

and

Z̃t(β) =
ln S̃t(β)

t
.

These are, respectively, the partition function and the free energy for the
alloy model.

To characterize the limits of Z̃t(β), it is convenient to put everything
into a slightly different form. Let Y1, Y2, . . .

iid∼ F and Y ′1 , Y
′
2 , . . .

iid∼ F be
independent sequences. Independent of these, let Mt ∼ B(R(t), p), where
B(n, p) represents a binomial distribution with parameters n and p. Let

S
(1)
t (β) =

Mt∑
i=1

et
1/ρβYi ,

S
(2)
t (β) =

R(t)−Mt∑
i=1

et
1/ρβσY ′i+βηt,
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and set

Z∗t =
ln
(
S
(1)
t (β) + S

(2)
t (β)

)
t

.

Note that
S̃t(β)

d
= S

(1)
t (β) + S

(2)
t (β)

and

Z̃t(β)
d
= Z̃∗t (β). (7)

For i = 1, 2 set

Z(i)
t (β) =

lnS
(i)
t (β)

t
.

By the law of large numbers, we have

Mt

R(t)

p→ p and
R(t)−Mt

R(t)

p→ (1− p).

Thus, by Theorem 1 and Corollary 1, it follows that, if

Z(1)(β) = G(β) and Z(2)(β) = βη +G(βσ),

then for i = 1, 2 we have

Z(i)
t (β)

p→ Z(i)(β) as t→∞.

Now set
Z∨t (β) = max

{
Z(1)
t (β),Z(2)

t (β)
}

and note that, by the continuous mapping theorem and the fact that the
maximum of two functions is continuous, it follows that

Z∨t (β)
p→ max

{
Z(1)(β),Z(2)(β)

}
.

Next, note that, by positivity

max{S(1)
t (β), S

(2)
t (β)} ≤ S(1)

t (β) + S
(2)
t (β) ≤ 2 max{S(1)

t (β), S
(2)
t (β)}

and hence

ln
(

max{S(1)
t (β), S

(2)
t (β)}

)
t

≤ Z̃∗t (β) ≤
ln
(

max{S(1)
t (β), S

(2)
t (β)}

)
+ ln 2

t
,

or, equivalently,

Z∨t (β) ≤ Z̃∗t (β) ≤ Z∨t (β) +
ln 2

t
.
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From here, by the squeeze theorem for convergence in probability, it follows
that

Z̃∗t (β)
p→ max

{
Z(1)(β),Z(2)(β)

}
.

Combining this, with (7) and the facts that

Z(1)(β) =

 γλ+ γβρ if β ≤ β(1)c

γρβ
(
β
(1)
c

)ρ−1
if β ≥ β(1)c

and

Z(2)(β) =

 βη + γλ+ γβρσρ if β ≤ β(2)c

βη + γρβσ
(
β
(1)
c

)ρ−1
if β ≥ β(2)c

,

where

β(1)c =

(
λ

ρ− 1

)1/ρ

and β(2)c = σ−1
(

λ

ρ− 1

)1/ρ

= σ−1β(1)c (8)

gives the following result.

Proposition 1. For every β > 0

Z̃t(β)
p→ Z̃(β),

where Z̃(β) is as follows. If σ > 1 then

Z̃(β) =


γλ+ max {γβρ, βη + γβρσρ} if β ≤ β(2)c

max

{
γλ+ γβρ, βη + γρβσ

(
β
(1)
c

)ρ−1}
if β(2)c ≤ β ≤ β(1)c

βmax

{
γρ
(
β
(1)
c

)ρ−1
, η + γρσ

(
β
(1)
c

)ρ−1}
if β ≥ β(1)c

.

and if σ ∈ (0, 1) then

Z̃(β) =


γλ+ max {γβρ, βη + γβρσρ} if β ≤ β(1)c

max

{
γβρ

(
β
(1)
c

)ρ−1
, βη + γλ+ γβρσρ

}
if β(1)c ≤ β ≤ β(2)c

βmax

{
γρ
(
β
(1)
c

)ρ−1
, η + γσρ

(
β
(1)
c

)ρ−1}
if β ≥ β(2)c

.

Here, β(1)c and β(2)c are as in (8).

Note that the parameter p does not affect this result. While, the formula
for Z̃(β), given by Proposition 1, is straightforward to evaluate numerically,
one cannot, in general, solve the maximization analytically. However, we
will see that there is an important situation, where an explicit solution is
possible, see Section 5 below.
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4 Distributions with Gumbel Tails

In this section we consider a model with tails that are lighter than those
allowed by the Weibull model. Specifically, these are models with Gumbel
tails. Limit theorems for the partition function in this case were studied in
[4]. We say that a distribution has Gumbel tails if it satisfies:

Assumption G. Let g(x) = h(lnx) and fix γ, a > 0. Assume that g ∈
NR1/γ and that

g(x) ∼ ax1/γ , as x→∞.

Remark 4. This implies that

h(x) ∼ aex/γ , as x→∞.

By the discussion in Section 2, g(x) is invertible for large enough x, and, by
Lemma 3 in Appendix B,

g−1(x) ∼ (x/a)γ as x→∞. (9)

Remark 5. Theorem 4 in [14] (see also Lemma 3.3 in [4]) relates the be-
havior of g−1 to that of H. Specifically, it shows that

H(t)

t
− ln(g−1(t))→ γ (ln γ − 1) as t→∞. (10)

Typical examples of distributions that satisfy Assumption G are the re-
verse Gumbel distribution, which has a cdf given by

F (x) = 1− e−aex/γ ,

and the Gompertz distribution, which has a cdf given by

F (x) =

{
1− e−aex/γ+a if x ≥ 0
0 otherwise

.

Let u : (0,∞) 7→ (0,∞) be the inverse of the function that maps t 7→
t ln t. This means that

u(t) = eW (t),

whereW is the LambertW function. Recall thatW is the unique solution to
the functional equationW (t)eW (t) = t, t > 0. It follows that eW (t) ln eW (t) =
t, which gives the form of u. For additional properties and applications of
Lambert’s W function see the classic survey [7]. By change of variables we
have

lim
t→∞

t
ln t

u(t)
= lim

t→∞

t ln t
ln t+ln ln t

t
= lim

t→∞

ln t

ln t+ ln ln t
= 1.
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Thus u(t) ∼ t/ ln t as t→∞, and hence

lim
t→∞

u(t) =∞.

Let X1, X2, . . .
iid∼ F , where F is a cdf satisfying Assumption G. Let

{Mt : t ≥ 0} be a collection of N-valued random variables independent of
the sequence {Xn}. For β > 0 set

St(β) =

Mt∑
i=1

eu(t)βXi

and
Zt(β) =

lnSt(β)

t
.

Assume that there exists a deterministic function R : [0,∞) 7→ N such that,
for some λ > 0

lim
t→∞

R(t ln t)e−λγt = 1 (11)

and for some c ∈ (0,∞)
Mt

R(t)

p→ c.

In this case, we get the following result.

Theorem 2. If λ ∈ (0,∞) then

lnSt(β)

t

p→ γβ.

Proof. The proof is given in Appendix B.

We can, immediately, extend this result to location-scale families as fol-
lows.

Corollary 2. Fix η ∈ R, σ > 0, and define

S
(η,σ)
t (β) =

Mt∑
i=1

eβu(t)(σXi+ηt/u(t)) = St(βσ)eβηt.

In this case

lnS
(η,σ)
t (β)

t
= βη +

lnSt(βσ)

t

p→ (γσ + η)β.
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We now turn to the alloy model for this situation. Fix p ∈ (0, 1), η ∈ R,
and σ > 0. For t > 0 let F (t)

p be the cdf given by

F (t)
p (x) = pF (x) + (1− p)F

(
x− ηt/u(t)

σ

)
.

Let X(t)
1 , X

(t)
2 , . . .

iid∼ F
(t)
p and set

S̃t(β) =

R(t)∑
i=1

eu(t)βX
(t)
i

and

Z̃t(β) =
ln S̃t
t
.

By arguments similar to those in Section 3.3, we have

Z̃t(β)
p→ Z̃(β) = max

{
Z(1)(β),Z(2)(β)

}
,

where
Z(1)(β) = γβ and Z(2)(β) = (γσ + η)β.

It follows that
Z̃(β) = max{γ, γσ + η}β.

Note that, in this case, there is no phase transition.

5 Gaussian Alloy Model

In this section, we formally introduce the Gaussian alloy model. By Lemma 2
this is a model with Weibull tails, where γ = .5 and ρ = 2. Thus, the results
of Section 3 hold. However, in this case, we can get an explicit solution for
Z̃(β).

Fix σ > 0, η ∈ R, and p ∈ (0, 1). Take R(t) = betc and let X1, X2, . . .
iid∼

N(0, 1). For t > 0, define the random variables Y (t)
1 , Y (t)

2 ,. . . ,Y (t)
R(t) to be

given by

Y
(t)
i =

{ √
tXi with probability p√
tσXi + ηt with probability (1− p) ,

where the choice is made independently for each i. This means that, for each
t, the random variables Y (t)

1 , Y (t)
2 ,. . . ,Y (t)

R(t) are iid with cdf

Φ(t)(x) = pΦ

(
x√
t

)
+ (1− p)Φ

(
x− tη
σ
√
t

)
,
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where Φ(x) = 1√
2π

∫ x
−∞ e

−t2/2dt is the cdf of a N(0, 1) distribution. In this
case the partition function is given by

St(β) =

betc∑
i=1

eβY
(t)
i .

Note that, if we restrict t to the integers, then this is exactly the model
introduced in Section 1. Proposition 1 implies that the free energy satisfies

Zt =
lnSt(β)

t

p→ Fσ,η(β),

where Fσ,η(β) = Z̃(β), but, taking ρ = 2, γ = .5, and λ = 2. We now
explicitly evaluate this function.

5.1 Case I: σ > 1

Let β(1)c =
√

2, β(2)c = σ−1
√

2 = σ−1β
(1)
c , and define

F (1)(β) =

{
1 + β2/2 if β ≤ β(1)c√

2β if β ≥ β(1)c

and

F (2)(β) =

{
1 + βη + σ2β2/2 if β ≤ β(2)c(
σ
√

2 + η
)
β if β ≥ β(2)c

.

It follows that

Fσ,η(β) = max{F (1)(β), F (2)(β)}.

If σ > 1 then β(2)c = β
(1)
c /σ < β

(1)
c and

Fσ,η(β) =


max{1 + β2/2, 1 + βη + σ2β2/2} if β ≤ β(2)c

max{1 + β2/2, (σ
√

2 + η)β} if β(2)c ≤ β ≤ β(1)c

max{
√

2β, (σ
√

2 + η)β} if β ≥ β(1)c

.

We now evaluate the maximum. To simplify the discussion we refer to the
region where β ≤ β(2)c as Region I, the one where β(2)c < β < β

(1)
c as Region

II, and the one where β ≥ β(1)c as Region III. We also introduce the notation
a1 = 0, a2 = −(σ2 − 1)/(σ

√
2), and a3 = −

√
2(σ − 1). Observing that

a2 = .5a3(1 + 1/σ) ≥ a3 for σ > 1, it follows that 0 = a1 ≥ a2 ≥ a3. Also

define β(3)c = −2η/(σ2 − 1) and β(4)c = σ
√

2 + η −
√

(σ
√

2 + η)2 − 2.

Region I. It is easy to see that, on this region, F (1)(β) ≥ F (2)(β) if and only
if β/2 ≥ σ2β/2+η, which holds if and only if β ≤ −2η/(σ2−1) = β

(3)
c . Since

13



β > 0, this never holds for η ≥ 0. Now assume that η < 0. The question
is whether −2η/(σ2 − 1) is in Region I, thus if −2η/(σ2 − 1) ≤

√
2/σ. This

inequality is equivalent to η ≥ −(σ2 − 1)/(σ
√

2) = a2.

Region II. If η ≥ 0 then, F (1)(β) = 1 + β2/2 ≤ 2 ≤ (σ
√

2 + η)β = F (2)(β).
If η ≤ a3 = −

√
2(σ− 1) then σ

√
2 + η ≤

√
2. It follows that, in this case, we

have F (2)(β) = (σ
√

2 + η)β ≤
√

2β ≤ 1 + β2/2 = F (1)(β), where the second
inequality follows from the fact that β2/2−

√
2β + 1 = .5(β −

√
2)2 ≥ 0.

We now focus on the case a3 = −
√

2(σ − 1) < η < 0. We begin by
introducing, for β ∈ (−∞,∞), the function f(β) = 1 + β2/2− (σ

√
2 + η)β,

and noting that, for β in Region II, we have f(β) = F (1)(β) − F (2)(β). To
understand where F (1) is larger than F (2) we must understand where f is
positive and where it is negative. First note that

f ′(β) = β − σ
√

2− η ≤ β −
√

2 < 0 for β <
√

2,

which means that f is decreasing for β <
√

2. Since f(0) = 1, it follows that
there is at most one point in (0,

√
2) at which f(β) = 0 and further, before

this point f is always positive and after this point f is always negative until
(at least) β =

√
2. Let us find the roots of f . We have

f(β) = β2/2− (σ
√

2 + η)β + 1 = 0,

which, by the quadratic formula, holds when

β± = σ
√

2 + η ±
√

(σ
√

2 + η)2 − 2.

Note that σ
√

2 + η >
√

2, which guarantees that the roots are real, positive,
and that β+ >

√
2 is not in Region II. On the other hand, β− ∈ (0,

√
2).

Thus f(β) ≥ 0 for β ≤ β− and f(β) ≤ 0 for β ∈ [β−,
√

2). The question
remains whether β− is in Region II or not. It is in Region II if and only if
β− >

√
2/σ, which is equivalent to the condition

(σ
√

2 + η)−
√

2/σ >

√
(σ
√

2 + η)2 − 2.

Now squaring both sides and simplifying leads to the equivalent condition

η < −σ
2 − 1

σ
√

2
= a2.

From here we can deduce that, on Region II, if η ≥ a2 then F (1)(β) ≤
F (2)(β), if η ≤ a3 then F (1)(β) ≥ F (2)(β), and if η ∈ (a3, a2) then F (1)(β) ≥
F (2)(β) for β ≤ β− and F (1)(β) ≤ F (2)(β) for β ≥ β−. Finally, we note that
β− = β

(4)
c .
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Region III. Note that here F (1)(β) ≥ F (2)(β) if and only if
√

2 ≥ σ
√

2 + η,
which holds if and only if η ≤ (1− σ)

√
2 = a3.

We now summarize the above as follows. If η ≥ a1 = 0 then Fσ,η(β) =
F (2)(β). If −(σ2 − 1)/(σ

√
2) = a2 ≤ η < a1 = 0 then Fσ,a(β) = F (3)(β),

where

F (3)(β) =


1 + β2/2 if β ≤ β(3)c

1 + βη + σ2β2/2 if β(3)c ≤ β ≤ β(2)c

(σ
√

2 + η)β if β ≥ β(2)c

.

If −
√

2(σ − 1) = a3 < η < a2 = −(σ2 − 1)/(σ
√

2) then Fσ,η(β) = F (4)(β),
where

F (4)(β) =

{
1 + β2/2 if β ≤ β(4)c

(σ
√

2 + η)β if β ≥ β(4)c

.

If η ≤ a3 = −
√

2(σ − 1) then Fσ,η(β) = F (1)(β).
It is straightforward to see that for all fixed σ > 1 and η ∈ R, the

function Fσ,η(β) is continuous in β. However, when a3 ≤ η < a2 the function
Fσ,η(β) = F (4)(β) is not differentiable in β at β = β

(4)
c thus it has a first

order phase transition there. Similarly, when a2 ≤ η < a1 the function
Fσ,a(β) = F (3)(β) is not differentiable in β at β = β

(3)
c , and it has a first order

phase transition there. On the other hand, on this region, it is differentiable
at β = β

(2)
c , but only once, thus it has a second order phase transition at

that point.

5.2 Case II: σ ≤ 1

We begin with the case σ = 1. In this case, β(2)c = β
(1)
c /σ = β

(1)
c and

F1,η(β) =

{
max{1 + β2/2, 1 + βη + β2/2} if β ≤ β(1)c

max{
√

2β, (
√

2 + η)β} if β ≥ β(1)c

.

It follows that, if η ≥ 0 then F1,η(β) = F (2)(β) and if η ≤ 0 then F1,η(β) =
F (1)(β).

We will not deal with the case where σ < 1 directly. Instead, we will
show that results for this case follow directly from results for the case σ > 1.
First note that, for any σ > 0, we have

Fσ,η(β) = max{F (1)(β), F (2)(β)} = max{F (1)(β), F (1)(σβ) + ηβ}.

It follows that
Fσ,η(β) = F1/σ,−η/σ(βσ) + ηβ.

From here, we can easily use the results for the case σ > 1 to get results for
this case.
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If η ≤ 0 then Fσ,η(β) = F (1)(β). If 0 < η ≤ (1− σ2)/
√

2 then Fσ,η(β) =
F (5)(β), where

F (5)(β) =


1 + ηβ + σ2β2/2 if β ≤ β(3)c

1 + β2/2 if β(3)c ≤ β ≤ β(1)c√
2β if β ≥ β(1)c

,

where, as before, β(1)c =
√

2 and β(3)c = 2η/(1 − σ2). If (1 − σ2)/
√

2 < η <√
2(1− σ) then Fσ,η(β) = F (6)(β), where

F (6)(β) =

{
1 + ηβ + σ2β2/2 if β ≤ β(5)c√

2β if β ≥ β(5)c

,

where β(5)c =

(√
2− η −

√
(
√

2− η)2 − 2σ2
)
/σ2. Finally, if η ≥

√
2(1− σ)

then Fσ,η(β) = F (2)(β).
Note that, as in the case where σ > 1, the function Fσ,η is always con-

tinuous in β. Further, when 0 < η ≤ (1 − σ2)/
√

2 we have a first order
phase transition at β = β

(3)
c and a second order one at β = β

(1)
c . When

(1 − σ2)/
√

2 < η <
√

2(1 − σ) we have a first order phase transition at
β = β

(5)
c .

5.3 Phase Diagram

In Figure 1 we plot the phase diagram in a coordinate system plotting σ
against η. The solid line represents the line η = 0, the dashed line represents
the line η =

√
2(1−σ), and the dotted line represents the curve η = 1−σ2

√
2(σ∨1) ,

where (σ ∨ 1) represents the maximum of σ and 1. These curves divide the
right half-plane into six regions, labeled 1, 2, . . . , 6. On Region i, Fσ,η(β) =
F (i)(β) for i = 1, 2, . . . , 6.

A Proofs for Section 3

Proof of Lemma 2. Let φ(x) = (2π)−1/2e−x
2/2 and Φ(x) =

∫ x
−∞ φ(t)dt be,

respectively, the pdf and cdf of the N(0, 1) distribution. It is well-known,
see e.g. [12], that for x > 0

x

x2 + 1
φ(x) ≤ 1− Φ(x) ≤ 1

x
φ(x),

and thus

− ln(x+ 1/x)− .5 ln(2π)− x2/2 ≤ ln(1−Φ(x)) ≤ − lnx− .5 ln(2π)− x2/2.
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Figure 1: Phase Diagram. On Region i, Fσ,η(β) = F (i)(β) for i = 1, 2, . . . , 6.

It follows that
1− Φ(x) ∼ 1

x
φ(x) as x→∞

and
h(x) = − ln(1− Φ(x)) ∼ x2/2 as x→∞.

Thus h ∈ R2 and

xh′(x)

h(x)
=

xφ(x)

− ln(1− Φ(x))(1− Φ(x))
∼ x2

x2/2
= 2.

From here, applying Lemma 1 shows that h ∈ NR2. The formula for H
follows immediately from the fact that, if X ∼ N(0, 1), then E

[
etX
]

=

e.5t
2 .

For simplicity of notation we write

St = St(1) =

Mt∑
i=1

et
1/ρXi , Ut = Ut(1) =

R(t)∑
i=1

et
1/ρXi ,

and
λ∗ = ρ− 1.

We now collect several results from [2].
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Proposition 2. In all of the following, take κ = 1.
1. If λ > λ∗ then

Ut

R(t)eH(t1/ρ)

p→ κ. (12)

2. If λ < λ∗ then there is a deterministic sequence Aρ(t) with

Ut

Aρ(t1/ρ)

d→ κ1/αξα, (13)

where ξα is a fully right-skewed α-stable random variable with α = (λ/λ∗)1/ρ

and characteristic function

φα(t) = exp
{
−Γ(1− α)|t|αe−.5iπαsgn(t)

}
. (14)

Further,
lnAρ(t) ∼ ρ(λ/λ∗)1−1/ργtρ.

3. If λ = λ∗ then there is a deterministic sequence Bρ(t) with

Ut

R(t)Bρ(t1/ρ)

p→ κ. (15)

Further, Bρ(t) ≤ eH(t) and there are functions H0 and bρ such that Bρ(t) =
eH0(t)bρ(t) with H0(t) ∼ H(t) and bρ(t)→∞.

Proof. Combining Theorem 2.1, Theorem 2.3, Theorem 2.4, and (5.21) from
[2] gives everything except the representation of Bρ(t), which follows from
(5.32), (5.23), (5.27), (5.19), and Lemma 5.6 in [2] along with the fact that
λ = ρ− 1 in this case.

We will need a randomized version of these result. Toward this end we
recall a transfer theorem, which can be found in, e.g. Theorem 4.1.2 of [11].

Proposition 3. Let {Xt,n} be random variables such that, for a fixed t,
Xt,1, Xt,2, . . . are iid, and let Kt be a random variable independent of {Xt,n}.
Assume that there are natural numbers kt with kt →∞ as t→∞ such that

kt∑
n=1

Xt,n
d→ Y as t→∞,

where Y has characteristic function φ. If

Kt

kt

p→ c ∈ [0,∞)

then
Kt∑
n=1

Xt,n
d→ Y ∗,

where Y ∗ has characteristic function φ∗ with φ∗(t) = (φ(t))c.
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Combining this with Proposition 2 immediately gives the following.

Proposition 4. If
Mt

R(t)

p→ c ∈ (0,∞),

then the results of Proposition 2 remain true with Ut replaced by St and κ
replaced by c.

We can now prove a result, from which Theorem 1 follows immediately.

Proposition 5. If λ ∈ (0,∞) then

lnSt(β)

t

p→ γβρLρ(λ/β
ρ),

where

Lρ(λ) =

{
λ+ 1 if λ ≥ λ∗

ρ (λ/λ∗)1−1/ρ if λ ≤ λ∗
.

The proof is similar to that of Theorem 9.1 in [1]. We include it here for
completeness.

Proof. In this proof, all limits should be understood in the sense of con-
vergence in probability. We begin with the case β = 1. If λ > λ∗ then,
by Slutsky’s Theorem, the continuous mapping theorem, Proposition 4, (5),
and (6) it follows that

lim
t→∞

lnSt
t

= lim
t→∞

ln

(
St

R(t)eH(t1/ρ)

)
+ lnR(t) +H(t1/ρ)

t
= γ(λ+ 1).

Similarly, if λ < λ∗ then

lim
t→∞

lnSt
t

= lim
t→∞

ln
(

St
Aρ(t1/ρ)

)
+ lnAρ(t

1/ρ)

t

= lim
t→∞

ln
(

St
Aρ(t1/ρ)

)
+ ρ(λ/λ∗)1−1/ργt

t
= γρ(λ/λ∗)1−1/ρ.

Finally, if λ = λ∗ then

lim sup
t→∞

lnSt
t

= lim sup
t→∞

ln
(

St
R(t)Bρ(t1/ρ)

)
+ lnR(t) + lnBρ(t

1/ρ)

t

≤ lim sup
t→∞

ln
(

St
R(t)Bρ(t1/ρ)

)
+ lnR(t) +H(t1/ρ)

t
= γ(λ+ 1),
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while

lim inf
t→∞

lnSt
t

= lim inf
t→∞

ln
(

St
R(t)Bρ(t1/ρ)

)
+ lnR(t) + lnBρ(t

1/ρ)

t

= lim inf
t→∞

ln
(

St
R(t)Bρ(t1/ρ)

)
+ lnR(t) +H0(t

1/ρ) + ln bρ(t
1/ρ)

t

≥ lim inf
t→∞

ln
(

St
R(t)Bρ(t1/ρ)

)
+ lnR(t) + H0(t1/ρ)

H(t1/ρ)
H(t1/ρ)

t
= γ(λ+ 1).

We now extend to the case β 6= 1. Since (5) implies that

ln E
[
etβX

]
∼ γβρtρ as t→∞,

it follows that we must replace γ with γβρ and λ with λ/βρ.

B Proofs for Section 4

Lemma 3. If a, γ > 0, g ∈ NR1/γ, and g(x) ∼ ax1/γ as x→∞, then

g−1(x) ∼ (x/a)γ .

Proof. Since g−1(x)→∞, change of variables implies that

lim
x→∞

g−1(x)

(x/a)γ
= lim

x→∞

g−1(x)

(g(g−1(x))/a)γ
= lim

x→∞

x

(g(x)/a)γ

= lim
x→∞

x

x
(
g(x)

ax1/γ

)γ = 1,

as required.

For simplicity of notation, we write

St =

Mt∑
i=1

eu(t)Xi and Ut =

R(t)∑
i=1

eu(t)Xi .

The following proposition collects several results from [4].

Proposition 6. In all of the following, take κ = 1.
1. If λ > 1 then

Ut

R(t)eH(u(t))

p→ κ. (16)
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2. If λ < 1 then there is a deterministic sequence A(t) with

Ut
A(u(t))

d→ κ1/αξα, (17)

where ξα is a fully right-skewed α-stable random variable with α = λ and
characteristic function is given by φα as in (14) and

lnA(t) ∼ γt ln t.

3. If λ = 1 then there is a deterministic sequence B(t) with

Ut
R(t)B(u(t))

p→ κ. (18)

Further, B(t) ≤ eH(t) and B(t) = A(t)e−γtb(t) for some function b with
b(t)→∞.

Proof. This combines Theorem 2.1, Theorem 2.4, Theorem 2.5, Lemma 6.3,
and (5.4) in [4].

Combining this with Proposition 3 gives the following.

Proposition 7. If
Mt

R(t)

p→ c ∈ (0,∞),

then the results of Proposition 6 remain true with Ut replaced by St and κ
replaced by c.

We can now prove Theorem 2.

Proof of Theorem 2. In this proof all limits should be understood in the
sense of convergence in probability. We begin with the case β = 1. If λ > 1
then, by Slutsky’s Theorem, the continuous mapping theorem, Proposition
7, (9), (11), and (10) it follows that

lim
t→∞

logSt
t

= lim
t→∞

log
(

St
R(t)eH(u(t))

)
+ logR(t) +H(u(t))

t

= lim
t→∞

lnR(t ln t) +H(t)

t ln t

= lim
t→∞

lnR(t ln t)

t ln t
+

H(t)
t − ln

(
g−1(t)

)
+ ln

(
g−1(t)

)
ln t

=
ln
(
g−1(t)
(t/a)γ

)
+ γ ln t− γ ln a

ln t
= γ.
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Similarly, if λ < 1 then

lim
t→∞

lnSt
t

= lim
t→∞

log
(

St
A(u(t))

)
+ lnA(u(t))

t

= lim
t→∞

lnA(t)

t ln t
= γ.

Finally, if λ = 1 then

lim sup
t→∞

logSt
t

= lim sup
t→∞

ln
(

St
R(t)B(u(t))

)
+ lnR(t) + logB(u(t))

t

≤ lim sup
t→∞

lnR(t ln t) +H(t)

t ln t
= γ

while

lim inf
t→∞

lnSt
t

= lim inf
t→∞

log
(

St
R(t)B(u(t))

)
+ lnR(t) + lnB(u(t))

t

= lim inf
t→∞

lnR(t ln t) + logB(t)

t ln t

≥ lim inf
t→∞

lnR(t ln t) + logA(t)− γt
t ln t

= lim inf
t→∞

lnA(t)

t ln t
= γ.

We now extend to the case β 6= 1. Since

− logP (βX > x) = h(x/β),

we must replace γ by γβ and λ by λ/β.
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