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Abstract—Mobility models are crucial for the simulation and
evaluation of protocols for multihop wireless networks. However,
most commonly used mobility models do not reflect the way
humans actually move. This significantly affects the reliability
of simulation results. In this paper we introduce a new mobility
model called the Smoothly Truncated Levy Walk (STLW), which
is more realistic than most standard models that appear in the
literature. Its main innovations are as follows. First, to take
into account dependencies in the direction of motion, it models
changes in the direction instead of the standard approach, which
directly models the direction and ignores these dependencies.
Second, it uses realistic models for pause times, flight lengths,
and changes in direction. In particular, it uses tempered stable
distributions to model pause times and flight lengths and the
beta distribution to model changes in direction. We justify the
use of these distributions from both a theoretical and an empirical
perspective. In particular, we perform a trace-based validation
on several real-world traces from various scenarios. Validation
results show that this model is very flexible and can be used to
model human movements in a variety of situations.

I. INTRODUCTION

Multihop wireless networks (e.g. Mobile Ad Hoc Networks
(MANET), Vehicular Ad Hoc Networks (VANET), and De-
lay Tolerant Networks (DTN)) have drawn a great deal of
research effort over the past decade. Unlike more standard
networks (e.g. cellular networks or WLAN) they do not have
an established infrastructure or a centralized controller. Instead,
they rely on the mobile nodes themselves (i.e. mobile devices
carried by humans) to maintain network connectivity and relay
messages to each other. This infrastructureless structure makes
network deployment easy, but it has several unique features,
such as peer-to-peer multihop communications and a dynamic
topology due to node movements, which make routing protocol
design a challenging task.

Simulation is perhaps the most widely used tool in the
development, evaluation, and refinement of multihop wire-
less network protocols. It has the advantages of scalability,
reproducibility, and time and cost efficiency. In order to run
simulations one needs a mobility model to generate the random
movements of humans. Research has shown that different
mobility models can significantly impact the performance of
MANET routing protocols, including the packet delivery ratio,
the control overhead, and the packet delay, see [2]. Therefore,
in order to accurately evaluate performance, it is important to
use a realistic mobility model that can accurately reflect the
movement of humans.
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A large number of mobility models have been proposed in
the literature. Building on these, we define a new mobility
model called the Smoothly Truncated Lévy Walk (STLW).
This model uses tempered stable distributions to model flight
lengths and pause times and a beta distribution to model
changes in direction. These are flexible models, which do not
appear to have been used in this context before. Moreover, the
idea of modeling changes in the direction travelled appears
to be new. Most models assume that the direction travelled
is independent of the previous direction, but this assumption
ignores important dependence structures seen in the data.

In Section II we discuss related work, in Section III
we present our model, in Section IV we give a theoretical
motivation for this model, and in Section V we fit our model
to real-world data and provide an empirical justification for it.
The real-world data consists of four traces collected in [19],
which represent mobility characteristics of wireless network
users in various scenarios. In Section VI we use simulation
to study the topological properties of this model. Finally, we
conclude in Section VII by discussing several directions for
future work.

II. RELATED WORK

A number of different mobility models have appeared
in the literature. Many of these use historical or geographic
information to generate mobility traces, see e.g. [12], [14],
[17], [11]. While this is useful for developing protocols to be
used in specific scenarios, we focus on general mobility models
that are not linked to particular situations.

The Random Way Point (RWP) model [13] is, perhaps,
the best known and most widely used mobility model. It
generates traces (i.e. paths) as follows. Each node starts at
a randomly selected location in the simulation area. It stays
there for a fixed amount of time, which is called the pause
time. After this it chooses a destination randomly and moves
toward this destination at a speed randomly chosen from
between some predetermined minimum and maximum values.
When the node reaches its destination, it stays there for the
fixed pause time and then the process repeats. Although a
constant pause time and the way destinations are chosen are
not realistic, nevertheless RWP provides the basic ingredients
that a mobility model should have.

To flesh this out further, a number of modifications to RWP
have been proposed. One of the best known is the Random
Direction (RD) model introduced in [20]. Here each node



chooses a direction uniformly at random and then travels in
this direction until it reaches the boundary of the simulation
area. Then, after a fixed pause time, it chooses a new direction
and the procedure repeats. Since, in practice, a person may
stop or change direction before reaching a boundary, [20]
also introduced the Modified Random Direction (MRD) model.
Here the node chooses a random direction and then moves in
this direction for a random distance. This distance, which is
called the flight length, is chosen uniformly at random.

In [19], after a thorough analysis of several real-world
traces, a modification of MRD was proposed. In this modi-
fication the pause times are no longer fixed. Instead they are
random and the distributions of both the pause times and the
flight lengths are much more realistic. Specifically, it is as-
sumed that both of these are simulated as follows. A proposed
pause time and a proposed flight length are simulated from
(potentially different) symmetric stable distributions. If the
values are negative then they are ignored and new values are
sampled. Further, there are truncation parameters 7,,7; > 0.
If a simulated pause time exceeds 7, then the observation is
ignored and a new one is simulated. A similar procedure is
preformed to ensure that the flight lengths do not exceed 7.
This model is called the Truncated Lévy Walk (TLW).

Although it is more realistic than the others, the TLW
model, nevertheless, has several limitations. These include the
distributions that are used and the way in which new directions
are chosen. We will discuss these limitations and ways to
improve upon them in the next section. Before proceeding,
we mention that modifications of RWP in somewhat different
directions have also been proposed in [1] and [3].

III. SMOOTHLY TRUNCATED LEVY WALKS

In this section we describe our mobility model. It is
inspired by the TLW model introduced in [19], but it differs
from that model in the following important ways:

e  We allow for the possibility that a person may change
direction without pausing.

e Instead of directly modeling the direction in which a
person moves, we model the change in this direction.
For this we use a beta distribution.

e  We use tempered stable distributions to model pause
times and flight lengths.

The first of these modifications is self explanatory. The
second stems from the fact that people tend to travel with
a purpose. While there may be various geographic obstacles
forcing them to deviate from a straight line, on the whole
they tend to go toward a particular destination. This creates
dependencies in the direction travelled, which are taken into
account by modeling changes in the direction.

Tempered stable distributions are similar to the ones used
in the TLW model, in that they are very similar to stable
distributions in some central region, but their tails have been
modified to ensure that the values do not get too big. The main
difference is the way in which this modification is made. In the
TLW model the tails are modified through a “hard” truncation,
which relies on arbitrary truncation parameters that are difficult
to justify from a practical perspective. After all there do not

exist reasonable values such that one can say with certainty
that a person may wait (or move) less than this value but not
more. On the other hand, tempered stable distributions have a
“smooth” truncation, where their tails are made to, eventually,
decay exponentially fast. For this reason we call our models
Smoothly Truncated Lévy Walks (STLW).

Further, tempered stable distributions have nice analytic
properties, which allow us to, among other things, give a
theoretical justification for their use, see Section IV. Below,
we introduce the probability models that we will use and
present the algorithm for STLW. The probability models are
summarized in Table 1.

A. Distributions

(Model of changes in direction.) To model changes in
direction we use the beta distribution, which is one of the best
known and most heavily used distributions on a finite interval.
The beta distribution on (0, ) has a density given by
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f)={ Baa” Yr—2)fL, 0<o<nm
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where B(-,-) is the beta function and «, 8 > 0 are parameters.
We denote this distribution by beta(a, $). The parameter
« describes what happens near zero and the parameter /3
describes what happens near 7. In particular, if « € (0,1)
then the density is unbounded near 0 creating a mode
there. A similar fact holds near m when 5 € (0,1). It can
be readily checked that, if X has distribution beta(ca, )
Fhen E[X] = WJ‘Tﬁ apd Var(X) = W2W. An
important special case is when o = 8 = 1. Here the model
reduces to the uniform distribution on (0, 7).

(Model of flight lengths and pause times.) To model flight
lengths and pause times we use the tempered stable distri-
bution. A tempered stable distribution on [0,00) has three
parameters, € (0,1), # > 0, and ¢ > 0. Its moment
generating function is given by

E[e*X] = exp {fa [1-(1- fz)“]} , z2<1/¢.
We denote this distribution by 7'S(«, 8, ¢). It is easy to check
that E[X] = Baf'~* and Var(X) = B> “a(l — ). These
distributions were first introduced in [21], see [16] for a more
recent review. They form an important subclass of a more
general class of tempered stable models, see [7] and the
references therein.

While the densities of these distributions are not available
in a closed form, very good numerical estimates are available
in the Tweedie library [4] for the statistical software package
R. This library also has methods for simulating tempered stable
random variables and evaluating their cumulative distribution
functions. To get a better understanding of the role played by
the parameters, we give the following asymptotic result. If g
is the density of a T'S(«, 3, ¢) distribution, then

glz) ~ Ce /P x717% a5 2 — o0, (D

ba__ o/t and T'(-) is the gamma function.

where C' = Ti-a)




TABLE 1. PROBABILITY MODELS.

Model Notation Parameters

Stable S(e, B) a € (0,1),8>0
Tempered Stable  T'S(«, 3,£) «a€(0,1),8>0,£>0

Beta beta(a, 8) a>0,8>0

The name “tempered stable distribution” is explained by
the fact that these distributions have densities that are very
similar to those of stable distributions in some central region,
but they have lighter, i.e. tempered, tails. To formalize this,
first recall that stable distributions on [0, 00) are determined
by

Ele?Y] =PI 2 <o,
where o € (0,1) and 5 > 0 are parameters. We denote this
distribution by S(a, f).

Although stable distributions have important theoretical
interpretations (see Theorem 1 in Section IV) and have been
found to be very useful in a variety of applications, they have
extremely heavy tails, and, in fact, both their means and their
variances are infinite. This is not realistic for most applications
since, in practice, there are all kinds of real-world obstacles
limiting the size of random phenomena. For this reason it is
useful to consider modifications of these distributions, which
have lighter tails. One way to do this is as follows. Let f(x)
be the density of a S(«, 3) distribution and let

g(x) = Ke /' f(a),

where K = ¢/¢". This distribution has all moments finite,
and, in fact, it is the density of a T'S(«, 3, ¢) distribution. It
is clear that if ¢ > 0 is very large then this density will be
indistinguishable from f(z) for small, medium, and even fairly
large values of z, but for very large values of x the tails decay
exponentially fast.

B. Algorithm

We now describe the implementation of our mobility
model. We begin with a node placed on the simulation area. It
can be placed at a random or a prechosen location. Since there
is no reason to believe, a priori, that a person is more likely to
move in any particular direction, we choose the initial direction
uniformly at random. After this, we choose a flight length from
aTS(ay, By, Ly) distribution and we choose a speed uniformly
at random from between some preset minimum and maximum
values. Once we reach the destination, we wait a random
amount of time. With probability p this time is zero and with
probability 1 — p we sample this time from a T'S(c,, Bp, {p)
distribution. After this time has elapsed, we sample a direction
change 6 from a beta(ag, B4) distribution and a flight length
X from a T'S(cy, By, ¢y) distribution. With probability .5 we
turn 0 radians to the left or with probability .5 we turn 6
radians to the right. Then we choose a speed as before and
travel a distance of X in the new direction at this speed. We
then iterate the procedure. See Algorithm 1 for more details.

In practice, one generally wants the nodes to stay within
a fixed and finite simulation area. To ensure this, we suggests
the following modification to the algorithm. When a node
reaches the boundary it should bounce off such that the angle
of incidence equals the angle of reflection.

Parameters: For pause time: p € (0,1), o, € (0,1),
Bp > 0, £, > 0; For flight length: oy € (0,1), 85 > 0,
£y > 0; For direction change: ag > 0, 8¢ > 0; For
speed: maxspeed > minspeed > 0.

Begin:

1. Choose a starting location on the simulation area.
2. Simulate a direction ¢ uniformly at random and
simulate a flight length X from T'S(a, B, €5).

3. Choose a speed uniformly between minspeed and
maxspeed and move in direction ¢ a distance of X at
this speed.

while Arrive at destination do

4. With probability p simulate a random time from
TS(ayp, By, ¢p) and wait this amount of time.
Otherwise continue to step 5.

5. Simulate 6 from beta(ag, 34) and X from
TS(ay, By, ly).

6. With probability .5 turn 6 radians left otherwise
turn € radians right.

7. Choose a speed uniformly between minspeed
and maxspeed and move forward a distance of X
at this speed.

end
Algorithm 1: STLW mobility model.

IV. THEORETICAL JUSTIFICATION

In this section we give a theoretical justification for using
the tempered stable distribution to model flight lengths. To
do this we begin by describing the motion of a person, who
we will refer to as the walker. First, assume that we observe
the location of the walker at fixed time increments At. Let
{X,, :n=0,1,...} be a discrete time stochastic process on
R? such that X,, is the location of the walker at time nAt.
Let Z, = X,, — X,,_1 be the increment process. If the walker
did not stay in the same place during the ¢th time interval we
can write Z; = éT|ZZ , where |Z;| represents the magnitude

Z;

of the displacement and 177 tepresents the direction of travel.

A common model for |Z;| is called a Lévy walk. Here it
is assumed that the magnitudes of displacement |Z;| are iid
random variables having a Pareto distribution, i.e. having a
density given by

a(;ax—oz—l

o ={ *

where « € (0,1) and § > 0 are parameters. One can allow
«a to be any positive number, but most empirical data on
human mobility suggests o € (0,1), see [6], [19], [18], and
the references therein. In practice, however, the movement of
humans is more complicated and the Pareto distribution is only
valid for large values of z. For this reason we assume only that
for some ¢ > 0 the density satisfies

>0
otherwise

; @)

f(z) ~cx 1 asz — oo. 3)

It turns out that the actual distribution of |Z;| does not
matter if we model the lengths of entire flights at once. A
flight is a part of the walk where the walker keeps going
in the same direction. Assume, for instance, that after the
walker starts walking at time O, the first time that she stops
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Fig. 1. The histograms (normalized to sum to one) represent the empirical distributions of the pause times. Overlaid are plots of the densities of the estimated

tempered stable distributions.

or changes direction is at time N At¢. This means that | X | =
|Zy+Zo+-- -+ 2ZNn| = Zf\;l |Z;|, where the second equality
follows because all of the steps are in the same direction.
Since a person is likely to walk in the same direction for
a relatively long time, NV is likely to be quite large and we
can approximate the distribution of |X | by its asymptotic
distribution. This asymptotic distribution is described in the
theorem below, which is a version of the central limit theorem
for infinite variance distributions, see [5] for details.

Theorem 1. If o € (0,1) then

n VN z Sy,
1=1

where Y has a S(«, 3) distribution and B > 0 is a constant
depending of the distribution of | Z;|.

This discussion suggests that flight lengths should be well
modeled by S(«, 3) distributions. However, the tails of these
distributions are too heavy. In practice, there are various
geographic and physical limitations that prevent flight sizes
from getting too big. In fact, empirical data suggests that (3)
holds for large, but not too large values of x, see [6], [19], [18],
and the references therein. This has led to the development of
tempered Lévy walks.

A tempered Lévy walk assumes that the density satisfies
flx) ~ ce "y a5 1 — oo, 4)

for « € (0,1) and ¢ > 0. If ¢ is very big, this means that
for medium and somewhat large values of = f(x) ~ cx =71,
but for very large values of x, we start to feel the exponential

function and the tails ultimately decay exponentially fast. We

will show that, in this case, the sum | X | = Zivzl |Z;| is well
approximated by a tempered stable distribution. Although we
can no longer use the central limit theorem, we can use the
following result from [9] (for a preliminary version see [8]).
First, we introduce the notation Z;(¢) = Z; to emphasize the
dependence of the distribution of Z; on the parameter /.

Theorem 2. If { — oo such that n=/“¢ — {' € (0,00) then
N
n~t/e Z | Z:(0)] LY as n,{ — oo,
i—1

where Y has a T'S(«, 8,0') distribution and {3 is a parameter
depending on the distribution of |Z;({)|.

In practice, of course, the parameter ¢ is not actually
approaching infinity. Instead it is some fixed but (very) large
constant. In this case we can interpret the theorem in the fol-
lowing way. If n is large, but n~'/*¢ is medium sized, we can
approximate the distribution of the sum by a tempered stable
distribution. A different justification for approximating the sum
by a tempered stable distribution is given in [10]. There the
approximation follows by showing that the distribution of the
sum is close to that of a tempered stable distribution in a
certain metric on the space of probability distributions. This
discussion suggests that tempered stable distributions should
be very good models for flight lengths.

V. TRACE ANALYSIS

In this section we validate our models by fitting them to real
world data. The data consists of human mobility traces from
four different sites collected by [19]. These sites are a state
fair in North Carolina, Disney World in Florida, the campus
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Fig. 2. The histograms (normalized to sum to one) represent the empirical distributions of the flight lengths. Overlaid are plots of the densities of the estimated

tempered stable distributions.

of North Carolina State University (NCSU), and New York
City (NYC). They range from small to very large geographic
areas, and the traces collected from them represent human
movements using different modes of travel. We obtained
the trace data from CRAWDAD [15]. All of the data had
been collected using Garmin GPS 60CSx handheld receivers,
which took samples every 10 seconds. Each position was then
recomputed as an average of three samples over the 30 second
period to account for GPS errors. In processing the data, we
extracted information about flight lengths, pause times, and
direction changes as follows. We consider a pause to be any
period when the distance travelled between two consecutively
sampled positions (i.e. during a 30 second period) is less than
a predefined threshold value. Consecutive pause periods are
considered to be part of the same pause. We define the start
of a flight to be one of two situations. Either a) this is the
first time we move more than the threshold value after a pause
or b) the change in direction between two consecutive periods
is more than a predefined threshold value. If we are not in a
pause and we are not starting a new flight, then we assume
that the previous flight is continuing. With these definitions,
we extract the following information from the trace data:

e  Flight length: the distance travelled during one flight.

e  Pause time: the time elapsed between two consecutive
flights.

e Direction change: the difference in direction between
two consecutive flights.

For each of the four scenarios, we used the data to estimate
the parameters of our model. These parameters were estimated
using the method of maximum likelihood. This method re-
quires initial estimates, which were found using the method

of moments. The density of the tempered stable distribution
was evaluated using the Tweedie library [4] for the statistical
software package R. In the following subsections we present
and discuss the results of this analysis.

A. Flight lengths and pause times

The data sets that we use were collected and first analyzed
in [19]. There it was shown that the tails of the distributions
of flight lengths and pause times decay like a polynomial up
to a point, but, eventually, the decay becomes exponentially
fast. This is exactly the behavior exhibited by tempered stable
distributions, see equation (1). We will now see how well these
models fit the data.

Figure 1 shows histograms of the pause times for each
of the four scenarios. Here (and throughout) the histograms
have been normalized to sum to one. Overlaid are plots of the
densities of the estimated tempered stable distributions. We see
that this model fits the data very well. It does so both in the
mode and in the tails.

Figure 2 shows our analysis of the flight lengths. For
each trace we give a histogram of the data overlaid with the
density of the estimated tempered stable distribution. We see
that the model does a very good job fitting the data in the
case of NCSU and NYC. These are situations with a large
geographic area, where locations of interest may be quite far
apart. The fit is slightly worse in the case of the state fair
and Disney World. In the plot for Disney World we see that,
although the estimated tempered stable density does a good job
modeling the mode and the tail, the histogram has quite a bit
of mass above the estimated density in the central portion. This
suggests that the tempered stable distribution under-estimates
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the chance of a “medium” sized flight. This may be caused
by the fact that, in Disney World, there are many attractions
relatively close to each other, and a visitor is more likely to go
to an attraction that is not very far away. A similar situation is
seen in the state fair data. Never-the-less, the tempered stable
distribution captures the main trends seen in these cases.

This discussion suggests that when we want to model
specific scenarios (i.e. if we are particularly interested in
amusement parks) it is useful to take into account the specific
features of those situations. However, when we are interested
in a general situation, tempered stable distributions provide a
flexible class of models that cover the basic trends seen in the
data and have an intuitive theoretical interpretation.

B. Direction Change

In this section we analyze the direction change data.
Note that we only consider changes in direction when a new
flight begins. Figure 3 shows histograms of the changes in
direction for each of the four scenarios. Overlaid are plots

of the densities of the estimated beta distributions. From the
histograms we see that the probability of making small changes
in direction is quite high. Intuitively, this makes sense since
people tend to travel with a purpose. While there may be
various geographic obstacles forcing them to deviate from a
straight line, on the whole they tend to go toward a particular
destination. In the NCSU and NYC data we see that the chance
of turning around close to 7 radians (180°) is also relatively
high. Intuitively, this may be because once a person is finished
at a destination she is more likely to turn around and go back.
This kind of behavior is much less prominent in the state fair
and Disney World data. This may be because at these locations
there are many attractions near each other and hence there is
less need to go back.

We now turn our attention to the estimated beta distribu-
tions. We see that, although they are not perfect, they capture
the main trends seen in all four datasets. In particular, they
capture both the mode near 0 and the smaller one near 7. The
only exception is the state fair data, where it is less clear if a
mode near 7 truly exists. From the structure of the data it is
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Fig. 5. Locations of the nodes at three time points. They are evenly distributed
with no parts of the simulation area having a large cluster of nodes.

clear that, for the purposes of simulation, we should choose
our parameters to satisfy € (0,1) and o < S. This will
ensure that there is a mode at 0 and that the mode near 7 (if it
exists) is smaller than the one near 0. If we want to guarantee
the existence of a mode near m we should choose § € (o, 1).

Having shown that the beta distribution captures the general
trends observed in the data, we now show that the standard
models do not. To do this we simulated a trace with 5000
flights from each of two common models. We used this to
estimate the distribution of changes in direction. In Figure
4a) we give the histogram of changes in direction for the
MRD model (note that directions are chosen in the same
way in the TLW model). In this case, since the directions
are chosen uniformly at random, it is not surprising that the
direction changes are uniform as well. In Figure 4b) we give
the histogram of changes in direction for the RWP model
based on a 500 x 500 simulation area. In this case changes
in direction tend to be very large. This means that a person
following the RWP model is much more likely to go backward
than forward. This seems to be caused by the fact that, in
the RWP model, a person is more likely to move toward the
center of the simulation area than anywhere else. Since, in
the case of RWP, the distribution of changes in direction is
sensitive to the dimensions of the simulation area, we tried a
variety of different dimensions. However, the general trends
were similar in all cases. When we compare the histograms
of direction changes in these two models with the histograms
of real-world data given in Figure 3 we see that they are very
different, and hence these models do not model the data well.
On the other hand, the beta distributions capture exactly the
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the Disney World and NYC scenarios.

kind of behavior observed in the data.

VI. SIMULATIONS

When developing efficient routing protocols for multihop
wireless networks it is important to understand the topological
structure of the nodes and how this structure evolves over
time. To study this we conduct several sets of simulations.
For these simulations, mobility traces are generated based
on the parameters estimated in two scenarios: Disney World
and NYC. For both scenarios we consider three simulation
areas. These are, in meters, 1000 x 1000, 1500 x 1500, and
2000 x 2000. For each situation, we simulate a network with
50 mobile nodes and let the simulation run for 5000 seconds.
In the Disney World scenario, we choose node speeds that
are realistic for walking, specifically, the minimum speed and
the maximum speed are chosen to be 0.5 m/s and 2.0 m/s
respectively. For the NYC scenario, we assume that people
may take taxis or the subway and thus we allow the speed
to vary from 15.0 m/s to 20.0 m/s. We now analyze three
important characteristics of the network topologies generated
by our mobility model.

A. Node Distribution

Figure 5 plots the locations of the nodes at times, in
seconds, 1, 2500, and 5000. We only plot this for the Disney
World scenario with a 1500 x 1500 simulation area as, in
the other situations, the plots look very similar. Likewise, we
looked at the plots for many other times and they also look
very similar. We see that the nodes are evenly distributed in
the simulation area at all times, and, in particular, there is no
clustering of nodes in any one part of the simulation area. Since
we start with a uniform distribution, it is not surprising that
this holds at time 1, what is important is that this continues to
hold for all of the other times. For a comparison, in the RWP
model it is well-known that after a while the nodes start to
cluster near the center.



B. Average Number of Neighbors

We say that two nodes are neighbors if they are close
enough to each other that their wireless devices can commu-
nicate. For the purposes of our simulations we assume that
the maximum node transmission range is 250 meters. Thus
two nodes are neighbors if they are within 250 meters of each
other. The average number of neighbors per node throughout
the simulation is shown in Figure 6. For each simulation
region we can see that the average number of neighbors
is, essentially, constant. As we might expect, the number of
neighbors decreases when the simulation area increases. This
is because the node density decreases when the simulation area
increases. The results further indicate that the average number
of neighbors is similar between the NYC and the Disney World
scenarios. This is most likely caused by the fact that, as we
saw in Section VI-A, in both scenarios the nodes are evenly
spread throughout the simulation area.

TABLE II. AVERAGE LINK DURATION (IN SECONDS).
Dimension | Disney NYC
1000 295.32 38.01

1500 277.10  37.19
2000 259.08  36.28

C. Average Link Duration

When two nodes are neighbors we say that they have a link.
If two nodes are neighbors, then they stop being neighbors,
and then they become neighbors again, we consider this to
be two different links. The amount of time that a link lasts
is called the link duration. The average link duration in the
system is an important factor that affects the connectivity of
the network topology, and, as a result, it has a major impact
on the performance of network protocols. In Table II we give
the average link duration in each of the situations simulated.
We see that the size of the simulation area does not affect the
average link duration very much. On the other hand there is
a huge difference in the average link duration for the Disney
World and NYC scenarios. This is likely due to the differences
in the speeds at which the nodes travel in these situations.

VII. CONCLUSIONS

In this paper we proposed a new mobility model called
the Smoothly Truncated Lévy Walk (STLW). We presented a
justification for its use from both a theoretical and an empirical
perspective. We saw that it captures the characteristics of real-
word traces very well, and, in particular, that modeling changes
in direction is much more realistic than the standard approach
of only modeling the direction of motion. Further, to better
understand the topological properties of STLW we performed
a series of simulations. We found that the node distribution
and the number of neighbors do not vary much over time.

There are a number of ways to extend this model, which
we leave for future work. One is to take into account some
environmental information when available. For instance a
simple way to model obstacles is as follows. If we know that
a region in the simulation area cannot be crossed (perhaps it
corresponds to a wall or a body of water) then we can treat this
the same way that we treat a boundary, even though now it is
within the simulation area. A further extension is to get a more

realistic model for the speed. From the results in [19] it is clear
that there is a relationship between speed and distance. The
exact nature of this relationship is complicated and requires
further study. An approach to modeling it is presented in [3].
It would be interesting to modify that approach to the present
situation.
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