Homework Set 14

Calculating Limits using Graphs (sections 1.3 & 1.6)

1. For the function f(x), whose graph is shown below, find each value of the quantities listed below the graph. If the quantity does not exist, explain why.

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x\to 1^-}f(x)=$$

$$\lim_{x \to -2^-} f(x) = -1$$

$$\lim_{x \to 1^+} f(x) = 1$$

$$\lim_{x\to -2^+} f(x) = 2$$

$$\lim_{x\to 1}f(x)=\ |$$

$$\lim_{x \to -2} f(x) = DNE$$
b/c $\lim_{x \to -2^{-}} f(x) \neq \lim_{x \to -2^{+}} f(x)$

$$f(1) = 2$$

$$f(-2) = 2$$

$$\lim_{x\to 5} f(x) = 4$$

$$\lim_{x\to 0} f(x) = \infty$$

$$\lim_{x\to -\infty} f(x) = 4$$

Where is the function discontinuous?

at
$$X = -2, 0, 1$$

On which intervals is the function continuous?

2. Sketch the graph of f and use it to determine the values of a for which $\lim_{x\to a} f(x)$ exists.

$$f(x) = \begin{cases} 1-x & \text{if } x < -1\\ x & \text{if } -1 \le x \le 1\\ \sin(x-1) & \text{if } x > 1 \end{cases}$$

3. Sketch the graph of a function f that satisfies the following conditions:

$$\lim_{x \to 0} f(x) = \infty, \quad \lim_{x \to 3^{-}} f(x) = -2, \quad \lim_{x \to 3^{+}} f(x) = 2,$$

$$f(0) \text{ is undefined, and } f(3) = 1$$

4. Explain in your own words what $\lim_{x\to 2} f(x) = 5$ means. Is it possible for f(2) = 5?

This means that as we pick (or look at) x-values which get closer a closer to x=2, the y-values f(x) get closer and closer to y=5.

Yes, f(z) = 5 will be true if f is continuous.

5. Explain in your own words what it means for $\lim_{x\to 1^-} f(x) = 3$ and $\lim_{x\to 1^+} f(x) = 7$. Is it possible for $\lim_{x\to 1} f(x)$ to exist? Why or why not? If it exists, what does $\lim_{x\to 1} f(x)$ equal?

lim f(x)=3 means as $x \rightarrow 1$ for x < 1, $y \rightarrow 3$. $\lim_{x \rightarrow 1^{+}} f(x) = 7$ means as $x \rightarrow 1$ for x > 1, $y \rightarrow 7$.

No, lim f(x) can't exist b/c lim f(x) = lim f(x).