Sec 1.1 and 1.2 Functions: Review of Algebra and Trigonometry

A. Functions and Relations

DEFN	Relation :	A set of ordered pairs. (x,y) \rightarrow (domain, range)
DEFN	Function:	A correspondence from one set (the domain) to anther set (the range) such that each element in the domain corresponds to exactly one element in the range.

Example: Determine whether each of the following is an example of a function or not.

1.) $\{(1,1)(3,2)(5,3)\}$ 2.) $\{(1,1)(2,4)(3,-5)(2,-4)\}$

3.)
$$x^2 + 2y = 0$$

4.) $x^2 + y^2 = 1$

Vertical Line Test for Functions

Vertical Line Test for Functions: If any vertical line intersects a graph more than once, then the graph is <u>not</u> a function.

Example: Determine whether each of the following is a function or not by the Vertical Line Test.

B. Domain and Range of a Function

DEFN **Domain**: Input \rightarrow x-values (i.e. All of the values of x that I may plug into a function.) DEFN **Range**: Output \rightarrow y-values (i.e. All of the values of y that a function can attain) **Function Notation**: f(x) = y

Example: Give the domain and range (in interval notation) for each of the following

Example: Give the domain for each of the following (in interval notation and as an inequality)

2.)
$$g(x) = \sqrt{2-x}$$
 3.) $f(x) = \frac{x^2 - 4}{x+2}$

4.)
$$g(x) = \frac{3x}{\sqrt{x+5}}$$
 5.) $h(x) = \ln(6x-3)$

* The 3 functions for which we will most frequently have domain restrictions (in this course) are: fractions (aka...rational functions), radicals and logarithms.

C. Linear Models

<u>Definition</u>

Slope = M = $\frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$						
Slope	$m = \frac{y_2 - y_1}{x_2 - x_1}$	(Use when given two points to find slope)				
Slope-Intercept Form	y = mx + b	(Use when given slope and y - intercept)				
Point-Slope Form	$(y-y_1) = m \cdot (x-x_1)$	(Use when given one point and slope)				
General Form	$A \cdot x + B \cdot y + C = 0$					
Horizontal Line	y = b (where b = constant)					
Vertical Line	x = c (where c = constant)					

<u>Parallel Lines</u>

Two lines are parallel if and only if they have the same slope.
For two lines
$$y_1 = m_1 x + b_1$$
 and $y_2 = m_2 x + b_2$ we have $y_1 \parallel y_2 \iff m_1 = m_2$

Perpendicular lines

Two lines are perpendicular if and only if the product of their slope = -1.
For two lines
$$y_1 = m_1 x + b_1$$
 and $y_2 = m_2 x + b_2$ we have $y_1 \perp y_2 \iff m_1 = -\frac{1}{m_2}$

Examples: Find the equation of the line:

1.) that passes through point (0, -3) with slope = -2

2.) that passes through points (3, -2) and (4, 5)

3.) that passes through point (0, 0) and is parallel to the line y = 3x - 9

4.) that passes through point (2, -4) and is perpendicular to the line $y = \frac{1}{2}x + 3$

5.) Find the slope and y-intercept of the line 9x - 3y - 3 = 0

D. Classes of Functions

1. Power Functions

For any real number m, a function in the form $f(x) = x^m$ is called a Power Function

2. Polynomials

<u>Definition</u>

A <u>polynomial function</u> is a function in the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$ where $a_0 \neq 0$ and n is a positive integer.

Examples: State whether each is a polynomial:

1.)
$$g(x) = x^2 + 5x + 6$$

2.) $f(x) = x^3 + 7x - \sqrt{x}$
3.) $f(x) = \frac{x^2}{3} + 8x$

4.)
$$h(x) = x^{\frac{2}{3}} - x + 5$$
 5.) $f(x) = \frac{4}{x^2} + 6x - 1$

3. Rational Functions

A Rational Function is the quotient of two polynomial functions:

A Rational Function is a function of the form
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

Asymptotes

An asymptote is an imaginary line that the graph of a function approaches as the function approaches a restricted number in the domain or as it approaches infinity.

I. Locating Vertical Asymptotes

If $f(x) = \frac{p(x)}{q(x)}$ is a rational function, p(x) and q(x) have no common factors and n is a zero of q(x), then the

line x = n is a vertical asymptote of the graph of f(x).

II. Locating Horizontal Asymptotes

Let
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

i. If n < m, then y = 0 is the horizontal asymptote ("Bottom Heavy")

- ii. If **n** = **m**, then the line $y = \frac{a_n}{b_m}$ is the horizontal asymptote ("Equal Degree")
- iii. If n > m, there is NO horizontal asymptote. (But there will be a slant/oblique asymptote) ("Top Heavy")

Examples: Find all vertical and horizontal asymptotes:

1.)
$$f(x) = \frac{15x}{3x^2 + 1}$$
 2.) $g(x) = \frac{15x^3}{3x^2 + 1}$

3.)
$$h(x) = \frac{-3x+7}{5x-2}$$

4.) $k(x) = \frac{2x-x^2}{x^2-2x-3}$

4. Trigonometric Functions

sin(x)	csc(x)
cos(x)	sec(x)
tan(x)	cot(x)

5. Exponential and Logarithmic Functions

E. Transformations of Functions

Vertical Shifts	f(x)+C	\uparrow	Moves Graph UP C units
	f(x)-C	\downarrow	Moves Graph DOWN C units
Horizontal Shifts	f(x-C)	\rightarrow	Moves Graph RIGHT C units
	f(x+C)	\leftarrow	Moves Graph LEFT C units
Vertical and Horizontal Reflections	-f(x)	\updownarrow	Flips Graph About x-axis
	f(-x)	\leftrightarrow	Flips Graph About y-axis
Vertical Stretching/ Compressing	$c \cdot f(x)_{\text{for } c > 1}$	$\uparrow \\ \downarrow$	Graph Vertically Stretches by a Factor of C
	$c \cdot f(x)_{\text{for } 0 < c < 1}$	\uparrow	Graph Vertically Shrinks by a Factor of C

Example: Use the given graph of f(x) to sketch each of the following.

	<i>b.</i> $f(x + 2)$										
					5	y					
-	_		_	-	-	_		-	-		-
-			-				-	-	-		-
											2
-5	5									5	5
					-9						
			_	_							

С	• -	f(x)					
\square		5	у				
$\left + \right $					+	+	\vdash
				+	+	+	+
H_					+	-	x
-3	+			+	+	+	2
				+	+	+	\vdash
$\left + + \right $		-5		-	+	-	-

d. 2f(-x)

	-	y			
	9				
					x
-5				5	5
	-				
	Lo.				

F. Combinations of Functions

1. Piecewise-Defined Functions

A Piecewise Function is a function that has specific (and different) definitions on specific intervals of x.

2. Sums, Differences, Products and Quotients of Functions

Sum	(f+g)(x) = f(x) + g(x)
Difference	(f-g)(x) = f(x) - g(x)
Product	$(f \cdot g)(x) = f(x) \cdot g(x)$
Quotient	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

Example

1. If f(x) = 2x+1 and $g(x) = x^2 - 3$ find each of the following.

a.
$$f(4)$$
 b. $g(2x)$ c. $f(3x-4)$ d. $f(x) + g(x)$ e. $f(x)g(x)$

3. Composition of Functions

Notation	$(f \circ g)(x) = f(g(x))$

Example:

1.) For the functions $f(x) = \sqrt{x}$ and g(x) = x + 2 find a.) $(f \circ g)(x) =$ b.) $(g \circ f)(x) =$

c.)
$$(f \circ g)(2) =$$
 d.) $(g \circ g)(x) =$

Example: For the functions f(x) and g(x) given in the graph find

G. Symmetry

Symmetry: **Even** functions... f(x) = f(-x) Symmetric about the y-axis If (a,b) then (-a,b) **Odd** functions...f(-x) = -f(x) Symmetric about the origin If (a,b) then (-a,-b)

1. State whether the following functions are even, odd, or neither.

a.
$$f(x) = x^5 + 5x$$

b. $f(x) = 1 - x^4$
c. $f(x) = 2x - x^2$

d.
$$f(x) = 2sin(x)$$
 e. $f(x) = cos(x) - 1$ f. $f(x) = |x| - 3$

H. Function Properties

Increasing functions rise from left to rightDecreasing functions fall from left to rightPositive functions are above the x-axisNegative functions are below the x-axis*For all of these above, you use the x-values to state your answers!

- 1. Find each of the following using the given function.
 - *a.* f(x) > 0
 - b. $f(x) \leq 0$
 - c. increasing
 - d. decreasing
 - e. domain and range
- 2. Find each of the following using the given function.
 - a. f(x) > 0
 - b. $f(x) \leq 0$
 - c. increasing
 - d. decreasing
 - e. domain and range

Review of Algebra and Trigonometry

A. Functions and Relations

Sec 1.2

DEFN	Relation :	A set of ordered pairs.
		$(x,y) \rightarrow (domain, range)$
_{DEFN} eleme	Function: nt	A correspondence from one set (the domain) to anther set (the range) such that each
		in the domain corresponds to exactly one element in the range.

Example: Determine whether each of the following is an example of a function or not.

1.) $\{(1,1)(3,2)(5,3)\}$ 2.) $\{(1,1)(2,4)(3,-5)(2,-4)\}$ 3.) $x^2 + 2y = 0$ 4.) $x^2 + y^2 = 1$

Vertical Line Test for Functions

Vertical Line Test for Functions: If any vertical line intersects a graph more than once, then the graph is not a function.

Example: Determine whether each of the following is a function or not by the Vertical Line Test.

B. Domain and Range of a Function

DEFN	Domain: Input	\rightarrow x-values	(i.e. All of the values of x that I may plug into a function.)
DEFN	Range: Output	ightarrow y-values	(i.e. All of the values of y that a function can attain)

Example: Give the domain and range (in interval notation) for each of the following

4.)
$$g(x) = \frac{3x}{\sqrt{x+5}}$$
 5.) $h(x) = \ln(6x-3)$

* The 3 functions for which we will most frequently have domain restrictions (in this course) are: **fractions**, **radicals** and **logarithms**.

C. Linear Models

<u>Definition</u>

	Slope = M = $\frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y}{2}$	$\frac{y_2 - y_1}{x_2 - x_1}$
Slope	$m = \frac{y_2 - y_1}{z_2 - z_1}$	(Use when given two points to find slope)
Slope-Intercept Form	$x_2 - x_1$ $y = mx + b$	(Use when given slope and y - intercept)
Point-Slope Form	$(y - y_0) = m \cdot (x - x_0)$	(Use when given one point and slope)
General Form	$A \cdot x + B \cdot y + C = 0$	
Horizontal Line	y = b (where b = constant)	
Vertical Line	x = c (where c = constant)	

<u>Parallel Lines</u>

Two lines are parallel if and only if they have the same slope.
For two lines
$$y_1 = m_1 x + b_1$$
 and $y_2 = m_2 x + b_2$ we have $y_1 \parallel y_2 \iff m_1 = m_2$

Perpendicular lines

Two lines are perpendicular if and only if the product of their slope = -1.
For two lines
$$y_1 = m_1 x + b_1$$
 and $y_2 = m_2 x + b_2$ we have $y_1 \perp y_2 \iff m_1 = -\frac{1}{m_2}$

Examples: Find the equation of the line:

1.) that passes through point (0, -3) with slope = -2

2.) that passes through points (3, -2) and (4, 5)

3.) that passes through point (0, 0) and is parallel to the line y = 3x - 9

4.) that passes through point (2, -4) and is perpendicular to the line $y = \frac{1}{2}x + 3$

5.) Find the slope and y-intercept of the line 9x - 3y - 3 = 0

D. Classes of Functions

1. Power Functions

For any real number m, a function in the form $f(x) = x^m$ is called a Power Function

2. Polynomials

<u>Definition</u>

A <u>polynomial function</u> is a function in the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$ where $a_0 \neq 0$ and n is a positive integer.

Examples: State whether each is a polynomial:

1.)
$$g(x) = x^2 + 5x + 6$$

2.) $f(x) = x^3 + 7x - \sqrt{x}$

3.)
$$h(x) = x^{\frac{2}{3}} - x + 5$$

4.) $f(x) = \frac{x^2}{3} + 8x$

3. Rational Functions

A Rational Function is the quotient of two polynomial functions:

A Rational Function is a function of the form
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

Asymptotes

An asymptote is an imaginary line that the graph of a function approaches as the function approaches a restricted number in the domain or as it approaches infinity.

I. Locating Vertical Asymptotes

If $f(x) = \frac{p(x)}{q(x)}$ is a rational function, p(x) and q(x) have no common factors and n is a zero of q(x), then the

line x = n is a vertical asymptote of the graph of f(x).

II. Locating Horizontal Asymptotes

Let
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

i. If n < m, then y = 0 is the horizontal asymptote

ii. If **n** = **m**, then the line
$$y = \frac{a_n}{b_m}$$
 is the horizontal asymptote

iii. If n > m, there is NO horizontal asymptote. (But there will be a slant/oblique asymptote.)

Examples: Find all asymptotes:

1.)
$$f(x) = \frac{15x}{3x^2 + 1}$$
 2.) $g(x) = \frac{15x^3}{3x^2 + 1}$

3.)
$$h(x) = \frac{-3x+7}{5x-2}$$

4.) $k(x) = \frac{2x-x^2}{x^2-2x-3}$

4. Trigonometric Functions

sin(x	csc(x)	
cos()	x) sec(x)	
tan(x	x) cot(x)	

5. Exponential and Logarithmic Functions

E. Transformations of Functions

Vertical Shifts	f(x)+C	\uparrow	Moves Graph UP C units
	f(x)-C	\downarrow	Moves Graph DOWN C units
Horizontal Shifts	f(x-C)	\rightarrow	Moves Graph RIGHT C units
	f(x+C)	\leftarrow	Moves Graph LEFT C units
Vertical and Horizontal Reflections	-f(x)	\uparrow	Flips Graph About x-axis
	f(-x)	\leftrightarrow	Flips Graph About y-axis
Vertical Stretching/ Compressing	$c \cdot f(x)_{\text{for } c > 1}$	$\uparrow \\ \downarrow$	Graph Vertically Stretches by a Factor of C
	$c \cdot f(x)_{\text{for } 0 < c < 1}$	\uparrow	Graph Vertically Shrinks by a Factor of C

F. Combinations of Functions

1. Piecewise-Defined Functions

A Piecewise Function is a function that has specific (and different) definitions on specific intervals of x.

2. Sums, Differences, Products and Quotients of Functions

Sum	(f+g)(x) = f(x) + g(x)
Difference	(f-g)(x) = f(x) - g(x)
Product	$(f \cdot g)(x) = f(x) \cdot g(x)$
Quotient	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

3. Composition of Functions

$f(x) = x^2 + 5x + 2$	$f(\textcircled{O}) = (\textcircled{O})^2 + 5(\textcircled{O}) + 2$
$g(x) = \frac{2x}{\sqrt{x+1}}$	$g() = \frac{2()}{\sqrt{()+1}}$
k(x) = 2x - 3	k()=2()-3
$h(x) = \sqrt{x^2 + 5x}$	$h() = \sqrt{()^2 + 5()}$ $= \sqrt{()^2 + 5()}$

Notation
$$(f \circ g)(x) = f(g(x))$$

Example:

1.) For the functions $f(x) = \sqrt{x}$ and g(x) = x + 2 find a.) $(f \circ g)(x) =$ b.) $(g \circ f)(x) =$

c.)
$$(f \circ g)(2) =$$
 d.) $(g \circ g)(x) =$

Example: For the functions f(x) and g(x) given in the graph find

a.)
$$(f \circ g)(2) =$$

b.) $(f \circ g)(3) =$
c.) $(g \circ f)(2) =$
d.) $(g \circ f)(3) =$
e.) $(f \circ f)(4) =$
f.) $(g \circ g)(4) =$

Sec 1.3 The Limit of a Function

A. Limits

DEFN:	$\lim_{x\to a} f(x) =$	= L The limit of f(x) as x approaches a, equals L.
	(Where is th	e functions value headed as x is "on its way" to a?)
	$\lim_{x\to a^-} f(x)$	The limit of f(x) as x approaches a from the LEFT
	$\lim_{x\to a^+} f(x)$	The limit of f(x) as x approaches a from the RIGHT

B. Techniques of Solving Limits

<u>1. Evaluation</u> - When possible (without violating domain rules) "plug it in". Example:

1.)
$$\lim_{x \to 3} x^2 =$$
 2.) $\lim_{x \to 1} \frac{1}{x} =$

<u>2. Factoring/Manipulation (then Evaluation)</u> - Factor expressions and cancel any common terms. Example:

1.)
$$\lim_{x \to 4} \frac{x-4}{x^2 - 16} =$$
 2.)
$$\lim_{x \to 3} \frac{x^2 - 3x}{x^2 - 2x - 3} =$$

<u>3. Table</u> - Set up a table as x approaches the limit from the left and from the right. Example:

1 \	lim	$\frac{\sin x}{-} =$	
1.)	$x \rightarrow 0$	<i>x</i> _	

4. Graphing - Graph the function and inspect. (Warning: Your graphing calculator might not always indicate a hole or small discontinuity in a graph. Be sure to always check the domain for restrictions.) Example:

1.)
$$\lim_{x \to 0} \frac{\sin x}{x} =$$

More Examples:

1.)
$$\lim_{x \to 0^+} \frac{1}{x} =$$

$$g(a) =$$

 $\lim_{x \to a} g(x) =$

3.)
$$f(x) = \begin{cases} 7-x & \text{if } x \le -4 \\ x & \text{if } -4 < x \le 2 \\ (x-1)^2 & \text{if } x > 2 \end{cases}$$

$$\lim_{\substack{x \to -4^-}} f(x) \ \lim_{\substack{x \to -4^+}} f(x) \ \lim_{\substack{x \to -4}} f(x)$$

$$\lim_{x \to 2^{-}} f(x)$$
$$\lim_{x \to 2^{+}} f(x)$$

C. Average Velocity

	$Velocity = \frac{Distance}{d}$	
DEFN:	Time	

Example:

A ball is thrown up straight into the air with an initial velocity of 55 ft/sec, its height in feet t seconds is given by $y = 75t - 16t^2$.

a.) Find the average velocity for the period beginning when t=2 and lasting

(i) 0.1 seconds (i.e. the time period [2,2.1])

(ii) 0.01 seconds

(iii) 0.001 seconds

b.) Estimate the instantaneous velocity of the ball when t=2.

Sec 1.4

Calculating Limits

A. Limit Laws

Assume that f and g are functions and c is a constant.
1.)
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
2.)
$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$
3.)
$$\lim_{x \to a} (c \cdot f(x)) = c \cdot \left(\lim_{x \to a} f(x)\right)$$
4.)
$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
5.)
$$\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \lim_{x \to a} g(x) \neq 0$$
6.)
$$\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n$$
7.)
$$\lim_{x \to a} x = a$$
9.)
$$\lim_{x \to a} x^n = a^n$$
10.)
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt{\lim_{x \to a} f(x)}$$

Example:

- a.) $\lim_{x\to 1^+} 3g(x) =$
- b.) $\lim_{x\to 1} f(x) =$
- c.) $\lim_{x\to 1} (f(x) + g(x)) =$

d.)
$$\lim_{x\to 3} \left(f(x) \cdot g(x) \right) =$$

Given
$$\lim_{x \to a} h(x) = 1$$
, $\lim_{x \to a} f(x) = 10$, $\lim_{x \to a} g(x) = 0$.

a.)
$$\lim_{x \to a} \frac{h(x)}{f(x)}$$

b.)
$$\lim_{x \to a} f(x)^{-1}$$

c.)
$$\lim_{x \to a} \sqrt{f(x)}$$

d.)
$$\lim_{x \to a} \frac{1}{f(x) - g(x)}$$

e.)
$$\lim_{x \to a} \frac{g(x)}{h(x)}$$

B. Calculating Limits

Direct Substitution Property: If f is a polynomial or rational function and $a \in$ Domain, then $\lim_{x \to a} f(x) = f(a)$

Examples:

1.)
$$\lim_{x \to 2} x^2 + 3x + 1 =$$

2.) $\lim_{x \to 5} \frac{2x+2}{x-3} =$

3.)
$$\lim_{\theta \to \pi} \cos \theta =$$
 4.) $\lim_{x \to 4} \frac{x^2 - 16}{x - 4} =$

5.)
$$\lim_{x \to 0} \frac{(x+2)^2 - 4}{2x} =$$
 6.)
$$\lim_{x \to 0} \frac{\sqrt{x+16} - 4}{x} =$$

Theorem We say that a limit exists when the limit from the left equals the limit from the right.

$$\lim_{x \to a} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x)$$

Examples:

1.)
$$h(x) = \begin{cases} x^2 & \text{if } x \neq 2 \\ -1 & \text{if } x = 2 \end{cases}$$
 Find $\lim_{x \to 2} h(x)$

<u>Theorem</u>	Squeeze Theorem:	If $f(x) \le g$	$g(x) \le h(x)$ and	$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ when x is near a ,	
		then $\lim_{x\to a} g$	g(x) = L		

Examples:

1.) Find
$$\lim_{x \to 0} x \cdot \cos\left(\frac{1}{x}\right)$$

More Examples:

 $\lim_{x \to -8^-} \frac{5x + 40}{|x + 8|} =$

$$\lim_{x \to -8^+} \frac{5x + 40}{|x + 8|} =$$

$$\lim_{x \to -8} \frac{5x + 40}{|x + 8|} =$$

Evaluate
$$\lim_{x \to 0} \frac{\tan(5x)}{\sin(6x)} =$$

Sec 1.5 Continuity

A. Definition of Continuity

DEFN: A function f is continuous at a number a if:

- (i) f(a) exists
- (ii) $\lim_{x \to a} f(x)$ exists
- (iii) $\lim_{x \to a} f(x) = f(a)$

A function is defined as continuous only if it is continuous at every point in the domain of the function.

Examples: For each, determine whether the function is continuous (i.e. Is $\lim_{x \to A} f(x) = f(A)$?) 1.) 2.) 3.) 4.) 4.)

Examples: For each, determine whether the function is continuous. If not, where is the discontinuity?

3.)
$$h(x) = \begin{cases} x^2 + 1 & \text{if } x \neq 2 \\ 5 & \text{if } x = 2 \end{cases}$$

4.) $k(x) = ||x||$ (Step function: i.e. $k(x) = \operatorname{int}(x)$)

5.) For what value of the constant c is the function f continuous on $(-\infty,\infty)$ where

$$f(x) = \begin{cases} cx + 7 & \text{if } x \in (-\infty, 8] \\ cx^2 - 7 & \text{if } x \in (8, \infty) \end{cases}$$

6.) Evaluate
$$\lim_{x \to 16} \frac{16 - x}{4 - \sqrt{x}} =$$

DEFN: A function f is continuous from the RIGHT at a number a if: $\lim_{x \to a^+} f(x) = f(a)$ A function f is continuous from the LEFT at a number a if: $\lim_{x \to a^-} f(x) = f(a)$

Is $\,f\,$ is continuous from the LEFT or RIGHT at

.)
$$x = -3$$

b.) x = 2

2.) Show that f(x) has a jump discontinuity at x = 9 by calculating the limits from the left and right at x = 9.

	$x^2 + 5x + 5,$	if $x < 9$
$f(x) = \langle$	14,	if $x = 9$
	-4x+4,	if $x > 9$

<u>Theorem</u> If f and g are functions that are continuous at a number a, and c is a constant, then the following are also continuous at a:

(i)
$$(f + g)$$

(ii) $(f - g)$
(iii) $(f \cdot g)$
(iv) $\left(\frac{f}{g}\right)$ if $g(a) \neq 0$
(v) $c \cdot f$ or $c \cdot g$

<u>Theorem</u> A **polynomial** function is continuous everywhere A **rational** function is continuous everywhere it is defined

Theorem Intermediate Value Theorem

If f is a function that is continuous on a closed interval [a, b] where $f(a) \neq f(b)$ and N is a number such that f(a) < N < f(b). Then there exist a number c such that a < c < b and f(c) = N.

Examples:

1.) Show that $f(x) = x^2 - x - 2$ has a root on the interval [1,3]

2.) Let f be a continuous function such that f(1) < 0 < f(9). Then the Intermediate Value Theorem implies that f(x) = 0 on the interval (A, B). Give the values of A and B.

Sec 1.6

A. Infinity vs. DNE

Recall from section 1.3 that $\lim_{x\to 0} \frac{1}{x^2}$ DNE since the function value kept increasing. Now we will be more descriptive; any value that keeps increasing is said to approach infinity (∞), and any value that keeps decreasing is said to approach negative infinity ($-\infty$).

Examples:

1.) Evaluate $\lim_{x\to 0} \frac{1}{x^2}$ using the graph and table method.

	$\lim_{x \to 0^-} \frac{1}{x^2}$		$\lim_{x\to 0^+}\frac{1}{x^2}$		
	x	У	X	У	
	-0.1		0.1		
	-0.01		0.01		
	-0.001		0.001		

2.) Evaluate $\lim_{x\to 0} \frac{1}{x}$ using the graph and table method.

B. A Quick Review of Asymptotes

An asymptote is an imaginary line that the graph of a function approaches as the function approaches a restricted number in the domain or as it approaches infinity.

Locating Vertical Asymptotes

If
$$f(x) = \frac{p(x)}{q(x)}$$
 is a rational function, $p(x)$ and $q(x)$ have no common factors and n is a zero of $q(x)$,

then the line x = n is a vertical asymptote of the graph of f(x).

Locating Horizontal Asymptotes.

I

Let
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

i. If n < m, then y = 0 is the horizontal asymptote

ii. If **n** = **m**, then the line $y = \frac{a_n}{b_m}$ is the horizontal asymptote

iii. If n > m, there is NO horizontal asymptote. (But there will be a slant/oblique asymptote.)

Examples: For the following rational functions, find the vertical and horizontal asymptotes if any:

1.)
$$f(x) = \frac{16x^2}{4x^2 + 1}$$
 2.) $g(x) = \frac{x + 8}{x^2 - 64}$

3.)
$$h(x) = \frac{x^3 + 7}{5x - 2}$$

4.) $k(x) = \frac{x^2 - 2x}{2 - 3x + x^2}$

C. Vertical Asymptotes

Vertical asymptotes occur when $\lim_{x \to a^-} f(x) = \pm \infty$ or $\lim_{x \to a^+} f(x) = \pm \infty$

The asymptote will be the line x = a.

Example: Evaluate the limit, find the asymptote and graph the function

1.)
$$\lim_{x \to 2} \frac{x+1}{3x-6}$$

2.)
$$\lim_{x \to -4^+} \frac{x+6}{x+4}$$

3.)
$$\lim_{x \to -4^-} \frac{x+6}{x+4}$$

D. Limits as Infinity

A limit as the domain approaches infinity: $\displaystyle \lim_{x o\infty} f(x)$

Finding Limits as Infinity of Rational Functions

- i. Determine the degree of the denominator. (Let's say degree = P)
- ii. Multiply both the numerator and denominator by $\frac{1}{r^{P}}$.

iii. Distribute/clean up algebra and continue evaluating the limit.

Example: Evaluate the limit.

1.)
$$\lim_{x \to \infty} \frac{6x^2 + 2x + 7}{8x + 2x^2}$$

2.)
$$\lim_{x \to \infty} \frac{x^3 + 4x - 2}{6 - 2x^2}$$

$$\lim_{x \to \infty} \frac{2x}{2x^2 + x - 1}$$

<u>Conclusion</u>: For positive integers M and N such that M > N

- 1. Degree of the Numerator = Degree of the Denominator $\lim_{x \to \infty} \frac{Polynomial \ of \ Degree \ M}{Polynomial \ of \ Degree \ M} = Ratio \ of \ Leading \ Coeficient \ s$
- 2. Degree of the Numerator > Degree of the Denominator $\lim_{x \to \infty} \frac{Polynomial \ of \ Degree \ M}{Polynomial \ of \ Degree \ N} = \pm \infty$
- 3. Degree of the Numerator < Degree of the Denominator $\lim_{x \to \infty} \frac{Polynomial \ of \ Degree \ N}{Polynomial \ of \ Degree \ M} = 0$

More Example: Evaluate the limit.

1.)
$$\lim_{x \to \infty} \frac{3x - 10}{\sqrt{16x^2 + 5}}$$

2.)
$$\lim_{x \to -\infty} \frac{\sqrt{9x^2 + x + 1}}{2x + 1}$$

3.) Find the horizontal asymptotes for the curve
$$y = \frac{12x}{(x^4 + 1)^{\frac{1}{4}}}$$

4.) Find the vertical asymptotes for the curve
$$y = \frac{4x^3}{x+2}$$

$$\lim_{x \to \frac{\pi}{2}^{-}} \tan x$$

6.) $\lim_{x \to \frac{\pi}{2}^+} \tan x$

7.) $\lim_{x \to \infty} \sqrt{x^2 + 7x + 1} - x$