Homework Set 8

Inverse Functions (sect 3.2, 3.3, 3.5)

For questions 1 and 2, find the inverse of the given function.

1. $f(x) = 1 + \sqrt{2 + 3x}$

$$2. \quad y = \frac{e^x}{1+2e^x}$$

- 3. Suppose f^{-1} is the inverse function of a differentiable function f and f(4) = 5, $f'(4) = \frac{2}{3}$. Find $(f^{-1})'(5)$.
- 4. Let $f(x) = 2x^3 + 3x^2 + 7x + 4$. Compute $(f^{-1})'(4)$.

5. Let $f(x) = x^3 + 3\sin x + 2\cos x$. Compute $(f^{-1})'(2)$.

- 6. $f(x) = 9 x^2$ where $0 \le x \le 3$ a. Use the rule for the derivative of an inverse function to find $(f^{-1})'(8)$.
 - b. Calculate $f^{-1}(x)$.
 - c. Compute $(f^{-1})'(8)$ from the inverse function found in part (b).
- 7. $f(x) = \frac{1}{x-1}$ where x > 1a. Use the rule for the derivative of an inverse function to find $(f^{-1})'(2)$.
 - b. Calculate $f^{-1}(x)$.
 - c. Compute $(f^{-1})'(2)$ from the inverse function found in part (b).

Use trig identities, implicit differentiation, and inverse functions to show the following derivative rule.

8.
$$\frac{d}{dx}(\operatorname{arcsec} x) = \frac{1}{x\sqrt{x^2-1}}$$