A. Limits

DEFN: $\quad \lim _{x \rightarrow a} f(x)=L \quad$ The limit of $\mathrm{f}(\mathrm{x})$ as x approaches a, equals L .
(Where is the functions value headed as x is "on its way" to a ?)
$\lim _{x \rightarrow a^{-}} f(x)$ The limit of $\mathrm{f}(\mathrm{x})$ as x approaches a from the LEFT
$\lim _{x \rightarrow a^{+}} f(x)$ The limit of $\mathrm{f}(\mathrm{x})$ as x approaches a from the RIGHT

B. Techniques of Solving Limits

1. Evaluation - When possible (without violating domain rules) "plug it in".

Example:
1.) $\lim _{x \rightarrow 3} x^{2}=$
2.) $\lim _{x \rightarrow 1} \frac{1}{x}=$
2. Factoring/Manipulation (then Evaluation) - Factor expressions and cancel any common terms. Example:
1.) $\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-16}=$
2.) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}-2 x-3}=$
3. Table - Set up a table as x approaches the limit from the left and from the right.

Example:
1.) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$

4. Graphing - Graph the function and inspect. (Warning: Your graphing calculator might not always indicate a hole or small discontinuity in a graph. Be sure to always check the domain for restrictions.)
Example:
1.) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$

More Examples:
1.) $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=$
2.)

$$
f(a)=
$$

$\lim _{x \rightarrow a} f(x)=$
3.)

$$
f(x)=\left\{\begin{array}{cc}
7-x & \text { if } x \leq-4 \\
x & \text { if }-4<x \leq 2 \\
(x-1)^{2} & \text { if } x>2
\end{array}\right.
$$

$\lim _{x \rightarrow-4^{-}} f(x)$
$\lim _{x \rightarrow-4^{+}} f(x)$
$\lim _{x \rightarrow-4} f(x)$
$\lim _{x \rightarrow 2^{-}} f(x)$ $\lim _{x \rightarrow 2^{+}} f(x)$
4.)

$\lim _{x \rightarrow 2^{-}} g(x)=$
$\lim _{x \rightarrow 2^{+}} g(x)=$
$\lim _{x \rightarrow 2} g(x)=$
$\lim _{x \rightarrow 5^{-}} g(x)=$
$\lim _{x \rightarrow 5^{+}} g(x)=$
$\lim _{x \rightarrow 5} g(x)=$

C. Average Velocity

DEFN: \quad Velocity $=\frac{\text { Distance }}{\text { Time }}$
Example:
A ball is thrown up straight into the air with an initial velocity of $55 \mathrm{ft} / \mathrm{sec}$, its height in feet t seconds is given by $y=75 t-16 t^{2}$.
a.) Find the average velocity for the period beginning when $t=2$ and lasting
(i) 0.1 seconds (i.e. the time period $[2,2.1])$
(ii) 0.01 seconds
(iii) 0.001 seconds
b.) Estimate the instantaneous velocity of the ball when $\mathrm{t}=2$.

