A. Definition of Continuity

DEFN: A function f is continuous at a number a if:
(i) $f(a)$ exists
(ii) $\lim _{x \rightarrow a} f(x)$ exists
(iii) $\lim _{x \rightarrow a} f(x)=f(a)$

A function is defined as continuous only if it is continuous at every point in the domain of the function.

Examples: For each, determine whether the function is continuous (i.e. Is $\lim _{x \rightarrow A} f(x)=f(A)$?)
1.)

2.)

3.)

4.)

Examples: For each, determine whether the function is continuous. If not, where is the discontinuity?
1.) $f(x)=\frac{x^{2}-x-20}{x-5}$
2.) $f(x)= \begin{cases}-6-x & \text { if } x \leq-3 \\ x & \text { if }-3<x \leq 3 \\ (x-1)^{2} & \text { if } x>3\end{cases}$
3.) $h(x)=\left\{\begin{array}{c}x^{2}+1 \text { if } x \neq 2 \\ 5 \text { if } x=2\end{array}\right.$
4.) $k(x)=\|x\| \quad($ Step function: i.e. $k(x)=\operatorname{int}(x)$)
5.) For what value of the constant c is the function f continuous on $(-\infty, \infty)$ where

$$
f(x)= \begin{cases}c x+7 & \text { if } x \in(-\infty, 8] \\ c x^{2}-7 & \text { if } x \in(8, \infty)\end{cases}
$$

6.) Evaluate $\lim _{x \rightarrow 16} \frac{16-x}{4-\sqrt{x}}=$

DEFN: A function f is continuous from the RIGHT at a number a if: $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
A function f is continuous from the LEFT at a number a if: $\lim _{x \rightarrow a^{-}} f(x)=f(a)$

Example:
1.)

Is f is continuous from the LEFT or RIGHT at
a.) $x=-3$
b.) $x=2$
2.) Show that $f(x)$ has a jump discontinuity at $x=9$ by calculating the limits from the left and right at $x=9$.
$f(x)= \begin{cases}x^{2}+5 x+5, & \text { if } x<9 \\ 14, & \text { if } x=9 \\ -4 x+4, & \text { if } x>9\end{cases}$

Theorem If f and g are functions that are continuous at a number a, and c is a constant, then the following are also continuous at a :
(i) $(f+g)$
(ii) $(f-g)$
(iii) $(f \cdot g)$
(iv) $\left(\frac{f}{g}\right)$ if $g(a) \neq 0$
(v) $c \cdot f$ or $c \cdot g$

Theorem A polynomial function is continuous everywhere
 A rational function is continuous everywhere it is defined

Theorem Intermediate Value Theorem

If f is a function that is continuous on a closed interval $[a, b]$ where $f(a) \neq f(b)$ and N is a number such that $f(a)<N<f(b)$. Then there exist a number c such that $a<c<b$ and $f(c)=N$.

Examples:
1.) Show that $f(x)=x^{2}-x-2$ has a root on the interval $[1,3]$
2.) Let f be a continuous function such that $f(1)<0<f(9)$. Then the Intermediate Value Theorem implies that $f(x)=0$ on the interval (A, B). Give the values of A and B.

