Sec 1.1 and 1.2 Functions: Review of Algebra and Trigonometry

A. Functions and Relations

DEFN	Relation :	A set of ordered pairs. (x,y) \rightarrow (domain, range)
DEFN	Function:	A correspondence from one set (the domain) to anther set (the range) such that each element in the domain corresponds to exactly one element in the range.

Example: Determine whether each of the following is an example of a function or not.

1.) $\{(1,1)(3,2)(5,3)\}$ 2.) $\{(1,1)(2,4)(3,-5)(2,-4)\}$

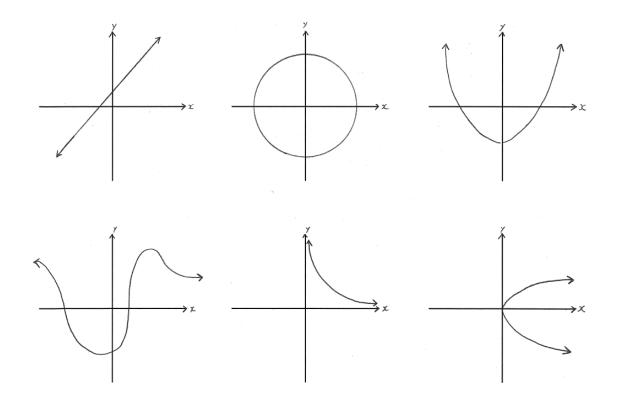
3.)
$$x^2 + 2y = 0$$

4.) $x^2 + y^2 = 1$

Vertical Line Test for Functions

Vertical Line Test for Functions: If any vertical line intersects a graph more than once, then the graph is <u>not</u> a function.

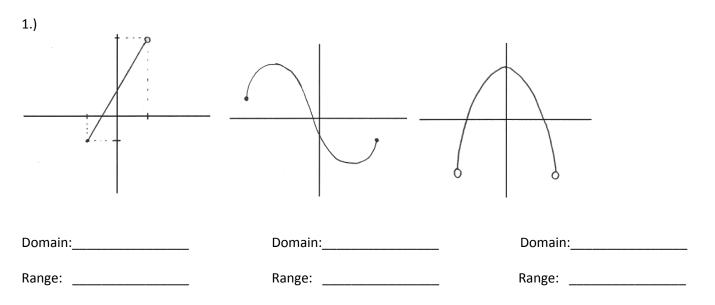
Example: Determine whether each of the following is a function or not by the Vertical Line Test.



B. Domain and Range of a Function

DEFN **Domain**: Input \rightarrow x-values (i.e. All of the values of x that I may plug into a function.) DEFN **Range**: Output \rightarrow y-values (i.e. All of the values of y that a function can attain) **Function Notation**: f(x) = y

Example: Give the domain and range (in interval notation) for each of the following



Example: Give the domain for each of the following (in interval notation and as an inequality)

2.)
$$g(x) = \sqrt{2-x}$$
 3.) $f(x) = \frac{x^2 - 4}{x+2}$

4.)
$$g(x) = \frac{3x}{\sqrt{x+5}}$$
 5.) $h(x) = \ln(6x-3)$

* The 3 functions for which we will most frequently have domain restrictions (in this course) are: fractions (aka...rational functions), radicals and logarithms.

C. Linear Models

<u>Definition</u>

Slope = M = $\frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$							
Slope	$m = \frac{y_2 - y_1}{x_2 - x_1}$	(Use when given two points to find slope)					
Slope-Intercept Form	y = mx + b	(Use when given slope and y - intercept)					
Point-Slope Form	$(y-y_1) = m \cdot (x-x_1)$	(Use when given one point and slope)					
General Form	$A \cdot x + B \cdot y + C = 0$						
Horizontal Line	y = b (where b = constant)						
Vertical Line	x = c (where c = constant)						

<u>Parallel Lines</u>

Two lines are parallel if and only if they have the same slope.
For two lines
$$y_1 = m_1 x + b_1$$
 and $y_2 = m_2 x + b_2$ we have $y_1 \parallel y_2 \iff m_1 = m_2$

Perpendicular lines

Two lines are perpendicular if and only if the product of their slope = -1.
For two lines
$$y_1 = m_1 x + b_1$$
 and $y_2 = m_2 x + b_2$ we have $y_1 \perp y_2 \iff m_1 = -\frac{1}{m_2}$

Examples: Find the equation of the line:

1.) that passes through point (0, -3) with slope = -2

2.) that passes through points (3, -2) and (4, 5)

3.) that passes through point (0, 0) and is parallel to the line y = 3x - 9

4.) that passes through point (2, -4) and is perpendicular to the line $y = \frac{1}{2}x + 3$

5.) Find the slope and y-intercept of the line 9x - 3y - 3 = 0

D. Classes of Functions

1. Power Functions

For any real number m, a function in the form $f(x) = x^m$ is called a Power Function

2. Polynomials

<u>Definition</u>

A <u>polynomial function</u> is a function in the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$ where $a_0 \neq 0$ and n is a positive integer.

Examples: State whether each is a polynomial:

1.)
$$g(x) = x^2 + 5x + 6$$

2.) $f(x) = x^3 + 7x - \sqrt{x}$
3.) $f(x) = \frac{x^2}{3} + 8x$

4.)
$$h(x) = x^{\frac{2}{3}} - x + 5$$
 5.) $f(x) = \frac{4}{x^2} + 6x - 1$

3. Rational Functions

A Rational Function is the quotient of two polynomial functions:

A Rational Function is a function of the form
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

Asymptotes

An asymptote is an imaginary line that the graph of a function approaches as the function approaches a restricted number in the domain or as it approaches infinity.

I. Locating Vertical Asymptotes

If $f(x) = \frac{p(x)}{q(x)}$ is a rational function, p(x) and q(x) have no common factors and n is a zero of q(x), then the

line x = n is a vertical asymptote of the graph of f(x).

II. Locating Horizontal Asymptotes

Let
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

i. If n < m, then y = 0 is the horizontal asymptote ("Bottom Heavy")

- ii. If **n** = **m**, then the line $y = \frac{a_n}{b_m}$ is the horizontal asymptote ("Equal Degree")
- iii. If n > m, there is NO horizontal asymptote. (But there will be a slant/oblique asymptote) ("Top Heavy")

Examples: Find all vertical and horizontal asymptotes:

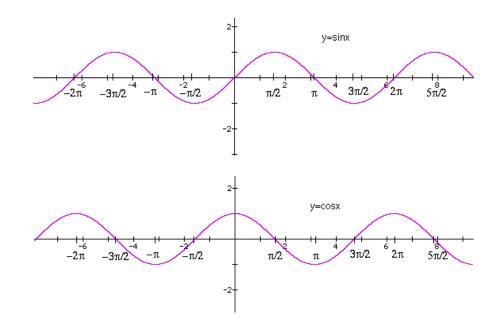
1.)
$$f(x) = \frac{15x}{3x^2 + 1}$$
 2.) $g(x) = \frac{15x^3}{3x^2 + 1}$

3.)
$$h(x) = \frac{-3x+7}{5x-2}$$

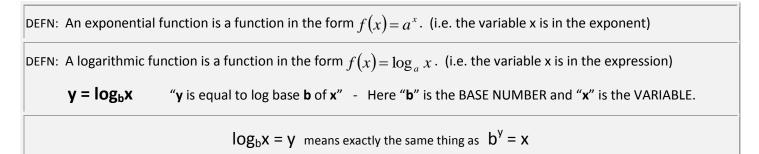
4.) $k(x) = \frac{2x-x^2}{x^2-2x-3}$

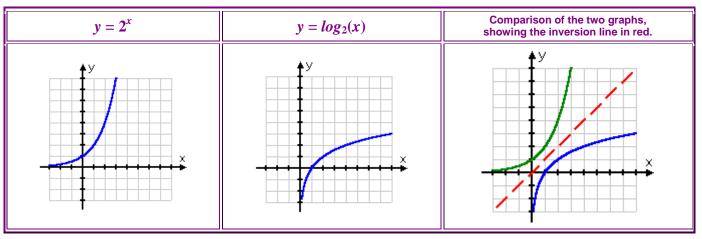
4. Trigonometric Functions

sin(x)	csc(x)	
cos(x)	sec(x)	
tan(x)	cot(x)	



5. Exponential and Logarithmic Functions

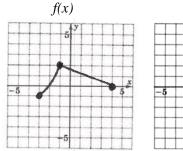


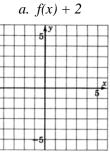


E. Transformations of Functions

Vertical Shifts	f(x)+C	\uparrow	Moves Graph UP C units
	f(x)-C	\downarrow	Moves Graph DOWN C units
Horizontal Shifts	f(x-C)	\rightarrow	Moves Graph RIGHT C units
	f(x+C)	\leftarrow	Moves Graph LEFT C units
Vertical and Horizontal Reflections	-f(x)	\uparrow	Flips Graph About x-axis
	f(-x)	\leftrightarrow	Flips Graph About y-axis
Vertical Stretching/ Compressing $c \cdot f(x)_{\text{ for } c > 1}$		$\uparrow \\ \downarrow$	Graph Vertically Stretches by a Factor of C
	$c \cdot f(x)_{\text{for } 0 < c < 1}$	\uparrow	Graph Vertically Shrinks by a Factor of C

Example: Use the given graph of f(x) to sketch each of the following.





b	. f(x	c + .	2)	
	5	У		
				-
	+			x
-5	+	-		5
	-5			-

С.	—j	f(x)				
\square	\square	5	y			
	$\downarrow \downarrow$	_				
	\square					
-5	+	-				<i>x</i>
	\square	_				
	Ħ					
		+5				

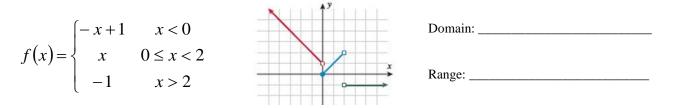
d. 2f(-x)

	5	У			
	э				
					x
-5				510	5
-5				610	5
-5				5	5
-5					5
-5	5			5	

F. Combinations of Functions

1. Piecewise-Defined Functions

A Piecewise Function is a function that has specific (and different) definitions on specific intervals of x.



2. Sums, Differences, Products and Quotients of Functions

Sum	(f+g)(x) = f(x) + g(x)
Difference	(f-g)(x) = f(x) - g(x)
Product	$(f \cdot g)(x) = f(x) \cdot g(x)$
Quotient	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

Example

1. If f(x) = 2x+1 and $g(x) = x^2 - 3$ find each of the following.

a.
$$f(4)$$
 b. $g(2x)$ c. $f(3x-4)$ d. $f(x) + g(x)$ e. $f(x)g(x)$

3. Composition of Functions

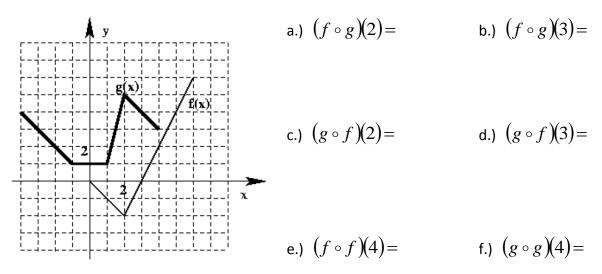
Notation $(f \circ g)(x) = f(g(x))$	Notation	$(f \circ g)(x) = f(g(x))$
-------------------------------------	----------	----------------------------

Example:

1.) For the functions $f(x) = \sqrt{x}$ and g(x) = x + 2 find a.) $(f \circ g)(x) =$ b.) $(g \circ f)(x) =$

c.)
$$(f \circ g)(2) =$$
 d.) $(g \circ g)(x) =$

Example: For the functions f(x) and g(x) given in the graph find



G. Symmetry

Symmetry: **Even** functions... f(x) = f(-x) Symmetric about the y-axis If (a,b) then (-a,b) **Odd** functions...f(-x) = -f(x) Symmetric about the origin If (a,b) then (-a,-b)

1. State whether the following functions are even, odd, or neither.

a.
$$f(x) = x^5 + 5x$$

b. $f(x) = 1 - x^4$
c. $f(x) = 2x - x^2$

d.
$$f(x) = 2sin(x)$$
 e. $f(x) = cos(x) - 1$ f. $f(x) = |x| - 3$

H. Function Properties

Increasing functions rise from left to rightDecreasing functions fall from left to rightPositive functions are above the x-axisNegative functions are below the x-axis*For all of these above, you use the x-values to state your answers!

- 1. Find each of the following using the given function.
 - *a.* f(x) > 0
 - b. $f(x) \leq 0$
 - c. increasing
 - d. decreasing
 - e. domain and range
- 2. Find each of the following using the given function.
 - a. f(x) > 0
 - b. $f(x) \leq 0$
 - c. increasing
 - d. decreasing
 - e. domain and range

