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The generation, transmission, distribution, and utilization of
large blocks of electric power are accomplished by means of
three-phase circuits. The comprehensive analysis of three-phase
systems is a field of study in its own right, which we cannot hope
to cover in a single chapter. Fortunately, an understanding of
only the steady-state sinusoidal behavior of balanced three-phase
circuits is quite sufficient for engineers who do not specialize in
power systems. We will define what we mean by a balanced cir-
cuit later in our discussion. For the moment, we note that there
are two reasons for our restricting our introduction to balanced
operation. First, for economic reasons, three-phase systems are
designed to operate in the balanced state. This means that under
normal operating conditions the three-phase circuit is so close to
being balanced that we are justified in finding the solution that
assumes perfect balance. Second, some types of unbalanced op-
erating conditions can be solved by a technique known as the
method of symmetrical components, which relies heavily on a
thorough understanding of balanced operation. Although we will
not discuss the method of symmetrical components, it is worth
noting that an understanding of balanced operation is a starting
point for an advanced technique used to analyze certain types of
unbalanced conditions.

The basic structure of a three-phase system consists of voltage
sources connected to loads via transformers’ and transmission

"Transformers are introduced in Chapter 14.
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404 BALANCED THREE-PHASE CIRCUITS

Figure 13.1 A basic three-phase circuit.

Phase sequence defined

Balanced phase voltages (positive
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lines. We can reduce the problem to the analysis of a circuit con-
sisting of a voltage source connected to a load via a line. The
omission of the transformer as an element in the system sim-
plifies the discussion without jeopardizing a basic understanding
of the calculations involved. The basic circuit is shown in Fig.
13.1. In order to begin analyzing a circuit of this type, we must
understand the characteristics of a balanced three-phase set of si-
nusoidal voltages.

] 3 . 1 BALANCED THREE-PHASE VOLTAGES

A set of balanced three-phase voltages consists of three sinu-
soidal voltages that have identical amplitudes and frequency but
are out of phase with each other by exactly 120°. In discussing
three-phase circuits, it is standard practice to refer to the three
phases as a, b, and c. Furthermore, the a-phase is almost always
used as the reference phase. The three voltages that compose
the three-phase set are referred to as the a-phase voltage, the
b-phase voltage, and the c-phase voltage.

Since the phase voltages are out of phase by exactly 120°,
there are two possible phase relationships that can exist between
the a-phase voltage and the b- and c-phase voltages. One possi-
bility is for the b-phase voltage to lag the a-phase voltage by
120°, in which case the c-phase voltage must lead the a-phase
voltage by 120°. This phase relationship is known as the abc, or
positive, phase sequence. The only other possibility is for the b-
phase voltage to lead the a-phase voltage by 120°, in which case
the c-phase voltage must lag the a-phase voltage by 120°. This
phase relationship is known as the ach, or negative, phase se-
quence. In phasor notation, the two possible sets of balanced
phase voltages are

V. = V,,/0°,
Vo = V. /—120°, (13.1)
Ve = V. /[+120°,
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v Vi
— ¥ Vs,
vy, VA
(a) (b)
and

V. = V,./0°,
Vv = Vo /+120°, (13.2)
Ve = Va/[=120°.

The phase sequence of the voltages given by Egs. (13.1) is the
abe, or positive, sequence. The phase sequence of the voltages
given by Egs. (13.2) is the acb, or negative, sequence. The
phasor diagram representations of the voltage sets given by Egs.
(13.1) and (13.2) are shown in Fig. 13.2, from which we can
determine the phase sequence by noting the order of the sub-
scripts as we move clockwise around the diagram. The fact that
a three-phase circuit can have one of two possible phase se-
quences is an important characteristic that must be taken into ac-
count whenever two separate circuits are operated in parallel.
The two circuits can operate in parallel only if they have the
same phase sequence.

Another important characteristic of a set of balanced three-
phase voltages is that the sum of the voltages adds to zero. Thus
using either Egs. (13.1) or Egs. (13.2) we have

Yot Vi £ ¥ =0, (13.3)

The fact that the sum of the phasor voltages adds to zero also
means that the sum of the instantaneous voltages is zero, that is,

et on F =10, (13.4)

Another noteworthy observation is that if we know the phase
sequence and one voltage in the set, we know the entire set.
Thus if we have a balanced three-phase system, we can focus on
determining the voltage (or current) in one phase, because once
we know one phase quantity we automatically know the corre-
sponding quantity in the other two phases.

Figure 13.2 Phasor diagram

Balanced phase voltages (negative
sequence)

Sum of a balanced set is zero

One voltage plus the sequence defines
a set
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DRILL EXERCISES

13.1 What is the phase sequence of each of the follow- b) v, = 4160 cos (wr — 49°) V,
ing sets of voltages? v = 4160 cos (wr — 289°) V,
a) v, = 208 cos (wr + 76°) V, v = 4160 cos (wt + 191°) V.
vy = 208 cos (wr + 316°) V,
v: = 208 cos (wr — 164°) V., ANSWER: (a) abc; (b) ach.

FQ e
l wb 2 THREE-PHASE VOLTAGE SOURCES

Three-phase voltage sources consist of generators that have three
separate windings distributed around the periphery of the stator.
Each winding composes one phase of the generator. The rotor of
the generator is an electromagnet driven at synchronous speed by
a prime mover such as a steam or gas turbine. As the electroma-
gent is rotated past the three windings, a sinusoidal voltage is in-
duced in each winding. The phase windings are designed so that
the sinusoidal voltages induced in them are equal in amplitude
and out of phase with each other by exactly 120°. Since the
phase windings are stationary with respect to the rotating elec-
tromagent, the frequency of the voltage induced in each winding
is the same.
Normally, the impedance of each phase winding on a three-
Ideal model of a three-phase generator phase generator is very small compared with the other imped-
ances in the circuit. Therefore, to an approximation, each phase
winding can be modeled in an electric circuit by an ideal sinu-
soidal voltage source. There are two ways of interconnecting the
separate phase windings to form a three-phase source. The wind-
ings can be connected together in either a wye (Y) or a delta (A)
configuration. The wye and delta connections are shown in Fig.
13.3, where ideal voltage sources are used to model the phase

Figure 13.3 The two basic connections

ge-pha

{a) (b)
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windings of the three-phase generator. The common terminal in
the Y-connected source, labeled n in Figure 13.3(a), is known as
the neutral terminal of the source. The neutral terminal may or  Neutral terminal
may not be available for external connections.
If the impedance of each phase winding is not negligible, the
three-phase source is modeled by placing the winding impedance
in series with an ideal sinusoidal voltage source. Since all wind-
ings on the machine are of the same construction, the wind'ing Practical model
impedances are assumed to be identical. The winding impedance
of three-phase generators is inductive. The model of a three-
phase source including winding impedance is shown in Fig.
13.4, in which R, is the winding resistance and X,, is the induc-
tive reactance of the winding.
The fact that a three-phase voltage source can be either a
Y-connected or A-connected means that the basic circuit in
Fig. 13.1 can take four different configurations, since the three-
E phase loads can also be either Y-connected or A-connected. The
four possible arrangements are (1) a Y-connected source and a Four possible configurations for three-
Y-connected load; (2) a Y-connected source and A-connected  Phase circuits
load; (3) a A-connected source and a Y-connected load; and (4) a
A-connected source and a A-connected load.
We begin our analysis of three-phase circuits with the first ar-
rangement mentioned above. After analyzing the Y=Y circuit,
we will show for balanced circuits how the remaining three ar-
rangements can be reduced to a Y=Y equivalent circuit. In other
words, the analysis of the Y-Y circuit is the key to solving all
balanced three-phase arrangements.

(a) {b)

Figure 13.4

e source with winding
impedance: (a) '

i
=~ LY A e
ed source ana (b)) A-connected source




408 BALANCED THREE-PHASE CIRCUITS

Nodal equation for the circuit in
Fig. 13.5

Figure 13.5 A three-phase Y_Y « vstem,

127
] J..) ANALYSIS OF THE WYE-WYE CIRCUIT

We begin our analysis of the Y-Y circuit by assuming that the
circuit is not balanced! We do this so that we can show what we
mean by a balanced three-phase circuit and what the conse-
quences of being balanced are in terms of circuit analysis. The
general Y-Y circuit is illustrated in Fig. 13.5, where we have in-
cluded a fourth conductor that connects the source neutral to the
load neutral. The fourth conductor is possible only in the Y-Y
arrangement. (More about this later.) We also mention that for
convenience in drawing the diagram. we have transformed the

-connections into “tipped-over tees.” In Big. 13.5, Z., 7.,
and Z, represent the internal impedance associated with each
phase winding of the voltage source; Z,,, Zw, and Z,. represent
the impedance of each phase conductor of the line connecting
the source to the load:; Z, is the impedance of the neutral conduc-
tor that connects the source neutral to the load neutral; and Z,,
Zg, and Zc represent the impedance of each phase of the load,

The circuit in Fig. 13.5 can be described by a single node-
voltage equation. Using the source neutral as the reference node
and letting Vy denote the node voltage between the nodes N and
n, we find that the node-voltage equation is
VN+ VN = Vi + Vn — Vi
Z, DAt 2, Tyt Zg Zy
1 _VN = vc’n

———"_—0. (35
7+ Bz, O 013
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Before pursuing Eq. (13.5) any further, let us pause to observe
that the circuit analysis techniques that we have discussed in the
earlier chapters are directly applicable to three-phase circuits.
Thus it is not necessary to introduce new analytical techniques in
order to analyze three-phase circuits. However, as we will see in
the remainder of this chapter, if a three-phase circuit is balanced
we can take some significant analytical shortcuts to predict the
behavior of the system.

The circuit in Fig. 13.5 is a balanced three-phase circuit if it
satisfies all of the following criteria:

1. Van, Von, and V., form a set of balanced three-phase
voltages,.

2. Zga = Zgb = ch,
3. Zy = Zy = Zy,
4. Z,\ — ZB — Z{j

There is no restriction on the impedance of the neutral conductor
(Z,); its value has no effect on whether or not the system is bal-
anced.

If the system is balanced, Eq. (13.5) tells us that Vy must be
zero. To see this let

Zy=12Zp+ Zin + Zy (13.6)
and then rewrite Eq. (13.5) as
1 3 Va’n + Vb'n -+ Vc'n
Val=+=—]= ) 13.7
”(z(, z¢) Ze s

The right-hand side of Eq. (13.7) is zero because by hypothesis
the numerator is a set of balanced three-phase voltages and Z; is
not zero. The only value of Vy that satisfies Eq. (13.7) is zero.
Therefore for a balanced three-phase circuit,

Vn=0. (13.8)

Equation (13.8) is an extremely important result. If Vy is
zero, there is no difference in potential between the source neu-
tral (n) and the load neutral (N); consequently, the current in the
neutral conductor is zero. These observations tell us that we can
either remove the neutral conductor from a balanced Y-Y
configuration (Io = 0) or replace it by a perfect short circuit be-
tween the nodes n and N (Vy = 0). We find both equivalents
convenient to use when modeling balanced three-phase circuits.

Now let us turn our attention to what effect balanced condi-
tions have on the three line currents. It follows directly from

Definition of a balanced three-phase
circuit

409



410 BALANCED THREE-PHASE CIRCUITS

Line currents in a balanced Y-Y circuit

Line-to-line voltages

Fig. 13.5 that when the system is balanced, the three line cur-
rents will be

Va'n i a'n
L st Y Y \ (13.9)
Zi+ Zit Zy 2,
Vb’n 1 VN Vb’n
Iy =—— = 5 13.10
R A Z ¢ )
Vc‘n =W vc'n
Lo — = (13.11)

T B

from which we see that in a balanced system the three line cur-
rents form a balanced set of three-phase currents. Thus the cur-
rent in each line will be equal in amplitude and frequency and
will be exactly 120° out of phase with the other two line cur-
rents. This tells us that if we calculate the current L., we can
write down the line currents Ly and Lc without further compu-
tations. We imply by this statement that the phase sequence is
known.

We can use Eq. (13.9) to construct a single-phase equivalent
circuit of the balanced three-phase Y-Y circuit. It follows from
Eq. (13.9) that the current in the a-phase conductor line is sim-
ply the voltage generated in the a-phase winding of the generator
divided by the total impedance in the a-phase of the circuit.
Thus Eq. (13.9) describes the simple circuit in Fig. 13.6, where
the neutral conductor has been replaced by a perfect short cir-
cuit. A word of caution here. The current in the neutral conduc-
tor of Fig. 13.6 is not the current in the neutral conductor of a
balanced three-phase circuit. The current in the neutral conduc-
tor is

L =La+ Is + L, (13.12)

whereas the current in the neutral conductor in Fig. 13.6 is I,,.
Thus the circuit in Fig. 13.6 gives the correct value of the line
current but only the a-phase component of the neutral current.
Whenever the single-phase equivalent circuit in Fig. 13.6 is ap-
plicable, the line currents form a balanced three-phase set and
the right-hand side of Eq. (13.12) sums to zero.

Once we know the line currents in the circuit in Fig. 13.5, it
is a relatively simple task to calculate any voltages that are of in-
terest. In particular, we are interested in the relationship be-
tween the line-to-line voltages and the line-to-neutral voltages.
We will establish this relationship at the load terminals. The ob-
servations we make will also apply at the source terminals. The
line-to-line voltages at the terminals of the load in terms of the
line-to-neutral voltages at the load are

Vas = Vay — Ven, (13.13)
Vic = Vpn — Ven, (13.14)
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and a'
Vea = Vo — Van. (13.15)

L L
N
L 3

ga

|

Zp

5

>

‘ The double-subscript notation in voltage equations indicates that Ve
the voltage is a drop from the first subscript to the second sub-

| script. The relationships given by Egs. (13.13) through (13.15)
are shown in Fig. 13.7. Because we are interested in the bal-
anced state, we have omitted the neutral conductor from the Figure 13.6 A single-phase equiva
figure. Circuit

| To show the relationship between the line-to-line voltages and

| the line-to-neutral voltages, we assume a positive, or abc, se-

| quence. We arbitrarily choose the line-to-neutral voltage of the s L
a-phase as the reference. Thus,

n N

| Vas Van Za

J Van = V4 /0°, (13.16) _
| Van = Vo /=120°, (13.17) Ver T8 Yov [ | —4n
and +

Von = Ve /+120°, (13.18) Vec Ven Z

where V, represents the magnitude of the line-to-neutral = ]
voltage. When we substitute Eqs. (13.16) through (13.18) into ¢
Egs. (13.13) through (13.15), respectively, we get Figure 13.7 Line-to-line

[ Vas = Vo — Ve/=120° = V3V, /30°, (13.19)  nevtral voltages
i

Vic = Vi /—120° — V,/120° = V3V, /—90°, (13.20)

and
Vea = Vi [120° — V4 /0° = V3V, /150°. (13.21)

From Egs. (13.19) through (13.21), we see that (1) the magni-

tude of the line-to-line voltage is \/5 times the magnitude of the

line-to-neutral voltage, (2) the line-to-line voltages form a bal-

anced three-phase set of voltages, and (3) the set of line-to-line

voltages lead the set of line-to-neutral voltages by 30°. We will

leave it to the reader to show that for a negative, or acb, se-

quence the only change is that the set of line-to-line voltages  Line and phase voltages in a
lags the set of line-to-neutral voltages by 30°. These observa-  Y-connected load

tions are summarized in the phasor diagrams of Fig. 13.8. We

Vea
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DRILL EXERCISES

now observe that, in a balanced system, if the line-to-neutral
voltage is known at some point in the circuit, the line-to-line
voltages at the same point are also known, and vice versa.

13.2 The voltage from B to N in a balanced three-
phase circuit is 120/60° V. If the phase sequence is

positive, what is the value of Vpc?

ANSWER: 207.85/+90° V.

13.3 The c-phase voltage of a balanced, three-phase,
Y-connected system is 660/160° V. If the phase se-

quence is negative, what is the value of Vp?

Phase voltage
Line voltage
Phase current

Line current

Solving a balanced three-phase
Y-Y circuit

ANSWER: 1143.15/—110° V.

Before illustrating balanced three-phase calculations with a
numerical example, we must make some additional comments
on terminology. In the Y-Y system, the line-to-neutral voltage
is also called the phase voltage. For brevity, the line-to-line
voltage is also called the line voltage. The phase current is
defined as the current in each phase of the load or, at the source
end of the circuit, the current in each phase of the generator.
The line current is defined as the current in each phase of the
line. For the Y-Y arrangement, the phase current and line cur-
rent are identical. Because three-phase systems are designed to
handle large blocks of electric power, all voltage and current
specifications and calculations are given in terms of rms values.
Thus when a three-phase transmission line is rated at 345 kV,
this means that the nominal value of the rms line-to-line voltage
is 345,000 V. All voltages and currents in this chapter are un-
derstood to be rms values. Finally, the Greek letter phi (¢) is
widely used in the literature to denote a per-phase quantity. Thus
Ve, 1o, Zy, Py, and Q are interpreted as voltage/phase, current/
phase, impedance/phase, power/phase, and reactive power/
phase, respectively.

Example 13.1 is designed to show how we can use the obser-
vations made thus far to solve a balanced three-phase Y-Y cir-
cuit.

EXAMPLE 13.1

A three-phase, positive-sequence, Y-connected generator has an
impedance of 0.2 + j0.5 /¢. The internal phase voltage of
the generator is 120 V. The generator feeds a balanced, three-
phase, Y-connected load having an impedance of 39 +
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Jj28 Q2/¢. The impedance of the line connecting the generator to
the load is 0.8 + j1.5 Q/¢. The a-phase internal voltage of the
generator is specified as the reference phasor.

a) Construct a single-phase equivalent circuit of the three-phase
system.

b) Calculate the three line currents T,s. Iin. and Le

¢) Calculate the three line-to-neutral voltages at the load:
V»“-\Ng "IRN. VCN-

d) Calculate the line voltages Vg, Vi, and Vey at the terminals
of the load.

e) Calculate the line-to-neutral voltages at the terminals of the
generator Va,, Vi, Ven

f) Calculate the line voltages V;n. V.. and V., at the terminals
of the generator

8) Repeat parts (a) through (f), given that the phase sequence is
negative.

SOLUTION

a) The single-phase equivalent circuit is shown in Fig. 13.9.
b) The a-phase line current is

120/0°
La L

T (02+08+39 + j(05+1.5+29)

120/0°
= s = 24(=36.8T A
For a positive phase sequence,
L = 2.4/--156.87°A,
Lc = 2.4/83.13°A.

a 0.2 /050 a 0810 Ns0 4
“--...._-W‘\,—:"YW"\ _'_u'\’."\.‘\‘-—-- — JVYY_\_.. o~

C)mm [
R e e NS

j?8 0

igure 13.9 The
Figure 13.9 T
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¢) The line-to-neutral voltage at the A terminal of the load is

Van = (39 + j28)(2.4/—36.87°)
= 115.22/—1.19°V.

For a positive phase sequence,

Ven = 115.22/-121.19°V,
Von = 115.22/+118.81°V.

d) For a positive phase sequence, the line-to-line voltages lead
the line-to-neutral voltages by 30°; thus

Vas = (V3/30°) Vay
199.58/28.81°V,
Vec = 199.58{—91.19°V,
Vea 199.58/148.81° V.

e) The line-to-neutral voltage at the a-terminal of the source is

Vi = 120 — (0.2 + j0.5)(2.4/—36.87°)
= 120 — 1.29/31.33°

l

= 118.90 — j0.67
= 118.90/—0.32°V.

For a positive phase sequence,

Vo = 118.90/—120.32°,
Ve = 118.90/119.68° V.
f) The line-to-line voltages at the source terminals are
Va = (V3/30°) V.,
205.94/29.68°V,

Ve = 205.94/-90.32°V
Ve = 205.94/149.68° V.

g) Changing the phase sequence has no effect on the single-
phase equivalent circuit. The three line currents are

La = 2.4/-36.87°A,
Iis = 2.4/83.13°A,
Lc = 2.4/—-156.87°A.

The line-to-neutral voltages at the load are

I

Van = 115.22/-1.19°V,
Ven = 115.22/+118.81°V,
Ven = 115.22/-121.19°V.
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For a negative phase sequence, the line-to-line voltages lag

the line-to-neutral voltages by 30°:
Vas = (\/gf —30° VAN

199.58/—31.19°V,
Vee = 199.58/88.81°V,

Vea = 199.58/—151.19° V.

I

The line-to-neutral voltages at the terminals of the generator

are
V.. = 118.90/-0.32°V,
Voo = 118.90/119.68°V,
Ve = 118.90/—120.32° V.

The line-to-line voltages at the terminals of the generator are

Voo = (V3/=30°)Va
= 205.94/-30.32°V,
Vi = 205.94/89.68°V,

Ve = 205.94/—150.32° V.

In studying Example 13.1, it is important to note that once
the a-phase quantity is calculated, the corresponding b- and c-
phase values can be tabulated by simply shifting the a-phase
value by 120°. For a positive phase sequence, the b-phase lags
the a-phase by 120°, whereas the c-phase leads the a-phase by
120°. For a negative phase sequence, the b-phase leads the a-
phase by 120° and the c-phase lags the a-phase by 120°. We also
call your attention to how easy it is to calculate line-to-line

voltages once we know the line-to-neutral voltages.

DRILL EXERCISES

13.4 The line-to-neutral voltage at the terminals of a
balanced, three-phase, wye-connected load is 2400 V.
The load has an impedance of 16 + j12 }/¢ and is
fed from a line having an impedance of 0.10 +

j0.80 Q)/¢. The wye-conected source at the sending
end of the line has a phase sequence of acb and an in-
ternal impedance of 0.02 + j0.16 {}/¢. Use the a-
phase line-to-neutral voltage at the load as the refer-
ence and calculate (a) the line currents L, Iis, Ic;
(b) the line-to-line voltages at the source V., Vie, Ve
and (c) the internal phase-to-neutral voltages at the
source V., Vi, Voo

ANSWER: (a) L = 120/—36.87°A,

Is = 120/83.13°A, Lc = 120/—156.87°A;

(b) Va, = 4275.02/—28.38°V,

Vie = 4275.02/91.62°V, V., = 4275.02/—148.38°V;
(c) Van = 2482.05/1.93°V, Vy, =
2482.05/121.93°V, V., = 2482.05/—118.07°V.
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2 .“T ANALYSIS OF THE WYE-DELTA CIRCUIT

If the load in a three-phase circuit is connected in a delta, it can
be transformed into a wye by using the delta-to-wye transforma-
tion discussed in Section 11.6. When the load is balanced, the
impedance of each leg of the wye is one-third the impedance of
each leg of the delta; thus

3 Ll
which follows directly from Eq. (13.47) through (13.49). Once
the A-load has been replaced by its Y-equivalent, the Y-source,
A-load, three-phase circuit can be modeled by the single-phase
equivalent circuit in Fig. 13.6.

After we have used the single-phase equivalent circuit to cal-
culate the line currents, we can find the current in each leg of
the original A-load by simply dividing the line currents by V3
and shifting them through 30°. This relationship between the
line currents and phase currents in the delta can be derived using
the circuit in Fig. 13.10.

When a load, or source, is connected in a delta, the current in
each leg of the delta is the phase current and the voltage across
each leg is the phase voltage. We can see from Fig. 13.10 that in
the A-configuration, the phase voltage is identical with the line
voltage.

To see the relationship between the phase currents and line
currents, we will assume a positive phase sequence and let I,
represent the magnitude of the phase current. It follows, then,

7 (13.22)

that
Lis = 1,/0°, (13.23)
Isc = Iy/—120°, (13.24)

e and
Ica = I/+120°. (13.25)

In writing these equations, we have arbitrarily selected I»p as the
reference phasor.
We can write the line currents in terms of the phase currents

et by direct application of Kirchhoff’s current law; thus
I =
—= L La = Iap — Iea = 1,/0° — 1,/120°
Figure 13.10 A circuit used to establish = \/gfqbﬂ, (13.26)

the relationship between line currents Leg = Igc — Ig = I, {—[2(]0 - I-b@

and phase currents in a balanced delta

load. = \/51@—15(_):‘, (13.27)




Lc = Ica — Inc = 1,/120° — Iy /—120°
= V31,/90°. (13.28)

When we compare Egs. (13.26) through (13.28) with (Egs.
13.23) through (13.25), we see that the magnitude of the line
currents is V'3 times the magnitude of the phase currents and
the set of line currents lags the set of phase currents by 30°.

We will leave it to the reader to verify that for a negative
phase sequence, the line currents are V'3 times larger than the
phase currents and lead the phase currents by 30°.

The relationship between the line currents and the phase cur-
rents of a A-connected load are summarized in Fig. 13.11.

DRILL EXERCISES

13.5 The current I, in a balanced, three-phase,
A-connected load is 15/38°A. If the phase sequence is
positive, what is the value of I..? ANSWER

13.6 A balanced, three-phase, A-connected load is fed

from a balanced three-phase circuit. The reference for

the b-phase line current is toward the load. The value

of the current is 26/—50°A. If the phase sequence is

negative, what is the value of I,5? ANSWER

Example 13.2 illustrates the calculations involved in analyzing
a balanced three-phase circuit involving a Y-connected source
and a A-connected load.

Line and phase currents in a
A-connected load

: 25.98/8°A.

+ 15.01/160°A.
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Analysis of the Y-A circuit

Figure 13.12 The single-phase

EXAMPLE 13.2

The Y-connected source in Example 13.1 feeds a A-connected
load through a distribution line having an impedance of
0.3 + j0.9 Q}/¢. The load impedance is 118.5 + j85.8 (/¢.
Use the a-phase internal voltage of the generator as the refer-
ence.

a) Construct a single-phase equivalent circuit of the three-phase
system.

b) Calculate the line currents L., Ivs, and Lc.

c) Calculate the phase voltages at the terminals of the load.
d) Calculate the phase currents of the load.

e) Calculate the line voltages at the terminals of the source.

SOLUTION

a) The single-phase equivalent circuit is shown in Fig. 13.12.
The load impedance of the Y-equivalent is
(1/3)(118.5 + j85.8), or 39.5 + j28.6 (}/¢.

b) The a-phase line current is

y 120/0°
0.2+ 0.3 +39.5) + j(0.5 + 0.9 + 28.6)

La
120/0°
= ——=—— = 2.4/—36.87°A.
40 + j30
It follows directly that

le = 24{ (G 156870A

and

Lc = 2.4/83.13°A.

c¢) Since the load is A-connected, the phase voltages are the
same as the line voltages. To calculate the line voltages, we

a 020 050 5 030 4 m A
3950
120/0° V
/2860

n N
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first calculate Van:
Van = (39.5 + j28.6)(2.4/—36.87°)

= 117.04/—-0.96° V.
Since we have a positive phase sequence, the line voltage
Vag is

Vas = \’G@ Van
= 202.72/29.04° V.

Therefore

Vee = 202.72/-90.96°V
and

Vea = 202.72/149.04° V.

d) The phase currents of the load can be calculated directly from
the line currents. Then

1
I = '\—/éﬁ_oflm

= 1.39/—6.87°A.
Once we know Is, we also know the other load phase cur-
rents:
Isc = 1.39/-126.87°A
and
Ica = 1.39/113.13°A.

Note that we can check our calculation of Isg using the previ-
ously calculated Vap and the impedance of the A-connected
load. That is,

Vi _ 202.72/29.04°

Iip =— = ——

Zy 118.5 + j85.8

1.39/-6.87°A.

(Alternative methods of calculation are very helpful in elimi-
nating errors and are highly recommended in all work involv-
ing analysis and design.)

e) To calculate the line voltage at the terminals of the source, we
first calculate V... We see from Fig. 13.12 that V., is the
voltage drop across the line impedance plus the load im-
pedance. Thus

Il

Vo = (39.8 + j29.5)2.4/—36.87°
= 118.90/—0.32°V.
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The line voltage V,, is
Vo = V3/30°V,,
or
Va = 205.94/29.68°V.

Therefore

Vi = 205.94/-90.32°V,
Ve = 205.94/+149.68° V.

DRILL EXERCISES

13.7 The line-to-line voltage Va5 at the terminals of a
balanced, three-phase, A-connected load is 4160/0°V.
The line current L. is 69.28/—10°A.

a) Calculate the per-phase impedance of the load
if the phase sequence is positive.

b) Repeat part (a) if the phase sequence is nega-
tive. ANSWER: (a) 104/—20°); (b) 104/+40°Q.

13.8 The line voltage at the terminals of a balanced,

A-connected load is 208 V. Each phase of the load

consists of a 5.2-() resistor in parallel with a 6.933-0

inductor. What is the magnitude of the current in the

line feeding the load? ANSWER: 86.60 A.

1 3 .5 ANALYSIS OF THE DELTA-WYE CIRCUIT

In the A-Y three-phase circuit, the source is A-connected and
the load is Y-connected. We can obtain the single-phase equiva-
lent circuit by replacing the balanced A-connected source by a
Y-equivalent. We can obtain the Y-equivalent of the source by
dividing the internal phase voltages of the A-source by V'3 and
shifting this set of three-phase voltages by —30° if the phase se-
quence is positive and by +30° if the phase sequence is negative.
The internal impedance of the Y-equivalent is one-third the in-
ternal impedance of the A-source. The Y-equivalent circuit of a
positive-sequence A-connected source is illustrated in Fig.
13.13.

For a positive phase sequence, the set of A-source phase cur-
rents (Iva, L, and L. in Fig. 13.13) lead the set of line currents
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(a)

(b)

L, Its, and I.c by 30°. The magnitude of the phase currents is
1/V/3 times the magnitude of the line currents. For a negative
phase sequence, the phase currents in the source lag the line cur-
rents by 30°.

To show that the Y-source of Fig. 13.13(b) is equivalent to
the A-source of Fig. 13.13(a), it is necessary to show only that
the two circuits produce the same terminal conditions for any

Figure 13.13 The Y-equivalent of a

I

D il

Y equivalent of a A source

421
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Analysis of a A-Y three-phase circuit

balanced external connections applied to the terminals a, b, and
c. The two test conditions that are easiest to prove are open cit-
cuit and short circuit. For open-circuit conditions, the three line
currents are zero and the two circuits are equivalent if they de-
liver the same voltages between the terminals a, b, and c. For an
external short circuit connecting the terminals a, b, and c, the
line voltages are zero and the two circuits are equivalent if they
deliver the same line currents. We will leave it to the reader (in
Problem 13.14) to verify that these two circuits are equivalent.

The numerical analysis of a A-Y three-phase circuit is illus-
trated in the following example.

EXAMPLE 13.3

A balanced, negative-sequence, A-connected source has an in-

ternal impedance of 0.018 + j0.162 ()/¢. At no load, the ter-

minal voltage of the source has a magnitude of 600 V. The

source is connected to a Y-connected load, having an impedance

of 7.92 — j6.35 /¢, through a distribution line having an

impedance of 0.074 + j0.296 Q/¢.

a) Construct a single-phase equivalent circuit of the system using
V. as the reference.

b) Calculate the magnitude of the line voltage at the terminals of
the load.

¢) Calculate the three line currents L, Iy, and L.
d) Calculate the phase currents Iy, I, and L. of the source.

e) Calculate the magnitude of the line voltage at the terminals of
the source.

SOLUTION

a) At no load, the terminal voltage equals the internal voltage
source. Therefore the internal voltage of the A-source has a
magnitude of 600 V. Using V., as a reference, we find that
the internal a-phase voltage of the Y-equivalent source is

= 30° = 30°
\/—L \fL
= 346.41/30°V.

The internal impedance of the equivalent Y-generator is
(1/3)(0.018 + j0.162), or 0.006 + j0.054 Q/¢. Therefore
the single-phase equivalent circuit is as shown in Fig. 13.14.
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a’ 0,006 0 00540 5 go7a0 AZn Figure 13.14 The single-phase

T equivalent circuit for Example
7.920
Van 346.41/30° V

-/6.35 0
L T
n N

[ B

b) It follows directly from the circuit in Fig. 13.14 that

_ 346.41/30° )
SR s 34.64/66.87° A

ah

and

Van = (7.92 — j6.35)(34.64/66.87°)
= 351.65/28.15°V.
The magnitude of the line voltage at the load is
|Vag| = \/§|VANI = 609.08 V.

c) Using the results of part (b), we find that the three line cur-
rents are

g L. = 34.64/66.87°A,

| Lis = 34.64/186.87°A,

| Lc = 34.64/—53.13°A.

‘ d) The phase currents of the generator can be calculated directly

from the line currents. Since the phase sequence is negative,
we have

1
L. = W /—30°T.a

= 20/36.87° A,
I, = 20/156.87° A,
L. = 20/—83.13° A.
e) From the circuit in Fig. 13.14, we have
Van = (7.994 — j6.054)L.a
= 34.64(7.994 — j6.054)/66.87°
= 347.37/29.73° V.

The magnitude of the line voltage at the source will be
|Vao| = V3| V| = 601.66 V.
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DRILL EXERCISES

13.9 A balanced, positive-sequence , A-connected
source has an internal impedance of 0.09 + j0.81

2/ ¢. The source is feeding a balanced load via a bal-
anced line. The b-phase line current Is is 6/—120°A
and the line voltage V., is 480/60° V. Calculate the in-

ternal source voltage V..

ANSWER: 481.68/60.27° V.

'I :)) 6 ANALYSIS OF THE
. DELTA-DELTA CIRCUIT

In the A-A circuit, both the source and the load are A-con-
nected. The single-phase equivalent circuit of a balanced A-A
system is obtained by replacing both the source and the load
with their Y-equivalents. As before, the Y-equivalent circuit is
used to solve for line currents and line-to-neutral voltages. Once
we know the line currents, we can find the phase currents in
both the load and the source using the techniques described in
Sections 13.4 and 13.5. The line-to-neutral voltages can be con-
verted to line-to-line voltages as described in Section 13.3. All
these techniques have been illustrated in Examples 13.1, 13.2,
and 13.3. You can gain additional experience with these types of
calculations by solving Problems 13.12 through 13.17.

’I 3 POWER CALCULATIONS IN
e BALANCED THREE-PHASE CIRCUITS

Thus far, our analysis of balanced three-phase circuits has been
limited to the determination of currents and voltages in a given
circuit. We are now ready to discuss three-phase power calcula-
tions. We begin by discussing the average power delivered to a
balanced, Y-connected load.

Average Power in a Balanced Y-Load

A Y-connected load, along with pertinent currents and voltages,
is shown in Fig. 13.15. The average power associated with any
one phase can be calculated using the techniques introduced in
Chapter 12. Using Eq. (12.27) as a starting point, we find that
we can express the average power associated with the a-phase of
the load as

Pr = | Van||La| cos (@ea — 6ia), (13.29)
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where 0.x and 6,4 denote the phase angles of Van and L., re-
spectively. Using the notation introduced in Eq. (13.29), we find
that the power associated with the b- and c-phases are

Pa= rVBNHIbBI cos (6.8 — Ois) (13.30)

and
PC - |VCN || Icc' COs (9.,(: iy 6;(;‘). (13.31)

In Egs. (13.29) through (13.31), all phasor currents and voltages
are written in terms of the rms value of the sinusoidal function
that they represent.

In a balanced three-phase system, the magnitude of each line-
to-neutral voltage is the same, as is the magnitude of each phase
current. The argument of the cosine functions is also the same
for all three phases. To emphasize these observations, we intro-
duce the following notation to facilitate further discussion of
power calculations in balanced three-phase circuits:

Vo = | Van| = | Van| = [ Venl, (13.32)
Iy = |La| = [Ls| = |Lc|, (13.33)

and
0p = Oca — Oia = 0 — 05 = O,c — Oic. (13.34)

We also note from the above observations that for a balanced
system the power delivered to each phase of the load is the same;
thus

Py = Pp = Pc = Py = Vgl cos By, (13.35)

where P, stands for average power per phase.
The total average power delivered to the balanced Y-con-
nected load is simply three times the power per phase; thus

Pr = 3P4 = 3V,l4 cos 6. (13.36)

It is also desirable to express the total power in terms of the rms
magnitude of the line voltage and the rms magnitude of the line
current. If we let V. represent the rms magnitude of the line
voltage and I; represent the rms magnitude of the line current,
then we can modify Eq. (13.36) as follows:

Vi
PT = S(T/—%) IL COs 8¢

=\/§VL !L COS 9.{,. (13.37)

In deriving Eq. (13.37), we have used the fact that for a bal-
anced Y-connected load, the magnitude of the phase voltage
is the magnitude of the line voltage divided by \/3P and the mag-
nitude of the line current is equal to the magnitude of the phase

A A
z, |
¥
' ‘
- B
e—| Z N
Zo |Ven
Leq
- ¢

Figure 13.15 A balanced Y load used to
introduce average power calculations in

three-phase circuits.
I

Average power per phase

Total average power

Total average power in terms of line
voltage and current
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current. In using Eq. (13.37) to calculate the total power deliv-
ered to the load, it is important to remember that 6, is the phase
angle between the phase voltage and the phase current.

Complex Power in a Balanced Y-Load

The reactive power and complex power associated with any one
phase of a Y-connected load can also be calculated using the
techniques introduced in Chapter 12. For the balanced load the
expressions for the reactive power are

Qp = Vsl sin 0, (13.38)
and
Or = 3Qs = V3V, 1, sin 6,. (13.39)
Complex power per phase Equation (12.33) is the basis for expressing the complex power

associated with any phase. For a balanced load we have
S = VanIi = VeIt = VoI = VoI,  (13.40)

where V, and I, are used to represent a phase voltage and cur-
rent taken from the same phase. Thus, in general,

Total complex power Ss = Py + jOs = VoI (13.41)
and

Sr = 38; = \/§VLIL /8. (13.42)

er Calculations in a Balanced A-Load

If the load is A-connected, the calculation of power—reactive
_ power or complex power—is basically the same as that for the
G Y-connected load. A A-connected load, along with the pertinent
currents and voltages, is shown in Fig. 13.16, from which it fol-

— % I fl % lows that the power associated with each phase is

Vo | Za | Py = | Vas||Tap| cos (Buas — Bins), (13.43)
Py = | Vpc|/Isc| cos (B.sc — Oimc), (13.44)
(i Pc = | Vca|Ica| c0s (Buca — Bica). (13.45)

Figure 13.16 A A-connected load used For a balanced load,
to discuss power calculations [VABI 4 |VBCf 5 |VCA] L h (13.46)
|Tas| = |Xsc| = |Tca| = Iy, (13.47)
0oas — 6ias = Ousc — Omc = Ouca — Oica = 0, (13.48)

Average power per phase and

Py, = Pp = Pc = Py = V4l cos 0. (13.49)
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It is worth noting that Eq. (13.49) is the same as Eq. (13.35).
This is equivalent to saying, “In a balanced load the average
power per phase is equal to the product of the rms magnitude of
the phase voltage, the rms magnitude of the phase current, and
the cosine of the angle between the phase voltage and phase cur-
rent.”

The total power delivered to a balanced A-connected load is

Pr = 3Py = 3Vyls cos By
I
= 3V; (—-r-) cos 0
‘W3 E

= V3V, 1, cos 0,. (13.50)

Note that Eq. (13.50) is the same as Eq. (13.37).
The expressions for reactive power and complex power also
have the same form as those developed for the Y-load:

Qs = Vil sin 0, (13.51)
Or = 3Qs = 3V, sin 6, (13.52)
Ss = Py + jOo = VoI5, (13.53)
St = 38y = V3L [0, (13.54)

The following examples illustrate power calculations in bal-
anced three-phase circuits.

EXAMPLE 134

a) Calculate the average power per phase delivered to the Y-con-
nected load of Example 13.1.

b) Calculate the total average delivered by the load.
¢) Calculate the total average power lost in the line.
d) Calculate the total average power lost in the generator.

e) Calculate the total number of magnetizing vars absorbed by
the load.

f) Calculate the total complex power delivered by the source.

SOLUTION

a) From Example 13.1, we have V, = 115.22 V, I, = 2.4 A,
and 6, = —1.19 — (—36.87) = 35.68°. Therefore

Py = (115.22)(2.4) cos 35.68°
= 224.64 W.

We also note that the power per phase can be calculated from
I qzh Ry, or

Py = (2.4)%(39) = 224.64 W.

Total average power in terms of line cur-
rent and voltage

Complex power: per phase and total

Power calculations: balanced three-
phase circuits
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Complex power in a balanced three-
phase circuit

b) The total average power delivered to the load is Pr =
3P4 = 673.92 W. Since the line voltage was calculated in Ex-
ample 13.1, we could also use Eq. (13.37); thus

Pr = V/3(199.58)(2.4) cos 35.68°
= 673.92 W.

¢) The total power lost in the line is
Pine = 3(2.4)%(0.8) = 13.824 W.
d) The total internal power loss in the generator is
Pen = 3(2.4)%0.2) = 3.456 W.
e) The total number of magnetizing vars absorbed by the load is

Or = V/3(199.58)(2.4) sin 35.68°
= 483.84 VAR.

f) The total complex power associated with the source is

Sr = 38, = —3(120)(2.4)/36.87°
= —691.20 — j518.40 VA.

The minus sign tells us that the internal power and magnetiz-
ing reactive power are being delivered to the circuit. We can
check this result by calculating the total power and reactive
power absorbed by the circuit. Thus

P = 673.92 + 13.824 + 3.456
= 691.20 W (check);

QO = 483.84 + 3(2.4)%(1.5) + 3(2.4)%0.5)
= 483.84 + 25.92 + 8.64
= 518.40 VAR (check).

EXAMPLE 135

a) Calculate the total complex power delivered to the A-con-
nected load of Example 13.2.

b) What percentage of the average power at the sending end of
the line is delivered to the load?

SOLUTION

a) Using the a-phase values from the solution of Example 13.2,
we have

Vs = Vas = 202.72/29.04°V,
I, = I = 1.39/—6.87°A.




13.7 POWER CALCULATIONS IN BALANCED THREE-PHASE CIRCUITS 429

Using Egs. (13.53) and (13.54) we have
St = 3(202.72/29.04°)(1.39/+6.87°)

= 682.56 + j494.208 VA.

b) The total power at the sending end of the distribution line will
be equal to the total power delivered to the load plus the total
power lost in the line; therefore

Pipe = 682.56 + 3(2.4)%0.3)
687.744 W,

I

The percentage of the average power at the input of the line
reaching the load is 682.56/687.744, or 99.25%.

EXAMPLE 13.6

A balanced three-phase load requires 480 kW at a lagging power

factor of 0.8. The load is fed from a line having an impedance of  Calculations in a balanced three-phase
0.005 + j0.025 Q/¢. The line voltage at the terminals of the  Circuit

load is 600 V.

a) Construct a single-phase equivalent circuit of the system.
b) Calculate the magnitude of the line current.

¢) Calculate the magnitude of the line voltage at the sending end
of the line.

d) Calculate the power factor at the sending end of the line.

SOLUTION

a) The single-phase equivalent circuit is shown in Fig. 13.17.
We have arbitrarily selected the line-to-neutral voltage at the
load as the reference.

b) The line current I, is

(%)If,« = (160 + j120)10°
or 0.005 0 j0.025 O

Ny———— A
L = 577.35/36.87° A ‘—’\_: 4 W“—T

Therefore, L.a = 577.35/—36.87°A. The magnitude of the
line current is the magnitude of I,a:

I, = 577.35 A.

160 kW at 0.8 lag

An alternative solution for ; is obtained from the expression equivalent circuit for E
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Pr = \/3ViI, cos 6,
= V/3(600),(0.8) = 480,000 W
480,000 1000
I = = = 577.35 A.
© V3600008 V3

¢) To calculate the magnitude of the line voltage at the sending
end of the line, we first calculate V... It follows directly from
Fig. 13.17 that

van = Van v ZIIaA

= 6—.—\;2 + (0.005 + j0.025)(577.35/—36.87°)
=357 S 1. 5TV,

Thus
Vi = V3IVal = 619.23 V.

d) The power factor at the sending end of the line is the cosine of
the phase angle between V., and La:

pf = cos [1.57° — (—36.879)]
= cos 38.44° = 0.783 lagging.

An alternative method for calculating the power factor is to
first calculate the complex power at the sending end of the
line:

Se = (160 + j120)10° + (577.35)%0.005 + j0.025)
= 161.67 + j128.33 kVA
206.41/38.44° kVA.
The power factor is
pf = cos 38.44° = 0.783 lagging.

I

Finally, note that if we calculate the total complex power at
the sending end of the line, after first calculating the magni-
tude of the line current, we can use this value to calculate V;.
That is,
V3 VI, = 3(206.41) X 10°
_ 3(206.41) x 10°

N s Bt I
L VA(5771.35)

Instantaneous Power in Three-Phase Circuits

Although we are primarily interested in average, reactive, and
complex power calculations, the computation of the total instan-
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taneous power is also important. The total instantaneous power
in a balanced three-phase circuit has an interesting property: It
Is invariant with time!

This can be shown as follows. Let the instantaneous line-to-
neutral voltage van be the reference and, as before, 6, be the
phase angle 6.4 — 6ia. Then, for a positive phase sequence, the
instantaneous power in each phase is

Pa = vaniaa = Vgl cos wt cos (ot — 0,),

ps = venive = Vgl cos (wr — 120°) cos (wt — 64 — 120°),
and

Pc = venice = Vply cos (wt + 120°) cos (wr — 8, + 120°),

where V, and I, represent the maximum values of the line-to-
neutral voltage and line current, respectively. The instantaneous
total power is the sum of the instantaneous phase powers, and
this sum can be shown to reduce to 1.5V, 1, cos 6,; that is,

Pr=pa+ ps+ pc= 1.5Vsl, cos 8.

We will leave this reduction for the reader (see Problem 13.39).
The fact that the total instantaneous power in a three-phase  Three-phase instantaneous power is
circuit is constant is an important property of three-phase cir-  constant
cuits. It means that the torque developed at the shaft of a three-
phase motor is constant, and this in turn means less vibration in
machinery powered by three-phase motors.

DRILL EXERCISES

13.10 The three-phase average power rating of the
central processing unit (CPU) on a mainframe digital
computer is 22,659 W. The three-phase line supplying
the computer has a line voltage rating of 208 V (rms).
The line current is 73.8 A (rms).

a) Calculate the total magnetizing reactive
power absorbed by the CPU.

b) Calculate the power factor. \NSWER: (a) 13,909.50 VAR; (b) 0.852 lagging.
13.11 The complex power associated with each phase ¢) Given that the load is wye-connected and the
of a balanced load is 384 + j288 kVA. The line impedance of each phase consists of a resis-
voltage at the terminals of the load is 4160 V. tance in series with a reactance, calculate R
and X.

a) What is the magnitude of the line current feed-
ing the load?

b) Given that the load is connected in delta and
the impedance of each phase consists of a re-
sistance in parallel with a reactance, calculate ANSWER: (a) 199.85 A; (b) R = 45.07 ),
R and X. X=60090;(c)R=9.610,X=172140.
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13.12 A balanced bank of delta-connected capacitors a) What 1s the size of each capacitor in micro-
is connected in parallel with the load described in Drill farads?

Exercise 13.11. The line voltage at the terminals of b) Repeat part (a), given that the capacitors are
the load remains at 4160 V. The circuit is operating at connected 10 a wye

a frequency of 60 Hz. The capacitors are adjusted so
that the magnitude of the line current feeding the par-
allel combination of the load and capacitor bank is at ANSWER: (a) 44.14 uF; (b) 132.42 uF;
its minimum, (c) 159.88 A.

c) What is the magnitude of the line current?

—-l MEASUREMENT OF AVERAGE POWER
3 .8 IN THREE-PHASE CIRCUITS

l'he basic instrument used to measure power in three-phase cir-
cuits is the electrodynamometer wattmeter. It contains two coils.
One coil, called the current coil, is stationary and is designed to
carry a current that is proportional to the load current. The sec-
ond coil, called the potential coil, is movable and carries a cur-
rent that is proportional to the load voltage. The average
deflection of the pointer that is attached to the movable coil is
proportional to the product of the effective value of the current
in the current coil, the effective value of the voltage impressed
on the potential coil, and the cosine of the phase angle between
this current and voltage. The direction in which the pointer
deflects depends on the instantaneous polarity of the current-coil
current and the potential-coil voltage. Therefore each coil has
one terminal with a polarity mark—usually a plus sign—but
sometimes the double polarity mark * is used. The wattmeter
deflects up-scale when (1) the polarity-marked terminal of the
current coil is toward the source and (2) the polarity-marked ter-
minal of the potential coil is connected to the same line in which
the current coil has been inserted. The important features of the
wattmeter are shown in Fig. 13.18.

The Two-Wattmeter Method

Before showing how we can use two electrodynamometer watt-
meters to measure the total power delivered to a three-phase
load, let us make an observation that clearly shows that only two
wattmeters are needed. Consider a general network inside a
“box” that is being energized by n conductors. The system is
shown in Fig. 13.19. If we wish to measure, or calculate, the to-
tal power at the terminals of the box, we need to know n — 1
currents and voltages. This follows because if we choose one
terminal as a reference, then there are only n — 1 independent
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Poiniar ——— Watt scale

"
Potential-coil ~

T .
5 Current-coil
terminals

_ terminals
—

General
network

voltages. Likewise, only n — 1 independent currents can exist in
the n conductors entering the box. Thus the total power involves
summing the products of n — 1 terms; that is, p = vi; +
Uyip + - - - + On—1ln—1.

Applying this general observation to a three-phase circuit, we
can see that for a three-conductor circuit, whether balanced or
not, we need only two wattmeters to measure the total power.
For a four-conductor circuit, we need three wattmeters if the
three-phase circuit is unbalanced, but only two wattmeters if it is
balanced. We can conclude then that for any balanced three-
phase circuit, we need only two wattmeters to measure the total
power.

The two-wattmeter method of measuring the total power in a
balanced three-phase circuit reduces to determining the magni-
tude and algebraic sign of the average power indicated by each
wattmeter. We can describe the basic problem in terms of the
circuit shown in Fig. 13.20, where the two wattmeters are indi-
cated by the shaded boxes and labeled W; and Ws. The coil nota-
tions cc and pc stand for current coil and potential coil, respec-
tively. We have elected to insert arbitrarily the current coils of
the wattmeters in lines aA and cC. As a consequence, line bB is

Figure 13.18 The important feature
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the reference line for the two potential coils. The load in Fig.
13.20 is connected as a wye, and the per-phase load impedance
1s designated as Z, = | Z|/6. This can be considered a perfectly
general representation since any A-connected load can be repre-
sented by its Y-equivalent and, furthermore, for the balanced
case the impedance angle 6 is unaffected by the A-to-Y transfor-
mation.

In the discussion that follows, the current drawn by the poten-
tial coil of the wattmeter is considered negligible compared with
the line current measured by the current coil of the wattmeter.
We assume that the loads can be modeled by passive circuit ele-
ments so that the phase angle of the load impedance (@ in Fig.
13.20) lies between —90° (pure capacitance) and +90° (pure in-
ductance). We also assume a positive phase sequence.

On the basis of our introductory discussion of the average
deflection of the wattmeter, we can see that wattmeter 1 will re-
spond to the product of | Vas |, | La | and the cosine of the angle
between Vap and L. If we denote this wattmeter reading as W,
we can write

W[ = [VAB " Ia_,ql cos 91
VoI cos 6. (13.55)

It follows that
Wz = IVCB " [cc| CcOSs 92

VoI cos 6,. (13.56)

In Eq. (13.55), 6, is the phase angle between Vg and L4 and in
Eq. (13.56), 6- is the phase angle between V¢ and Lc.

To calculate W; and W,, we express 6, and 6, in terms of the
impedance angle 6, which is also the same as the phase angle
between the phase voltage and phase current. For a positive
phase sequence,

9, =0+ 30° =8, + 30° (13.57)
and
6. =6 — 30° =6, — 30°. (13.58)

The derivation of Egs.13.57 and 13.58 is left as an exercise (see
Problem 13.29). When we substitute Egs. (13.57) and (13.58)
into Eqgs. (13.55) and (13.56) we get

W, = VoI cos (8 + 30° (13.59)

and

W = VI cos (8 — 30°). (13.60)
To find the total power, we add W; and W;; thus




Pr =W, + W, = 2V, I, cos 84 cos 30°
= \/§VL!L cos 0, (13.61)

which is the expression for the total power in a three-phase cir-
cuit. Therefore we have confirmed that the sum of the two
wattmeter readings yields the total power.

A study of Egs. (13.59) and (13.60) reveals the following
characteristics of the two-wattmeter method of measuring three-
phase power in a balanced circuit:

1. If the power factor is greater than 0.5, both wattmeters
read positive.
2. If the power factor equals 0.5, one wattmeter reads zero.

3. If the power factor is less than 0.5, one wattmeter reads
negative.

4. Reversing the phase sequence will interchange the read-
ings on the two wattmeters.

These observations are brought out in the following numerical
example and in Problems 13.30 through 13.38.

EXAMPLE 13.7

Calculate the reading of each wattmeter in the circuit of Fig.
13.20 if the line-to-neutral voltage at the load is 120 V and (a)
Z; =8+ j6 Q; (b) Zy =8 — j6; (c) Zo = 5 + j5V3Q;
and (d) Z, = 10/=75°. (e) Verify for parts (a) through (d) that
the sum of the wattmeter readings equals the total power deliv-
ered to the load.

SOLUTION
a) Z, = 10/36.87° Q, V, = 120V3 V, I, = 120/10 = 12 A.
Wi = (120V/3)(12) cos (36.87° + 30°)
= 979.75 W,
Wa = (120V/3)(12) cos (36.87° — 30°)
= 2476.25 W.
b) Zs = 10/—36.87° Q, V, = 120V3V, I, = 12 A.
Wi = (120V3)(12) cos (—36.87° + 30°)
= 2476.25 W,
Wa = (120V/3)(12) cos (—36.87° — 30°)

= 979.75 W.

13.8 MEASUREMENT OF AVERAGE POWER IN THREE-PHASE CIRCUITS

Two-wattmeter method calculations
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)Zy =51 + jV3) = 10/60°Q, V. = 120V/3V, 1, = 12 A
Wi = (120V/3)(12) cos (60° + 30°) = o,
W. = (120V/3)(12) cos (60° — 30°)
= 2160 W.

d) Zs = 10/=75°Q, V, = 120V/3 V, I, = 12 A,
Wi = (120V/3)(12) cos (=75° + 30°) = 1763.63 W,
W = (120V/3)(12) cos (=75° — 30°) = —645.53 W.
e) Pr(a) = 3(12)%(8) = 3456 W,
Wi + Wa = 979.75 + 2476.25
= 3456 W:

Pr(b) = Pr(a) = 3456 W,
Wi + W, = 2476.25 + 979 75
= 3456 W;
Pr(c) = 3(12)%(5) = 2160 W,
Wi+ W, =0 + 2160
= 2160 W:

Pr(d) = 3(12)*(2.5882) = 1118.10 W,
Wi+ W, = 1763.63 — 645.53
= 1118.10 W.
DRILL EXERCISES

13.13 The two-wattmeter method is used to measure
the power at the load end of the line in Example 13.1,
Calculate the reading of each wattmeter. ANSWER: 197.29 W- 476.63 W.
13.14 The two-wattmeter method is used to measure
the power at the sending end of the line in Example
13.3. Calculate the reading of each wattmeter. ANSWER: 20,680.70 W; 8097.70 W.
13.15 The two wattmeters in Fig. 13.20 can be used Example 13.7. Check your computations by
to compute the total reactive power of the load. calculating the total reactive power directly

a) Prove this statement b showing that from the given voltage and impedance.

3(W: — W) = V3 V.1 sin 5.
b) Compute the total reactive power from the ANSWER: (b) 2592 VAR, —2592 VAR,

Wwattmeter readings for each of the loads in 3741.23 VAR, —4172.80 VAR.
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Our purpose has been to introduce you to the
steady-state sinusoidal behavior of balanced three-
phase circuits. When a three-phase circuit operates
in a balanced mode, there are significant analytical
shortcuts that can be used to calculate currents and
voltages of interest. The key to these shortcuts is
to reduce a given system to a single-phase equiva-
lent circuit, a technique that relies on being able to
make A-to-Y transformations at both the source
end and load end of the circuit. Once the single-
phase equivalent circuit has been derived, it is
used to calculate the line current and the line-to-
neutral voltages of interest. The current and the
voltages obtained from the single-phase equivalent
circuit can be translated into any other system cur-
rent or voltage that is of interest. The translation
from the single-phase equivalent circuit values to
any other current or voltage in the circuit is based
on the following observations.

1. In a balanced system, b- and c-phase cur-
rents and voltages are identical to the corre-
sponding a-phase current and voltage except
for a 120° shift in phase. In a positive se-
quence circuit, the b-phase quantity will lag
the a-phase quantity by 120° and the ¢-phase
quantity will lead the a-phase quantity by
120°. For a negative sequence circuit, phases
b and c are interchanged with respect to
phase a.

PROBLEMS

2. The set of line voltages is out of phase with
the set of line-to-neutral voltages by * 30°.
The plus and minus sign corresponds to pos-
itive and negative sequence, respectively.

3. The magnitude of a line voltage is V3 times
as large as the magnitude of a line-to-neu-
tral voltage.

4. The set of line currents is out of phase with
the set of phase currents in A-connected
sources and loads by F 30°. The minus and
plus sign corresponds to positive and nega-
tive sequence, respectively.

5. The magnitude of a line current is /3 times
as large as the magnitude of a phase current
in the A-connected source or load.

Real, reactive, or complex power calculations
can be made on either a per-phase basis or a total
three-phase basis. The techniques for calculating
real, reactive, or complex power on a per-phase
basis are the same as those introduced in Chapter
12. The calculation of the total real, reactive, or
complex power is based on using line current and
line voltage, as expressed in Egs. (13.37),
(13.39), and (13.42).

All phasor voltages are stated in terms of the rms
value.

13.1 For each set of voltages given below, state
whether or not the voltages form a balanced three-
phase set. If the set is a balanced set, state whether the
phase sequence is positive or negative. If the set is not
balanced, explain why.

a) v, = 294 cos 377t V,
vy = 294 cos (377t + 120°) V,
ve = 294 cos (377t + 240°) V.

b) v, = 170 sin 377t V,
vy = 170 sin (377t — 120°) V,
ve = 170 sin (377t + 120°) V.

I

¢) v, = 400 sin 377t V,
vy = —400 cos (377t — 30°) V,
v. = 400 cos (377r + 30°) V.

d) v, = 175 cos (377t — 60°) V,
vy, = 100V 3 cos (377t + 60°) V,
ve = 175 cos (377t — 180°) V.




