2.8

EXERCISES

- **1–4** Find the linearization L(x) of the function at a.
- 1. $f(x) = x^4 + 3x^2$, a = -1
- **2.** $f(x) = \sin x$, $a = \pi/6$
- **3.** $f(x) = \sqrt{x}$, a = 4 **4.** $f(x) = x^{3/4}$, a = 16

5. Find the linear approximation of the function $f(x) = \sqrt{1-x}$ at a = 0 and use it to approximate the numbers $\sqrt{0.9}$ and $\sqrt{0.99}$. Illustrate by graphing f and the tangent line.

6. Find the linear approximation of the function $g(x) = \sqrt[3]{1+x}$ at a=0 and use it to approximate the numbers $\sqrt[3]{0.95}$ and $\sqrt[3]{1.1}$. Illustrate by graphing g and the tangent line.

7–10 • Verify the given linear approximation at a = 0. Then determine the values of x for which the linear approximation is accurate to within 0.1.

7.
$$\sqrt[4]{1+2x} \approx 1 + \frac{1}{2}x$$

8.
$$\tan x \approx x$$

9.
$$1/(1+2x)^4 \approx 1-8x$$

10.
$$(1+x)^{-3} \approx 1-3x$$

11-14 • Use a linear approximation (or different	als) to
estimate the given number.	

11. (1.999)⁴ 13. (8.06)^{2/3} **12.** $\sqrt[3]{1001}$

14. 1/4.002