## Sec 1.1 and 1.2 Functions: Review of Algebra and Trigonometry

## A. Functions and Relations

DEFN Relation: A set of ordered pairs.
$(x, y) \longrightarrow$ (domain, range)

DEFN
Function: A correspondence from one set (the domain) to anther set (the range) such that each element in the domain corresponds to exactly one element in the range.

Example: Determine whether each of the following is an example of a function or not.
1.) $\{(1,1)(3,2)(5,3)\}$
2.) $\{(1,1)(2,4)(3,-5)(2,-4)\}$
3.) $x^{2}+2 y=0$
4.) $x^{2}+y^{2}=1$

## Vertical Line Test for Functions

Vertical Line Test for Functions: If any vertical line intersects a graph more than once, then the graph is not a function.

Example: Determine whether each of the following is a function or not by the Vertical Line Test.


## B. Domain and Range of a Function

```
DEFN Domain: Input \(\rightarrow x\)-values (i.e. All of the values of \(x\) that I may plug into a function.)
DEFN Range: Output \(\rightarrow y\)-values (i.e. All of the values of \(y\) that a function can attain)
Function Notation: \(f(x)=y\)
```

Example: Give the domain and range (in interval notation) for each of the following
1.)




Domain: $\qquad$ Domain: $\qquad$ Domain: $\qquad$

Range: $\qquad$ Range: $\qquad$ Range: $\qquad$

Example: Give the domain for each of the following (in interval notation and as an inequality)
2.) $g(x)=\sqrt{2-x}$
3.) $f(x)=\frac{x^{2}-4}{x+2}$
4.) $g(x)=\frac{3 x}{\sqrt{x+5}}$
5.) $h(x)=\ln (6 x-3)$

* The 3 functions for which we will most frequently have domain restrictions (in this course) are: fractions (aka...rational functions), radicals and logarithms.


## C. Linear Models

## Definition

$$
\text { Slope }=\mathbf{m}=\frac{\text { rise }}{r u n}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

| Slope | $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ | (Use when given two points to find slope) |
| :--- | :--- | :--- |
| Slope-Intercept Form | $y=m x+b$ | (Use when given slope and y - intercept) |
| Point-Slope Form | $\left(y-y_{1}\right)=m \cdot\left(x-x_{1}\right)$ | (Use when given one point and slope) |
| General Form | $A \cdot x+B \cdot y+C=0$ |  |
| Horizontal Line | $x=c \quad$ (where $\mathrm{c}=$ constant) |  |
| Vertical Line |  |  |

## Parallel Lines

Two lines are parallel if and only if they have the same slope.
For two lines $y_{1}=m_{1} x+b_{1}$ and $y_{2}=m_{2} x+b_{2}$ we have $y_{1} \| y_{2} \quad \Leftrightarrow m_{1}=m_{2}$

## Perpendicular lines

Two lines are perpendicular if and only if the product of their slope $=-1$.
For two lines $y_{1}=m_{1} x+b_{1}$ and $y_{2}=m_{2} x+b_{2}$ we have $y_{1} \perp y_{2} \quad \Leftrightarrow m_{1}=-\frac{1}{m_{2}}$

Examples: Find the equation of the line:
1.) that passes through point $(0,-3)$ with slope $=-2$
2.) that passes through points $(3,-2)$ and $(4,5)$
3.) that passes through point $(0,0)$ and is parallel to the line $y=3 x-9$
4.) that passes through point $(2,-4)$ and is perpendicular to the line $y=\frac{1}{2} x+3$
5.) Find the slope and $y$-intercept of the line $9 x-3 y-3=0$

## D. Classes of Functions

## 1. Power Functions

For any real number m , a function in the form $f(x)=x^{m}$ is called a Power Function

## 2. Polynomials

## Definition

A polynomial function is a function in the form $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}$ where $a_{0} \neq 0$ and $n$ is a positive integer.

Examples: State whether each is a polynomial:
1.) $g(x)=x^{2}+5 x+6$
2.) $f(x)=x^{3}+7 x-\sqrt{x}$
3.) $f(x)=\frac{x^{2}}{3}+8 x$
4.) $h(x)=x^{\frac{2}{3}}-x+5$
5.) $f(x)=\frac{4}{x^{2}}+6 x-1$

## 3. Rational Functions

A Rational Function is the quotient of two polynomial functions:
A Rational Function is a function of the form $f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}$

## Asymptotes

An asymptote is an imaginary line that the graph of a function approaches as the function approaches a restricted number in the domain or as it approaches infinity.

## I. Locating Vertical Asymptotes

If $f(x)=\frac{p(x)}{q(x)}$ is a rational function, $p(x)$ and $q(x)$ have no common factors and n is a zero of $q(x)$, then the line $x=n$ is a vertical asymptote of the graph of $f(x)$.

## II. Locating Horizontal Asymptotes

Let $f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}$
i. If $\mathrm{n}<\mathrm{m}$, then $y=0$ is the horizontal asymptote ("Bottom Heavy")
ii. If $\mathrm{n}=\mathrm{m}$, then the line $y=\frac{a_{n}}{b_{m}}$ is the horizontal asymptote ("Equal Degree")
iii. If $\mathrm{n}>\mathrm{m}$, there is NO horizontal asymptote. (But there will be a slant/oblique asymptote) ("Top Heavy")

Examples: Find all vertical and horizontal asymptotes:
1.) $f(x)=\frac{15 x}{3 x^{2}+1}$
2.) $g(x)=\frac{15 x^{3}}{3 x^{2}+1}$
3.) $h(x)=\frac{-3 x+7}{5 x-2}$
4.) $k(x)=\frac{2 x-x^{2}}{x^{2}-2 x-3}$

## 4. Trigonometric Functions

| $\sin (x)$ | $\csc (x)$ |
| :--- | :--- |
| $\cos (x)$ | $\sec (x)$ |
| $\tan (x)$ | $\cot (x)$ |




## 5. Exponential and Logarithmic Functions

DEFN: An exponential function is a function in the form $f(x)=a^{x}$. (i.e. the variable x is in the exponent)
DEFN: A logarithmic function is a function in the form $f(x)=\log _{a} x$. (i.e. the variable x is in the expression)

$$
\mathbf{y}=\log _{\mathbf{b}} \mathbf{x} \quad \text { " } \mathbf{y} \text { is equal to } \log \text { base } \mathbf{b} \text { of } \mathbf{x} \text { " - Here " } \mathbf{b} \text { " is the BASE NUMBER and " } \mathbf{x} \text { " is the VARIABLE. }
$$

$$
\log _{b} x=y \text { means exactly the same thing as } b^{y}=x
$$

| $y=2^{x}$ | $y=\log _{2}(x)$ | Comparison of the two graphs, showing the inversion line in red. |
| :---: | :---: | :---: |
|  |  |  |

## E. Transformations of Functions

| Vertical Shifts | $f(x)+C$ | $\uparrow$ | Moves Graph UP C units |
| :---: | :---: | :---: | :---: |
|  | $f(x)-C$ | $\downarrow$ | Moves Graph DOWN C units |
| Horizontal Shifts | $f(x-C)$ | $\longrightarrow$ | Moves Graph RIGHT C units |
|  | $f(x+C)$ | $\leftarrow$ | Moves Graph LEFT C units |
| Vertical and Horizontal Reflections | $-f(x)$ | $\downarrow$ | Flips Graph About x-axis |
|  | $f(-x)$ | $\longleftrightarrow$ | Flips Graph About y-axis |
| Vertical Stretching/ Compressing | $c \cdot f(x)_{\text {for }} c>1$ | $\uparrow$ $\downarrow$ | Graph Vertically Stretches by a Factor of C |
|  | $c \cdot f(x)$ for $0<c<1$ | $\begin{aligned} & \downarrow \\ & \uparrow \end{aligned}$ | Graph Vertically Shrinks by a Factor of C |

Example: Use the given graph of $\boldsymbol{f}(\boldsymbol{x})$ to sketch each of the following.


## F. Combinations of Functions

## 1. Piecewise-Defined Functions

A Piecewise Function is a function that has specific (and different) definitions on specific intervals of $x$.
 Domain: $\qquad$ Range: $\qquad$
2. Sums, Differences, Products and Quotients of Functions

| Sum | $(f+g)(x)=f(x)+g(x)$ |
| :---: | :---: |
| Difference | $(f-g)(x)=f(x)-g(x)$ |
| Product | $(f \cdot g)(x)=f(x) \cdot g(x)$ |
| Quotient | $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ |

Example

1. If $f(x)=2 x+1$ and $g(x)=x^{2}-3$ find each of the following.
a. $f(4)$
b. $g(2 x)$
c. $f(3 x-4)$
d. $f(x)+g(x)$
e. $f(x) g(x)$

## 3. Composition of Functions

| Notation |
| :---: |

Example:
1.) For the functions $f(x)=\sqrt{x}$ and $g(x)=x+2$ find
a.) $(f \circ g)(x)=$
b.) $(g \circ f)(x)=$
c.) $(f \circ g)(2)=$
d.) $(g \circ g)(x)=$

Example: For the functions $f(x)$ and $g(x)$ given in the graph find

а.) $(f \circ g)(2)=$
b.) $(f \circ g)(3)=$
c.) $(g \circ f)(2)=$
d.) $(g \circ f)(3)=$
е.) $(f \circ f)(4)=$
f.) $(g \circ g)(4)=$

## G. Symmetry

```
Symmetry: Even functions... f(x) =f(-x) .... Symmetric about the y-axis .... If (a,b) then (-a,b)
    Odd functions...f(-x)=-f(x) .... Symmetric about the origin .... If (a,b) then (-a,-b)
```

1. State whether the following functions are even, odd, or neither.
a. $f(x)=x^{5}+5 x$
b. $f(x)=1-x^{4}$
c. $f(x)=2 x-x^{2}$
d. $f(x)=2 \sin (x)$
e. $f(x)=\cos (x)-1$
f. $f(x)=|x|-3$

## H. Function Properties

- Increasing functions rise from left to right
Decreasing functions fall from left to right
Positive functions are above the $x$-axis
Negative functions are below the $x$-axis
*For all of these above, you use the $x$-values to state your answers!

1. Find each of the following using the given function.
a. $f(x)>0$
b. $f(x) \leq 0$
c. increasing
d. decreasing

e. domain and range
2. Find each of the following using the given function.
a. $f(x)>0$
b. $f(x) \leq 0$
c. increasing
d. decreasing
e. domain and range


## A. Functions and Relations

DEFN Relation: A set of ordered pairs.
$(x, y) \rightarrow$ (domain, range)
DEFN Function: A correspondence from one set (the domain) to anther set (the range) such that each element in the domain corresponds to exactly one element in the range.

Example: Determine whether each of the following is an example of a function or not.
1.) $\{(1,1)(3,2)(5,3)\}$
2.) $\{(1,1)(2,4)(3,-5)(2,-4)\}$
3.) $x^{2}+2 y=0$
4.) $x^{2}+y^{2}=1$

## Vertical Line Test for Functions

Vertical Line Test for Functions: If any vertical line intersects a graph more than once, then the graph is not a function.

Example: Determine whether each of the following is a function or not by the Vertical Line Test.







## B. Domain and Range of a Function

```
DEFN Domain: Input \(\rightarrow x\)-values (i.e. All of the values of \(x\) that I may plug into a function.)
DEFN Range: Output \(\rightarrow y\)-values (i.e. All of the values of \(y\) that a function can attain)
```

Example: Give the domain and range (in interval notation) for each of the following
1.)




Domain: $\qquad$ Domain: $\qquad$ Domain: $\qquad$

Range: $\qquad$
3.) $f(x)=\frac{x^{2}-4}{x+2}$
4.) $g(x)=\frac{3 x}{\sqrt{x+5}}$
5.) $h(x)=\ln (6 x-3)$

* The 3 functions for which we will most frequently have domain restrictions (in this course) are: fractions, radicals and logarithms.


## C. Linear Models

## Definition

$$
\text { Slope }=\mathrm{m}=\frac{\text { rise }}{r u n}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

| Slope | $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ | (Use when given two points to find slope) |
| :--- | :--- | :--- |
| Slope-Intercept Form | $y=m x+b$ | (Use when given slope and y - intercept) |
| Point-Slope Form | $\left(y-y_{0}\right)=m \cdot\left(x-x_{0}\right)$ | (Use when given one point and slope) |
| General Form | $A \cdot x+B \cdot y+C=0$ | $y=b \quad$ (where $\mathrm{b}=$ constant) |
| Horizontal Line | $x=c \quad$ (where $\mathrm{c}=$ constant) |  |
| Vertical Line |  |  |

## Parallel Lines

Two lines are parallel if and only if they have the same slope.
For two lines $y_{1}=m_{1} x+b_{1}$ and $y_{2}=m_{2} x+b_{2}$ we have $y_{1} \| y_{2} \quad \Leftrightarrow m_{1}=m_{2}$

## Perpendicular lines

Two lines are perpendicular if and only if the product of their slope $=-1$.
For two lines $y_{1}=m_{1} x+b_{1}$ and $y_{2}=m_{2} x+b_{2}$ we have $y_{1} \perp y_{2} \quad \Leftrightarrow m_{1}=-\frac{1}{m_{2}}$

Examples: Find the equation of the line:
1.) that passes through point $(0,-3)$ with slope $=-2$
2.) that passes through points $(3,-2)$ and $(4,5)$
3.) that passes through point $(0,0)$ and is parallel to the line $y=3 x-9$
4.) that passes through point $(2,-4)$ and is perpendicular to the line $y=\frac{1}{2} x+3$
5.) Find the slope and $y$-intercept of the line $9 x-3 y-3=0$

## D. Classes of Functions

## 1. Power Functions

For any real number m , a function in the form $f(x)=x^{m}$ is called a Power Function

## 2. Polynomials

## Definition

A polynomial function is a function in the form $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}$ where $a_{0} \neq 0$ and $n$ is a positive integer.

Examples: State whether each is a polynomial:
1.) $g(x)=x^{2}+5 x+6$
2.) $f(x)=x^{3}+7 x-\sqrt{x}$
3.) $h(x)=x^{\frac{2}{3}}-x+5$
4.) $f(x)=\frac{x^{2}}{3}+8 x$

## 3. Rational Functions

A Rational Function is the quotient of two polynomial functions:
A Rational Function is a function of the form $f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}$

## Asymptotes

An asymptote is an imaginary line that the graph of a function approaches as the function approaches a restricted number in the domain or as it approaches infinity.

## I. Locating Vertical Asymptotes

If $f(x)=\frac{p(x)}{q(x)}$ is a rational function, $p(x)$ and $q(x)$ have no common factors and n is a zero of $q(x)$, then the line $x=n$ is a vertical asymptote of the graph of $f(x)$.

## II. Locating Horizontal Asymptotes

Let $f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots .+b_{1} x+b_{0}}$
i. If $\mathrm{n}<\mathrm{m}$, then $y=0$ is the horizontal asymptote
ii. If $\mathrm{n}=\mathrm{m}$, then the line $y=\frac{a_{n}}{b_{m}}$ is the horizontal asymptote
iii. If $\mathrm{n}>\mathrm{m}$, there is NO horizontal asymptote. (But there will be a slant/oblique asymptote.)

Examples: Find all asymptotes:
1.) $f(x)=\frac{15 x}{3 x^{2}+1}$
2.) $g(x)=\frac{15 x^{3}}{3 x^{2}+1}$
3.) $h(x)=\frac{-3 x+7}{5 x-2}$
4.) $k(x)=\frac{2 x-x^{2}}{x^{2}-2 x-3}$

## 4. Trigonometric Functions

| $\sin (x)$ | $\csc (x)$ |
| :--- | :--- |
| $\cos (x)$ | $\sec (x)$ |
| $\tan (x)$ | $\cot (x)$ |




## 5. Exponential and Logarithmic Functions

DEFN: An exponential function is a function in the form $f(x)=a^{x}$. (i.e. the variable x is in the exponent)
DEFN: A logarithmic function is a function in the form $f(x)=\log _{a} x$. (i.e. the variable x is in the expression)

$$
y=\log _{b} x \quad \text { " } y \text { is equal to log base } \mathbf{b} \text { of } \mathbf{x} \text { " - Here " } b \text { " is the BASE NUMBER and " } x \text { " is the VARIABLE. }
$$

$$
\log _{b} x=y \text { means exactly the same thing as } b^{y}=x
$$

| $y=2^{x}$ | $y=\log _{2}(x)$ | Comparison of the two graphs, showing the inversion line in red. |
| :---: | :---: | :---: |
|  |  |  |

## E. Transformations of Functions

| Vertical <br> Shifts | $f(x)+C$ | $\uparrow$ | Moves Graph UP C units |
| :---: | :---: | :---: | :---: |
|  | $f(x)-C$ | $\downarrow$ | Moves Graph DOWN C units |
| Horizontal Shifts | $f(x-C)$ | $\longrightarrow$ | Moves Graph RIGHT C units |
|  | $f(x+C)$ | $\leftarrow$ | Moves Graph LEFT C units |
| Vertical and Horizontal Reflections | $-f(x)$ | $\downarrow$ | Flips Graph About x-axis |
|  | $f(-x)$ | $\longleftrightarrow$ | Flips Graph About y-axis |
| Vertical Stretching/ Compressing | $c \cdot f(x)_{\text {for }} c>1$ | $\uparrow$ $\downarrow$ | Graph Vertically Stretches by a Factor of C |
|  | $c \cdot f(x)$ for $0<c<1$ | $\downarrow$ $\uparrow$ | Graph Vertically Shrinks by a Factor of C |

## F. Combinations of Functions

## 1. Piecewise-Defined Functions

A Piecewise Function is a function that has specific (and different) definitions on specific intervals of $x$.
$f(x)=\left\{\begin{array}{cc}-x+1 & x<0 \\ x & 0 \leq x<2 \\ -1 & x>2\end{array}\right.$


## 2. Sums, Differences, Products and Quotients of Functions

| Sum | $(f+g)(x)=f(x)+g(x)$ |
| :---: | :---: |
| Difference | $(f-g)(x)=f(x)-g(x)$ |
| Product | $(f \cdot g)(x)=f(x) \cdot g(x)$ |
| Quotient | $(x)=\frac{f(x)}{g(x)}$ |
|  |  |

## 3. Composition of Functions

$$
\begin{aligned}
& f(x)=x^{2}+5 x+2 \quad f(\odot)=(\odot)^{2}+5(\odot)+2 \\
& g(x)=\frac{2 x}{\sqrt{x+1}} \quad g(\quad)=\frac{2(\quad)}{\sqrt{(\quad)+1}} \\
& \begin{array}{l|l}
k(x)=2 x-3 & k(\quad)=2(\quad)-3
\end{array} \\
& h(x)=\sqrt{x^{2}+5 x} \\
& h(\quad)=\sqrt{(\quad)^{2}+5(\quad)} \\
& =\sqrt{(\quad)^{2}+5(\quad)}
\end{aligned}
$$

## Example:

1.) For the functions $f(x)=\sqrt{x}$ and $g(x)=x+2$ find
a.) $(f \circ g)(x)=$
b.) $(g \circ f)(x)=$
c.) $(f \circ g)(2)=$
d.) $(g \circ g)(x)=$

Example: For the functions $f(x)$ and $g(x)$ given in the graph find


## A. Limits

DEFN: $\quad \lim _{x \rightarrow a} f(x)=L \quad$ The limit of $\mathrm{f}(\mathrm{x})$ as x approaches a, equals L .
(Where is the functions value headed as x is "on its way" to a ?)
$\lim _{x \rightarrow a^{-}} f(x)$ The limit of $\mathrm{f}(\mathrm{x})$ as x approaches a from the LEFT
$\lim _{x \rightarrow a^{+}} f(x)$ The limit of $\mathrm{f}(\mathrm{x})$ as x approaches a from the RIGHT

## B. Techniques of Solving Limits

1. Evaluation - When possible (without violating domain rules) "plug it in".

Example:
1.) $\lim _{x \rightarrow 3} x^{2}=$
2.) $\lim _{x \rightarrow 1} \frac{1}{x}=$
2. Factoring/Manipulation (then Evaluation) - Factor expressions and cancel any common terms. Example:
1.) $\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-16}=$
2.) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}-2 x-3}=$
3. Table - Set up a table as $x$ approaches the limit from the left and from the right.

Example:
1.) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |


|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |

4. Graphing - Graph the function and inspect. (Warning: Your graphing calculator might not always indicate a hole or small discontinuity in a graph. Be sure to always check the domain for restrictions.)
Example:
1.) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$

More Examples:
1.) $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=$
2.)


$$
f(a)=
$$

$\lim _{x \rightarrow a} f(x)=$
3.)

$$
f(x)=\left\{\begin{array}{cc}
7-x & \text { if } x \leq-4 \\
x & \text { if }-4<x \leq 2 \\
(x-1)^{2} & \text { if } x>2
\end{array}\right.
$$

$\lim _{x \rightarrow-4^{-}} f(x)$
$\lim _{x \rightarrow-4^{+}} f(x)$
$\lim _{x \rightarrow-4} f(x)$
$\lim _{x \rightarrow 2^{-}} f(x)$ $\lim _{x \rightarrow 2^{+}} f(x)$
4.)

$\lim _{x \rightarrow 2^{-}} g(x)=$
$\lim _{x \rightarrow 2^{+}} g(x)=$
$\lim _{x \rightarrow 2} g(x)=$
$\lim _{x \rightarrow 5^{-}} g(x)=$
$\lim _{x \rightarrow 5^{+}} g(x)=$
$\lim _{x \rightarrow 5} g(x)=$

## C. Average Velocity

DEFN: $\quad$ Velocity $=\frac{\text { Distance }}{\text { Time }}$
Example:
A ball is thrown up straight into the air with an initial velocity of $55 \mathrm{ft} / \mathrm{sec}$, its height in feet t seconds is given by $y=75 t-16 t^{2}$.
a.) Find the average velocity for the period beginning when $t=2$ and lasting
(i) 0.1 seconds (i.e. the time period $[2,2.1])$
(ii) 0.01 seconds
(iii) 0.001 seconds
b.) Estimate the instantaneous velocity of the ball when $\mathrm{t}=2$.

## A. Limit Laws

Assume that f and g are functions and c is a constant.
1.) $\quad \lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2.) $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3.) $\lim _{x \rightarrow a}(c \cdot f(x))=c \cdot\left(\lim _{x \rightarrow a} f(x)\right)$
4.) $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5.) $\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad \lim _{x \rightarrow a} g(x) \neq 0$
6.) $\lim _{x \rightarrow a}(f(x))^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}$
7.) $\lim _{x \rightarrow a} c=c$
8.) $\lim _{x \rightarrow a} x=a$
9.) $\lim _{x \rightarrow a} x^{n}=a^{n}$
10.) $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$
11.) $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$

Example:
1.)

a.) $\lim _{x \rightarrow 1^{+}} 3 g(x)=$
b.) $\quad \lim _{x \rightarrow 1} f(x)=$
c.) $\quad \lim _{x \rightarrow 1}(f(x)+g(x))=$
d.) $\lim _{x \rightarrow 3}(f(x) \cdot g(x))=$
2.) Given $\lim _{x \rightarrow a} h(x)=1, \lim _{x \rightarrow a} f(x)=10, \lim _{x \rightarrow a} g(x)=0$.
a.) $\quad \lim _{x \rightarrow a} \frac{h(x)}{f(x)}$
b.) $\quad \lim _{x \rightarrow a} f(x)^{-1}$
c.) $\quad \lim _{x \rightarrow a} \sqrt{f(x)}$
d.) $\lim _{x \rightarrow a} \frac{1}{f(x)-g(x)}$
e.) $\quad \lim _{x \rightarrow a} \frac{g(x)}{h(x)}$

## B. Calculating Limits

Direct Substitution Property: If $f$ is a polynomial or rational function and $a \in$ Domain, then $\lim _{x \rightarrow a} f(x)=f(a)$
Examples:
1.) $\lim _{x \rightarrow 2} x^{2}+3 x+1=$
2.) $\lim _{x \rightarrow 5} \frac{2 x+2}{x-3}=$
3.) $\lim _{\theta \rightarrow \pi} \cos \theta=$
4.) $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}=$
5.) $\lim _{x \rightarrow 0} \frac{(x+2)^{2}-4}{2 x}=$
6.) $\lim _{x \rightarrow 0} \frac{\sqrt{x+16}-4}{x}=$

Theorem We say that a limit exists when the limit from the left equals the limit from the right.

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

Examples:
1.) $h(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \neq 2 \\ -1 & \text { if } x=2\end{array} \quad\right.$ Find $\lim _{x \rightarrow 2} h(x)$

Theorem Squeeze Theorem: If $f(x) \leq g(x) \leq h(x)$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$ when $x$ is near $a$, then $\lim _{x \rightarrow a} g(x)=L$
Examples:
1.) Find $\lim _{x \rightarrow 0} x \cdot \cos \left(\frac{1}{x}\right)$

## More Examples:

1.) $\lim _{x \rightarrow-8^{-}} \frac{5 x+40}{|x+8|}=$

$$
\lim _{x \rightarrow-8^{+}} \frac{5 x+40}{|x+8|}=
$$

$$
\lim _{x \rightarrow-8} \frac{5 x+40}{|x+8|}=
$$

Evaluate $\lim _{x \rightarrow 0} \frac{\tan (5 x)}{\sin (6 x)}=$

## A. Definition of Continuity

DEFN: A function $f$ is continuous at a number $a$ if:
(i) $f(a)$ exists
(ii) $\lim _{x \rightarrow a} f(x)$ exists
(iii) $\lim _{x \rightarrow a} f(x)=f(a)$

A function is defined as continuous only if it is continuous at every point in the domain of the function.

Examples: For each, determine whether the function is continuous (i.e. Is $\lim _{x \rightarrow A} f(x)=f(A)$ ?)
1.)

2.)

3.)

4.)


Examples: For each, determine whether the function is continuous. If not, where is the discontinuity?
1.) $f(x)=\frac{x^{2}-x-20}{x-5}$
2.) $f(x)= \begin{cases}-6-x & \text { if } x \leq-3 \\ x & \text { if }-3<x \leq 3 \\ (x-1)^{2} & \text { if } x>3\end{cases}$
3.) $h(x)=\left\{\begin{array}{c}x^{2}+1 \text { if } x \neq 2 \\ 5 \text { if } x=2\end{array}\right.$
4.) $k(x)=\|x\| \quad($ Step function: i.e. $k(x)=\operatorname{int}(x)$ )
5.) For what value of the constant $c$ is the function $f$ continuous on $(-\infty, \infty)$ where

$$
f(x)= \begin{cases}c x+7 & \text { if } x \in(-\infty, 8] \\ c x^{2}-7 & \text { if } x \in(8, \infty)\end{cases}
$$

6.) Evaluate $\lim _{x \rightarrow 16} \frac{16-x}{4-\sqrt{x}}=$

DEFN: A function $f$ is continuous from the RIGHT at a number $a$ if: $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
A function $f$ is continuous from the LEFT at a number $a$ if: $\lim _{x \rightarrow a^{-}} f(x)=f(a)$

Example:
1.)


Is $f$ is continuous from the LEFT or RIGHT at
a.) $x=-3$
b.) $x=2$
2.) Show that $f(x)$ has a jump discontinuity at $x=9$ by calculating the limits from the left and right at $x=9$.
$f(x)= \begin{cases}x^{2}+5 x+5, & \text { if } x<9 \\ 14, & \text { if } x=9 \\ -4 x+4, & \text { if } x>9\end{cases}$

Theorem If $f$ and $g$ are functions that are continuous at a number $a$, and $c$ is a constant, then the following are also continuous at $a$ :
(i) $(f+g)$
(ii) $(f-g)$
(iii) $(f \cdot g)$
(iv) $\left(\frac{f}{g}\right)$ if $g(a) \neq 0$
(v) $c \cdot f$ or $c \cdot g$

## Theorem A polynomial function is continuous everywhere <br> A rational function is continuous everywhere it is defined

## Theorem Intermediate Value Theorem

If $f$ is a function that is continuous on a closed interval $[a, b]$ where $f(a) \neq f(b)$ and $N$ is a number such that $f(a)<N<f(b)$. Then there exist a number $c$ such that $a<c<b$ and $f(c)=N$.


Examples:
1.) Show that $f(x)=x^{2}-x-2$ has a root on the interval $[1,3]$
2.) Let $f$ be a continuous function such that $f(1)<0<f(9)$. Then the Intermediate Value Theorem implies that $f(x)=0$ on the interval $(A, B)$. Give the values of $A$ and $B$.

## A. Infinity vs. DNE

Recall from section 1.3 that $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ DNE since the function value kept increasing. Now we will be more descriptive; any value that keeps increasing is said to approach infinity ( $\infty$ ), and any value that keeps decreasing is said to approach negative infinity $(-\infty)$.

Examples:
1.) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ using the graph and table method.


|  | $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}$ |
| :--- | :---: |
| $x$ | $y$ |
| -0.1 |  |
| -0.01 |  |
| -0.001 |  |


| $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}$ |  |
| :--- | :---: |
| $x$ | $y$ |
| 0.1 |  |
| 0.01 |  |
| 0.001 |  |

2.) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x}$ using the graph and table method.

|  | $\lim _{x \rightarrow 0^{-}} \frac{1}{x}$ |  | $\lim _{x \rightarrow 0^{+}} \frac{1}{x}$  <br> $x$  | $y$ | $y$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -0.1 |  | $x$ |  |  |  |
| -0.01 |  |  |  |  |  |
| -0.001 |  | 0.1 |  |  |  |

## B. A Quick Review of Asymptotes

An asymptote is an imaginary line that the graph of a function approaches as the function approaches a restricted number in the domain or as it approaches infinity.

## Locating Vertical Asymptotes

If $f(x)=\frac{p(x)}{q(x)}$ is a rational function, $p(x)$ and $q(x)$ have no common factors and n is a zero of $q(x)$, then the line $x=n$ is a vertical asymptote of the graph of $f(x)$.

## Locating Horizontal Asymptotes.

$$
\text { Let } f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}
$$

i. If $\mathrm{n}<\mathrm{m}$, then $y=0$ is the horizontal asymptote
ii. If $\mathrm{n}=\mathrm{m}$, then the line $y=\frac{a_{n}}{b_{m}}$ is the horizontal asymptote
iii. If $\mathrm{n}>\mathrm{m}$, there is NO horizontal asymptote. (But there will be a slant/oblique asymptote.)

Examples: For the following rational functions, find the vertical and horizontal asymptotes if any:
1.) $f(x)=\frac{16 x^{2}}{4 x^{2}+1}$
2.) $g(x)=\frac{x+8}{x^{2}-64}$
3.) $h(x)=\frac{x^{3}+7}{5 x-2}$
4.) $k(x)=\frac{x^{2}-2 x}{2-3 x+x^{2}}$

## C. Vertical Asymptotes

Vertical asymptotes occur when $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$
The asymptote will be the line $x=a$.
Example: Evaluate the limit, find the asymptote and graph the function
1.) $\lim _{x \rightarrow 2} \frac{x+1}{3 x-6}$
2.) $\lim _{x \rightarrow-4^{+}} \frac{x+6}{x+4}$
3.) $\lim _{x \rightarrow-4^{-}} \frac{x+6}{x+4}$

## D. Limits as Infinity

A limit as the domain approaches infinity: $\lim _{x \rightarrow \infty} f(x)$

## Finding Limits as Infinity of Rational Functions

i. Determine the degree of the denominator. (Let's say degree $=P$ )
ii. Multiply both the numerator and denominator by $\frac{1}{x^{P}}$.
iii. Distribute/clean up algebra and continue evaluating the limit.

Example: Evaluate the limit.
1.) $\lim _{x \rightarrow \infty} \frac{6 x^{2}+2 x+7}{8 x+2 x^{2}}$
2.) $\lim _{x \rightarrow \infty} \frac{x^{3}+4 x-2}{6-2 x^{2}}$
3.) $\lim _{x \rightarrow \infty} \frac{2 x}{2 x^{2}+x-1}$

Conclusion: For positive integers $M$ and $N$ such that $M>N$

1. Degree of the Numerator $=$ Degree of the Denominator
$\lim _{x \rightarrow \infty} \frac{\text { Polynomail of Degree } M}{\text { Polynomail of Degree } M}=$ Ratio of Leading Coeficients
2. Degree of the Numerator $>$ Degree of the Denominator
$\lim _{x \rightarrow \infty} \frac{\text { Polynomail of Degree } M}{\text { Polynomail of Degree } N}= \pm \infty$
3. Degree of the Numerator < Degree of the Denominator
$\lim _{x \rightarrow \infty} \frac{\text { Polynomail of Degree } N}{\text { Polynomail of Degree } M}=0$

More Example: Evaluate the limit.
1.) $\lim _{x \rightarrow \infty} \frac{3 x-10}{\sqrt{16 x^{2}+5}}$
2.) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}+x+1}}{2 x+1}$
3.) Find the horizontal asymptotes for the curve $y=\frac{12 x}{\left(x^{4}+1\right)^{\frac{1}{4}}}$
4.) Find the vertical asymptotes for the curve $y=\frac{4 x^{3}}{x+2}$
$\lim \tan x$
5.) $\quad x \rightarrow \frac{\pi}{2}-$
6.) $\lim _{x \rightarrow \frac{\pi}{2}^{+}} \tan x$
7.) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+7 x+1}-x$

