Sec 1.5 Continuity

A. Definition of Continuity

DEFN: A function f is continuous at a number a if:

- (i) f(a) exists
- (ii) $\lim_{x \to a} f(x)$ exists
- (iii) $\lim_{x \to a} f(x) = f(a)$

A function is defined as continuous only if it is continuous at every point in the domain of the function.

Examples: For each, determine whether the function is continuous (i.e. Is $\lim_{x \to A} f(x) = f(A)$?) 1.) 2.) 3.) 4.) 4.)

Examples: For each, determine whether the function is continuous. If not, where is the discontinuity?

3.)
$$h(x) = \begin{cases} x^2 + 1 & \text{if } x \neq 2 \\ 5 & \text{if } x = 2 \end{cases}$$

4.) $k(x) = ||x||$ (Step function: i.e. $k(x) = \operatorname{int}(x)$)

5.) For what value of the constant c is the function f continuous on $(-\infty,\infty)$ where

$$f(x) = \begin{cases} cx + 7 & \text{if } x \in (-\infty, 8] \\ cx^2 - 7 & \text{if } x \in (8, \infty) \end{cases}$$

6.) Evaluate
$$\lim_{x \to 16} \frac{16 - x}{4 - \sqrt{x}} =$$

DEFN: A function f is continuous from the RIGHT at a number a if: $\lim_{x \to a^+} f(x) = f(a)$ A function f is continuous from the LEFT at a number a if: $\lim_{x \to a^-} f(x) = f(a)$

Is $\,f\,$ is continuous from the LEFT or RIGHT at

.)
$$x = -3$$

b.) x = 2

2.) Show that f(x) has a jump discontinuity at x = 9 by calculating the limits from the left and right at x = 9.

	$x^2 + 5x + 5,$	if $x < 9$
$f(x) = \langle$	14,	if $x = 9$
	-4x+4,	if $x > 9$

<u>Theorem</u> If f and g are functions that are continuous at a number a, and c is a constant, then the following are also continuous at a:

(i)
$$(f + g)$$

(ii) $(f - g)$
(iii) $(f \cdot g)$
(iv) $\left(\frac{f}{g}\right)$ if $g(a) \neq 0$
(v) $c \cdot f$ or $c \cdot g$

<u>Theorem</u> A **polynomial** function is continuous everywhere A **rational** function is continuous everywhere it is defined

Theorem Intermediate Value Theorem

If f is a function that is continuous on a closed interval [a, b] where $f(a) \neq f(b)$ and N is a number such that f(a) < N < f(b). Then there exist a number c such that a < c < b and f(c) = N.

Examples:

1.) Show that $f(x) = x^2 - x - 2$ has a root on the interval [1,3]

2.) Let f be a continuous function such that f(1) < 0 < f(9). Then the Intermediate Value Theorem implies that f(x) = 0 on the interval (A, B). Give the values of A and B.